《离散数学课件》6等价关系

合集下载

离散数学关系-PPT

离散数学关系-PPT
离散数学关系
基本要求和重难点:
• 基本要求
了解序偶与笛卡尔积,掌握关系得性质和运算,重 点掌握关系闭包运算得求法和偏序关系及哈斯图 得正确画法。
• 重难点
关系5种性质得判断,关系得闭包运算和偏序关系 得性质及特殊元素得判断。
引言
日常生活中,大家熟知一些常见关系, 例:家庭集合,有父子关系、夫妻关系等。 全校同学作为一个集合,有同班关系,同组关系。 在计算机科学中,在计算机逻辑设计中,应用了等 价关系,相容关系。 在编译原理、关系数据库、数据结构、数学中也有 关系。
例题
返回第5、3节目录
五、传递性例题
例: A={1,2,3,4} R={<1,4>,<4,3>,<1,3>,<3,1>,<1,2>,<3,2>,<2,3>, <4,2>,<1,1>,<3,3>} R不就是传递得
返回传递性
返回第5、3节目录
六、举 例
自反性 反自反性 对称性 反对称性 传递性
任何集合上得
返回总目录
一、自反性
自反性
定义: 若xA,均有xRx,那么称R就是自反得。
A上关系R就是自反得x(xA xRx)
在关系矩阵中,反映为主对角线元素均为1 在关系图中,反映为每结点都有自回路 例1: A={1,2,3},R={<1,1>,<2,2>,<3,3>,<1,2>}
1 23
例2:“=”关系和“≤”关系就是自反得吗?
S={<4,2>,<2,5>,<3,1>,<1,3>}

离散数学作业6_集合与关系答案

离散数学作业6_集合与关系答案

离散数学作业作业6 ——等价关系1. 设R和S均为A上的等价关系,确定下列各式,哪些是A上的等价关系?如果是,证明之;否则,举反例说明。

(1)R∩S (2)R∪S (3)r (R-S)(4)R- S (5)R◦S (6)R2解:(1),(6)正确,其余错误。

2. R是集合A上的二元关系, a,b,c ,若aRb,且bRc,有cRb,则称R 是循环关系。

证明R是自反和循环的,当且仅当R是一等价关系。

分析: 需要证明两部分:(1)已知R是自反和循环的,证明:R是一等价关系(2)已知R是一等价关系, 证明R是自反和循环的.证明:(1)先证必要性。

只需要证明R是对陈的和传递的。

任取(x,y)∈R。

因为R是自反的,所以(y,y)∈R。

由R是循环的可得(y,x)∈R,即R是对陈的。

任取(x,y),(y,z)∈R。

因R是循环的,所以(z,x)∈R。

由R对称性得(x,z)∈R,即R是传递的。

(2)证充分性。

只需要证明R是循环的。

任取(x,y),(y,z)∈R,下证(z,x)∈R。

由于R是传递的,所以(x,z)∈R。

又由R是对称的得(z,x)∈R。

所以R是循环的。

3. 设|A|=n ,在A 上可以确定多少个不同的等价关系?解:2n!/((n+1)n!n!)4. 给定集合S={ 1 , 2 , 3, 4, 5 },找出S 上的等价关系R ,此关系R 能够产生划分{{1,2},{3},{4,5}},并画出关系图。

解:{(1,2),(2,1),(4,5),(5,4)}S R I =⋃5. 设A={1,2,3,4,5}。

R 是集合A 上的二元关系,其关系矩阵如下图所示。

求包含R 的最小等价关系和该等价关系所确定的划分。

⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=0010001000000000101000001RM 分析: 可以证明tsr(R)是包含R 的最小等价关系.解:包含R 的最小等价关系的矩阵表示如下:1000001010001010101000101⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭上述等价关系确定的划分为{{1},{2,4},{3,5}}.6. 自学华氏(WalShall)算法,写出算法的基本概念、基本步骤和一个求解传递闭包的具体实例,并可清晰讲解算法整体实现过程。

离散数学中的关系

离散数学中的关系

离散数学中的关系
离散数学中的关系指的是集合之间元素的联系或对应关系。

这种关系可以描述为有序对的集合,其中每个有序对都由一对元素组成。

在离散数学中常见的关系包括等价关系、偏序关系、全序关系等。

等价关系是一种自反、对称和传递的关系,即元素之间具有相等的性质。

例如,集合中两个元素的相等关系就是一种等价关系。

偏序关系是一种自反、反对称和传递的关系,即对元素之间存在一种偏序或排序关系。

例如,在集合中,可以通过元素之间的比较来确定它们的顺序关系。

全序关系是一种偏序关系,它不仅是自反、反对称和传递的,还具有完备性,即对于集合中任意两个元素,它们之间必定存在一种顺序关系。

离散数学中还有其他类型的关系,如函数关系、包含关系等。

函数关系是一种特殊的关系,它对于集合中的每个元素,都存在唯一的映射元素。

包含关系则描述了两个集合之间的包含或包含于关系。

通过对这些关系的研究和分析,可以帮助理解和解决离散数学中的问题。

同时,关系的性质和特征也为其他学科如计算机科学、逻辑学等提供了基础。

离散数学___等价关系与偏序关系

离散数学___等价关系与偏序关系
19
思考:
设A={a, b, c, d}, 给定π1,π2,π3,π4,π5,π6如下: π1= { {a, b, c}, {d} }, π2= { {a, b}, {c}, {d} } π3= { {a}, {a, b, c, d} }, π4= { {a, b}, {c} } π5= { ,{a, b}, {c, d} }, π6= { {a, {a}}, {b, c, d} } 问哪些是A的划分, 哪些不是 A 的划分? 答案: π 1和π 2 是A的划分, 其他都不是 A 的划分.
(2)当(a,b) ∈R时有(b,a) ∈R,所以满足对称性;
(3)当(a,b) ∈R和(b,c) ∈R时有(a,c) ∈R,所以R是可传递的。
由此可得同年龄关系 R是等价关系。
4
再如设集合A的情况同上所述 若令集合A={a , b , d , c , e , f } 同房间 同房间
其中a ,b, d同住一个房间,c, e ,f同住另一个房间。 如果同住一个房间的大学生认为是相关的,那么 “同房间”关 系 R也是等价关系。 (1)因为每一个大学生都和自已是同房间的,所以满足自反性;
7
(1)a ,b,c都姓“张”,d,e,f 都姓“李” a b
√ √ √
c
√ √ √
d
e
f
a √ b √
c √ d e f
a b c
√ √ √ √ √ √ √
d e f


a 1 1 1 0 0 0
b c d e f 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1
用刀分
{

离散数学 等价关系

离散数学 等价关系

离散数学等价关系嘿,朋友!咱们今天来聊聊离散数学里这个有点特别的家伙——等价关系。

你知道吗,等价关系就像是一群小伙伴在玩分类游戏。

比如说,咱们把水果分分类,苹果一堆,香蕉一堆,橙子一堆。

这里面“是苹果”“是香蕉”“是橙子”就可以看作是不同的等价类。

那等价关系到底是啥呢?它就像是一把神奇的尺子,能衡量出元素之间是否“平等”。

比如说,在整数集合里,如果两个数除以 2 的余数相同,那它们在这个规则下就是等价的。

这就好比咱俩都喜欢同一种口味的冰淇淋,那在喜欢冰淇淋口味这件事上,咱俩就是“等价”的小伙伴。

再想想看,我们身边是不是也有很多类似的等价关系?比如在班级里,同一年出生的同学是不是可以看作一个等价类?在一个家族里,同一个辈分的人是不是也能算是一个等价类?等价关系还有几个重要的特点呢。

它得满足自反性,这就好比自己得喜欢自己,总不能自己讨厌自己吧?对称性也不能少,你对我好,我当然也得对你好,不能只准我对你好,你对我不好呀。

还有传递性,就像你和我关系好,我和他关系好,那你和他关系也得不错才行。

那等价关系有啥用呢?这用处可大啦!它能帮我们把复杂的东西简单化,把一大群乱糟糟的元素整理得井井有条。

比如说在计算机编程里,通过等价关系可以对数据进行分类处理,提高效率。

这就像你整理房间,把东西分类放好,找的时候一下子就能找到。

而且在数学的好多领域里,等价关系都是个重要的工具。

就像一把万能钥匙,能打开好多难题的大门。

总之,等价关系在离散数学里可是个相当重要的角色,它就像一个默默付出的幕后英雄,虽然不那么显眼,但作用巨大。

咱们要是能把它搞明白,学好离散数学可就轻松多啦,你说是不是?。

离散数学等价关系

离散数学等价关系

等价关系是设R是非空集合A上的二元关系,若R是自反的、对称的、传递的,则称R是A上的等价关系。

给定非空集合A,若有集合S={S ,S ,…,S },其中S A,S(i=1,2,…,m)且S S = (i j)同时有S =A,称S是A的划分。

研究等价关系的目的在于将集合中的元素进行分类,选取每类的代表元素来降低问题的复杂度,如软件测试时,可利用等价类来选择测试用例。

扩展资料:
定义:
若关系R在集合A中是自反、对称和传递的,则称R为A上的等价关系。

所谓关系R 就是笛卡尔积 A×A 中的一个子集。

A中的两个元素x,y有关系R,如果(x,y)∈R。

我们常简记为xRy。

自反:任意x属于A,则x与自己具有关系R,即xRx;
对称:任意x,y属于A,如果x与y具有关系R,即xRy,则y与x 也具有关系R,即yRx;
传递:任意x,y,z属于A,如果xRy且yRz,则xRz
x,y具有等价关系R,则称x,y R等价,有时亦简称等价。

离散数学等价关系与偏序关系PPT学习教案

离散数学等价关系与偏序关系PPT学习教案

5. ii+1
6. 转2
22
拓扑排序
把偏序集扩张成一个全序集,称为拓扑排序.
算法4.3 拓扑排序
输入:偏序集A
输出:A中元素的排序
1. i1
2. 从A中选择一个极小元 ai 作为最小元
3.AA{ai} 4.if A
第22页/共24页
5. ii+1
6. 转2
23
Hale Waihona Puke 实例有偏序约束的任务集A, 偏序集<A,≼>的哈斯图如图
离散数学等价关系与偏序关系
会计学
1
等价关系的定义与实例
定义4.18 设R为非空集合上的关系. 如果R是自反的、对 称的和传递的, 则称R为A上的等价关系. 设 R 是一个等 价关系, 若<x,y>∈R, 称 x等价于y, 记做x~y. 例1 设 A={1, 2, …, 8}, 如下定义 A上的关系R:
A = {T1, T2, T3, T4, T5, S1, T6, S2, T, T9, T10}
可行的拓扑排序有多个, 如:
T1, T2, T3, T4, S1, T5, T6, S2, T, T9, T10;
T1, T2, T3, T4, S1, T6, S2, T, T9, T5, T10;
第23页/共24页
6
性质的证明(续)
(4) 先证 [x] A. 任取y, xA y∈ [x] x (x∈A∧y∈[x]) xA
y∈[x]∧[x]A y∈A
从而有 [x] A . xA
再证A [x]. 任取y, xA
y∈A y∈[y]∧y∈第A6页/共2y4∈页
[x]
xA
从而有A [x] 成立. 综上所述得

《离散数学》第6章 图的基本概念

《离散数学》第6章  图的基本概念

E ' E )。
生成子图—— G ' G 且 V ' V 。
导出子图 ——非空 V ' V ,以 V ' 为顶点集, 以两端均在 V ' 中的边的全体为边集的 G 的 子图,称 V ' 的导出子图。 ——非空 E ' E ,以 E ' 为边集,以
E ' 中边关联的顶点的全体为顶点集的 G 的子
0 vi与ek 不关联 无向图关联的次数 1 vi与ek 关联1次 2 v 与e 关联2次(e 为环) i k k
1 vi为ek的始点 有向图关联的次数 0 vi与ek 不关联 1 v 为e 的终点 (无环) i k
点的相邻——两点间有边,称此两点相邻 相邻 边的相邻——两边有公共端点,称此两边相邻
孤立点——无边关联的点。 环——一条边关联的两个顶点重合,称此边 为环 (即两顶点重合的边)。 悬挂点——只有一条边与其关联的点,所
对应的边叫悬挂边。
(3) 平行边——关联于同一对顶点的若干条边 称为平行边。平行边的条数称为重数。 多重图——含有平行边的图。
简单图——不含平行边和环的图。
如例1的(1)中,
第六章 图的基本概念 第一节 无向图及有向图
内容:有向图,无向图的基本概念。
重点:1、有向图,无向图的定义, 2、图中顶点,边,关联与相邻,顶点 度数等基本概念,
3、各顶点度数与边数的关系
d (v ) 2m 及推论,
i 1 i
n
4、简单图,完全图,子图, 补图的概念, 5、图的同构的定义。
一、图的概念。 1、定义。 无序积 A & B (a, b) a A b B 无向图 G V , E E V & V , E 中元素为无向边,简称边。 有向图 D V , E E V V , E 中元素为有向边,简称边。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等价类、代表元
若R是A上的等价关系, a是A中任意一个元素,
集合
{x∊A│(x,a) ∊ R}
称为集合A关于关系R的一个等价类,记 [a]R= {x∊A│(x,a) ∊ R}, 简记[a] 其中a叫代表元。
9/55
例1
A={1,2,3},
R={(1,1), (2,2), (3,3), (1,2), (2,1)}
A是一个非空集合,R是A上的一个等价关系,则有
(1) ∪[x]R=A,
x∊A
(2) 对于任意的x,y∊A, 若[x]R∩[y]R≠Ø ,则[x]R=[y]R。 证明(1) 显然,对于任意的x∊A,有[x]R⊆A, 所以 ∪[x]R ⊆ A. 反之,对于任意的x’ ∊A,则x’ ∊[x’], 即 x’ ∊ ∪[x]R ,
2/49
7.5 等价关系和集合的划分
7.5.1 等价关系与等价类 7.5.2 商集合 7.5.3 集合的划分
3/55
例 试画出关系图
A={1,2,3,4,5,6,7,8} R={(x,y) │x,y ∊A, x≡y(mod 3)} 其中x≡y(mod 3)的含义就是x-y可以被3整除.
1
4
7 2
(1) π (2) xy (x,y∈π∧x≠y→x∩y=) (3) ∪π=A
19/55
集合的划分——等价关系
若给定集合A上的一个划分π, 可以在A上定义一个二元关系R, 使得R成为A上的一个等价关系,且有 A/R =π
20/55
例:考虑集合A={a,b,c,d}的一个划分: {{a}, {b,c}, {d}} 求该划分所对应的等价关系. 解: R={(a,a), (b,b), (c,c), (b,c),(c,b),(d,d)}
例设A={1,2,3,…},并设~是A×A上的关系,其 定义为:若ad=bc, 则(a,b) ~(c,d)。证明 ~ 是一个等价关系。
证: (1) 自反性 对于∀(a,b)∊A×A, 因为ab=ba, 则有(a,b) ~(a,b) 。 (2) 对称性 如果(a,b) ~(c,d),即有 ad=bc, 即有 cb=da, 故有(c,d) ~(a,b)。 (3) 传递性 如果(a,b) ~(c,d),(c,d) ~(e,f), 即有 ad=bc, cf=de, 于是有 adcf=bcde 即 af=be, 故有 (a,b)~(e,f) 8/55
求其等价类 [a]={a}, [b]=[c]={b,c}, [d]={d} 商集A/R={[a],[b],[c]} ={{a},{b,c},{d}}
21/55
例:给出A={1,2,3}上所有的等价关系
π1 对应等价关系 R1 ={<2,3>,<3,2>}∪IA π2 对应等价关系 R2={<1,3>,<3,1>}∪IA π3 对应等价关系 R3={<1,2>,<2,1>}∪IA π4 对应于全域关系 EA,π5 对应于恒等关系 IA
24
小结 等价关系
等价关系 Hale Waihona Puke 价类 定义 性质
商集、集合的划分 等价关系和划分的对应

25
x∊A x∊A
所以 A ⊆ ∪[x]R
x∊A
12/55
定理1 证明 若[x]R∩[y]R≠Ø ,则[x]R=[y]R
证明(2): 对于任意的x,y ∊A,若[x]R∩[y]R≠Ø, 则存在a∊[x]R∩[y]R。 由a∊[x]R,得(a,x)∊R; 再由R的对称性,有(x,a) ∊R。 由a∊[y]R, 有(a,y) ∊R。 利用R的传递性,得(x,y)∊R。 下面开始证明[x]R=[y]R。 对于任意的z∊ [x]R,有(z,x) ∊R, 又因为刚才已得到(x,y) ∊R, 由R的传递性,得到(z,y) ∊R, 所以有z∊ [y]R。从而证得 [x]R⊆[y]R。 同理可证[y]R⊆[x]R。 所以最后得到[x]R=[y]R。
6/55
例3
(p106)
Z是整数集,在Z上定义一个二元关系R: 对于任意的 x,y∊Z, (x,y) ∊R当且仅当x与y被 5除余数相同。R是Z上的等价关系。
显然, x与y被5除同余的充要条件是5|(x-y), 这里符号 a|b表示a整除b,a与b是两个整数。 对于 x∊Z,有5|(x-x), 即(x,x) ∊R,亦即R有自反性。 对于 x,y∊Z,若(x,y) ∊R, 即5|(x-y), 也即5|(y-x), 所以(y,x) ∊R, 亦即R有对称性。 对于 x,y,z∊Z,若(x,y) ∊R, 且(y,z) ∊R, 即5|(x-y),且5|(z-y),则 5|[(x-y)+(y-z)], 亦即5|(x-z),所以(x,z) ∊R,亦即R有传递性。 故R是A上的等价关系。 7/55
[0]R={x∊Z│∃n∊Z, x=5n} [1]R={x∊Z│∃n∊Z, x=5n+1} [2]R={x∊Z│∃n∊Z, x=5n+2} [3]R={x∊Z│∃n∊Z, x=5n+3} [4]R={x∊Z│∃n∊Z, x=5n+4}
16/55
例 A={1,2,3,4,5,6,7,8}
R={(x,y) │x,y ∊A, x≡y(mod 3)}
二元关系的性质与闭包(7.3-7.4)

性质
自反性、反自反性
对称性、反对称性 传递性

闭包
自反闭包r(R) 对称闭包s(R) 传递闭包t(R)
1
特 点
自反性 定义 反自反性 对称性 若 (x,y)∊R,则有 (y,x)∊R 反对称性 若 (x,y)∊R 且 (y,x)∊R,则x= y 传递性 若 (x,y)∊R 且 (y,z)∊R 则(x,z)∊R 对每个x∊A 对每个 x∊A,有 ,有 (x,x)∊R (x,x)∉R
14/55
商集合
定义2 A是一个非空集合,R是A上的一个等价关 系,集合{[x]R│x∊A} 叫集合A的商集合,记 为 A/R= {[x]R│x∊A}
例 A={1,2,3},
1 2 3
A/R={ [1]R , [3]R}={ {1,2} , {3} }
15/55

Z是整数集,在Z上定义一个二元关系R: 对于任意的 x,y∊Z, (x,y) ∊R 当且仅当x与y被5除余数相同。 则 Z/R={ [0]R, [1]R, [2]R, [3]R, [4]R}
则R是A上一个等价关系。
1
2
3
显然 [1]R={1,2}
[2]R={1,2}
[3]R={3}
10/55
例2 A={ 1, 2, … , 8 }上模 3 等价关系的等价类: [1]=[4]=[7]={1,4,7} [2]=[5]=[8]={2,5,8} [3]=[6]={3,6}
11/55
定理1(p107) 等价类的性质
关系矩 阵的特 点 关系图 的特点
主对角线 主对角线 元素全为1 元素全为 0 每个顶点 都有环 每个顶点 都没有环
矩阵为对称矩 如果rij=1,且 阵 i≠j,则rji=0 如果两个顶点 之间有边,一 定是一对方向 相反的边 如果两个顶 点之间有边, 一定是一条 有向边 如果顶点A到 B有边,B到C 有边,则从A 到C有边
18/55
例1 设A={a, b, c, d}, 给定π1,π2,π3,π4,π5,π6如下: π1= { {a, b, c}, {d} }, π2= { {a, b}, {c}, {d} } π3= { {a}, {a, b, c, d} }, π4= { {a, b}, {c} } π5= { ,{a, b}, {c, d} }, π6= { {a, {a}}, {b, c, d} } 则π1和π2 是A的划分, 其他都不是 A 的划分.
13/55
定理1’
A是一个非空集合,R是A上的一个等价关系,则有
(1) ∪[x]R=A,
x∊A
(2) 对于任意的x,y∊A,若[x]R∩[y]R≠Ø ,
则[x]R=[y]R。
(3) [x]R≠Ø, 且[x]R⊆A. (4) 若xRy, 则[x]R=[y]R. (5) 若xRy, 则[x]R∩[y]R=Ø
22
例3 设 A={1, 2, 3, 4},在 AA上定义二元关系R: <<x,y>,<u,v>>R x+y = u+v, 求 R 导出的划分. 解 AA={<1,1>, <1,2>, <1,3>, <1,4>, <2,1>, <2,2>, <2,3>,<2,4>, <3,1>, <3,2>, <3,3>, <3,4>, <4,1>, <4,2>, <4,3>, <4,4>}
A/R={[1]R, [2]R, [3]R}
={ {1,4,7}, {2,5,8}, {3,6} }
A关于恒等关系和全域关系的商集为: A/IA = { {1},{2}, … ,{8}} A/EA = { {1, 2, … ,8} }
17/55
集合的划分
定义3 设A为非空集合, 若A的子集族π(πP(A)) 满 足下面条件: α∊B (1) π (2) xy (x,y∈π∧x≠y→x∩y=) (3) ∪π=A 则称π是A的一个划分, 称π中的元素为A的划分块.
5
8
3
6
4/55
等价关系
定义1 A是一个非空集, R是A上的一个二元关系, 若R有自反性、 对称性、 传递性, 则说R是A上的等价关系。
设 R 是一个等价关系, 若<x, y>∈R, 称 x 等价于 y, 记做 x~y.
相关文档
最新文档