6等价关系(离散数学)

合集下载

离散数学中的关系

离散数学中的关系

离散数学中的关系
离散数学中的关系指的是集合之间元素的联系或对应关系。

这种关系可以描述为有序对的集合,其中每个有序对都由一对元素组成。

在离散数学中常见的关系包括等价关系、偏序关系、全序关系等。

等价关系是一种自反、对称和传递的关系,即元素之间具有相等的性质。

例如,集合中两个元素的相等关系就是一种等价关系。

偏序关系是一种自反、反对称和传递的关系,即对元素之间存在一种偏序或排序关系。

例如,在集合中,可以通过元素之间的比较来确定它们的顺序关系。

全序关系是一种偏序关系,它不仅是自反、反对称和传递的,还具有完备性,即对于集合中任意两个元素,它们之间必定存在一种顺序关系。

离散数学中还有其他类型的关系,如函数关系、包含关系等。

函数关系是一种特殊的关系,它对于集合中的每个元素,都存在唯一的映射元素。

包含关系则描述了两个集合之间的包含或包含于关系。

通过对这些关系的研究和分析,可以帮助理解和解决离散数学中的问题。

同时,关系的性质和特征也为其他学科如计算机科学、逻辑学等提供了基础。

离散数学___等价关系与偏序关系

离散数学___等价关系与偏序关系
19
思考:
设A={a, b, c, d}, 给定π1,π2,π3,π4,π5,π6如下: π1= { {a, b, c}, {d} }, π2= { {a, b}, {c}, {d} } π3= { {a}, {a, b, c, d} }, π4= { {a, b}, {c} } π5= { ,{a, b}, {c, d} }, π6= { {a, {a}}, {b, c, d} } 问哪些是A的划分, 哪些不是 A 的划分? 答案: π 1和π 2 是A的划分, 其他都不是 A 的划分.
(2)当(a,b) ∈R时有(b,a) ∈R,所以满足对称性;
(3)当(a,b) ∈R和(b,c) ∈R时有(a,c) ∈R,所以R是可传递的。
由此可得同年龄关系 R是等价关系。
4
再如设集合A的情况同上所述 若令集合A={a , b , d , c , e , f } 同房间 同房间
其中a ,b, d同住一个房间,c, e ,f同住另一个房间。 如果同住一个房间的大学生认为是相关的,那么 “同房间”关 系 R也是等价关系。 (1)因为每一个大学生都和自已是同房间的,所以满足自反性;
7
(1)a ,b,c都姓“张”,d,e,f 都姓“李” a b
√ √ √
c
√ √ √
d
e
f
a √ b √
c √ d e f
a b c
√ √ √ √ √ √ √
d e f


a 1 1 1 0 0 0
b c d e f 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1
用刀分
{

离散数学及其应用 第2版课件第4章 关系

离散数学及其应用 第2版课件第4章  关系
2021/4/1
第4章 关系
定义4.7 A×B的任意子集R称为A到B的二元关系。特 别当A=B时,称R为A上的二元关系。其中称为空关系, A×B称为全关系。
关系可以推广到n元关系,我们主要讨论二元关系。 在计算机领域中,关系的概念也是到处存在的。如数据 结构中的线性关系和非线性关系,数据库中的表关系等。 例如,若A={1,2,3,4,5},B={a,b,c},则R= {<1,a>,<1,b>,<2,b>,<3,a>}是A到B的关系,S={<a, 2>,<c,4>,<c,5>}是B到A的关系。
第4章 关系
4.2 关系及其表示
4.2.1 关系
世界上存在着各种各样的关系。人和人之间有“同志”关 系、“师生”关系、“上下级”关系;两个数之间有“大于” 关系、“等于”关系、“小于”关系;两个变量之间有“函数” 关系;程序之间有“调用”关系等。所以,对关系进行深刻的 研究,对数学和计算机都有很大的用处。
定义4.6 令R为二元关系,DR={x|y(xRy)}和RR= {y|x(xRy)}分别称为R的定义域(或前域)和值域。关系R的域记 为FR=DR∪RR。
例如,设H={<1,2>,<1,4>,<2,4>,<3,4>}是一个 二元关系,则DH={1,2,3},RH={2,4},FR={1,2,3,4}。
2021/4/1
第4章 关系
定义4.8 若IA是A上的二元关系,且满足IA={<x, x>|x∈A},则称IA为A上的恒等关系。
定理4.5 若R和S是集合A到B的两个二元关系,则: (1)DR∪S=DR∪DS。 (2)DR∩SDR∩DS。 (3)DR-DSDR-S。 (4)RR∪S=RR∪RS。 (5)RR∩SRR∩RS。 (6)RR-RSRR-S。

离散数学第三章第四节

离散数学第三章第四节

R= R1R2R3 ={<a,a>,<b,b>,<c,c>,<d,d>,<e,e>, <a,b>,<b,a>,<d,e>,<e,d>}
15
5、等价关系、商集及划分之间的关系(4)
例3:给出A={1,2,3}上的所有等价关系。 解:因A的所有划分如下图所示:
A上的所有等价关系就是π1 、π2 、π3 、π4 、π5对应的等 价 关 系 ,它们依次为 EA , R2 , R3 , R4 , IA ,其中 EA=A A为全域关系, IA= {<1,1> ,<2,2> ,<3,3> }, R2={<2,3>,<3,2>} IA R3={<1,3>,<3,1>} IA R4={<2,1>,<1,2>} IA
12
5、等价关系、商集及划分之间的关系(1)
定理4 集合A上的等价关系R确定A的一个划分,这个划分 就是商集A/R。 证:1、A/R={[a]R|aA},显然
aA
[a]
R
A
2、对aA,有a[a]R,所以A中的每个元素都属于 某个分块。 3、下面证明A中的任一个元素仅属于某一个分块。 设aA ,a[b]R且a[c]R,那么,bRa,cRa 。因 R对称,所以aRc。又因R是传递的,所以bRc。按定理3, [b]R=[c]R 。 综上所述,A/R是A关于R的一个划分。
10
3、等价类(2)
定理3 设R为非空集合A上的等价关系,a,b A, aRb当且仅当[a]R=[b]R。
证明:若aRb,任取c[a]R , c[a]RaRccRacRbbRcc[b]R , 故[a]R[b]R。 同理可证[b]R[a]R。 故[a]R=[b]R 。 反之,若[a]R=[b]R ,则 a[a]R a[b]R bRa aRb

离散数学等价关系

离散数学等价关系

等价类:在离散数学中,等价关系是指定义在集合A上的关系,满足自反的、对称的和传递的等性质。

设R是定义在集合A上的等价关系,与A中一个元素a有关系的所有元素的集合叫做a的等价类。

等价类应用十分广泛,如在编程语言中,我们使用等价类来判定标识符是不是表示同一个事物。

定义:在离散数学中,等价关系是指定义在集合A上的关系,满足自反的、对称的和传递的等性质。

设R是定义在集合A上的等价关系,与A中一个元素a有关系的所有元素的集合叫做a的等价类。

A的关于R的等价类记作。

当只考虑一个关系时,我们省去下表R并把这个等价类写作[a]。

在软件工程中,是把所有可能输入的数据,即程序的输入域划分成若干部分(子集),然后从每一个子集中选取少数具有代表性的数据作为测试用例,从而减少了数据输入量从而提高了效率,称之为等价类方法,该方法是一种重要的、常用的黑盒测试用例设计方法。

分类:在离散数学中,等价类的划分基于以下定理:设R是定义在集合A上的等价关系。

那么R的等价类构成S的划分。

反过来,给定集合S的划分{ |i∈I},则存在一个等价关系R,它以集合作为它的等价类。

因为等价关系的a 在a 中和任何两个等价类要么相等要么不交集不相交的性质。

得出X 的所有等价类的集合形成X 的集合划分划分: 所有X 的元素属于一且唯一的等价类。

反过来,X 的所有划分也定义了在X 上等价关系。

在软件工程中等价类划分及标准如下:划分等价类等价类是指某个输入域的子集合。

在该子集合中,各个输入数据对于揭露程序中的错误都是等效的,并合理地假定:测试某等价类的代表值就等于对这一类其他值的测试,因此,可以把全部输入数据合理划分为若干等价类,在每一个等价类中取一个数据作为测试的输入条件就可以用少量代表性的测试数据取得较好的测试结果。

等价类划分有两种不同的情况:有效等价类和无效等价类。

1)有效等价类是指对于程序的规格说明来说是合理的、有意义的输入数据构成的集合。

利用有效等价类可检验程序是否实现了规格说明所规定的功能和性能。

离散数学4.4-等价和偏序关系

离散数学4.4-等价和偏序关系
11
4.4.3 集合的划分
集合的划分
定义4.21 设A为非空集合, 若A的子集族 ( P(A)) 满 足下面条件: (1) (2) xy (x,y∈∧x≠y→x∩y=) (3) ������∈������ ������=A 则称是A的一个划分, 称 中的元素为A的划分块. 例3 设A={a, b, c, d}, 给定 1, 2, 3, 4, 5, 6如下: 1={{a, b, c},{d}}, 2={{a, b},{c},{d}} 3={{a},{a, b, c, d}}, 4={{a, b},{c}} 5={,{a, b},{c, d}}, 6={{a,{a}},{b, c, d}} 则 1和 2 是A的划分, 其他都不是A的划分. 12
4.4.4 偏序关系
相关概念
定义4.23 x与 y可比 设R为非空集合A上的偏序关系, x, yA, x与 y 可比 x≼y ∨ y≼x. 对IA, A上的元素可比吗? 不可比 定义4.24 非空集合A上的反自反和传递的关系,称为A 上的拟序关系,简称为拟序,记作≺. 求证:如果一个关系是拟序,那么它一定是反对称的。 证:如果不是反对称的,则 ∃x, y, 使 x≺y, 且 y≺x成立。 根据传递性,有 x≺x, 与反自反性矛盾。 19 得证
4.4.1 等价关系
模3等价关系的关系图
设 A={1, 2, …, 8}, R={ <x,y>| x,y∈A∧x≡y (mod 3) } R 的关系图如下:
4
4.4.1 等价关系
注: (1) 关系图的特点: ① 不连通 ② 在每个连通分支中是完全图 (2) 关系矩阵的特点: 修改排列顺序后为对角块矩阵,对角块为全”1”矩阵 1 4 7 2 5 8 3 6 1 1 1 1 0 0 0 0 0 4 1 1 1 0 0 0 0 0 7 1 1 1 0 0 0 0 0 2 0 0 0 1 1 1 0 0 5 0 0 0 1 1 1 0 0 8 0 0 0 1 1 1 0 0 3 0 0 0 0 0 0 1 1 6 0 0 0 0 0 0 1 1

离散数学求等价类例题

离散数学求等价类例题

离散数学求等价类例题
在离散数学中,等价关系是一种非常重要的关系。

等价关系描述了两个对象之间的某种关系,使得它们可以被分类到同一个等价类中。

在这里,我们将讨论一个求等价类的例题。

假设我们有一个集合S={1,2,3,4,5,6,7,8,9,10,11,12},并且我们定义了一个关系R,如果两个元素的差是3的倍数,则它们在R下是等价的。

现在我们的任务是找出所有在R下等价的元素,并将它们分别放在它们自己的等价类中。

首先,我们可以列出所有的可能的元素对。

这样做可以帮助我们更好地理解哪些元素在R下是等价的。

我们可以使用以下步骤来找到所有的等价类:
1. 将每个元素放在它自己的等价类中。

2. 对于每个等价类中的元素,找到与它等价的所有元素。

如果有一个元素与该等价类中的元素等价,则将其添加到该等价类中。

3. 重复步骤2,直到没有新的元素可以添加到任何等价类中。

在这个例子中,我们可以得到以下等价类:
{1,4,7,10}
{2,5,8,11}
{3,6,9,12}
这些等价类中的元素在R下是等价的。

我们可以看到,其中的每个等价类都包含了与其内部元素等价的所有元素。

通过这个例题,我们可以更好地理解等价关系和等价类的概念。

它们在离散数学中有着广泛的应用,对于我们理解和解决许多问题都是非常重要的。

离散数学等价关系与偏序关系

离散数学等价关系与偏序关系

6/30
集合与图论
集合的划分
定义3 设X为非空集合,X的若干个子集形成的集 族称为X的一个划分,如果具有性质: (1) ; (2) x,y,若xy,则x∩y=; (3)

称 中的元素为X的划分块。 如果是X的一个划分,则当=k时, 被称为X 的一个k-划分。
7/30
17/30
集合与图论
全序关系与全序集
定义3 集合X上的偏序关系叫做全序关系,如果 x,yX,xy与yx至少有一个成立。全序关系也称为 线性序关系。X与全序关系≤构成的二元组(X,≤)称为全 序集。
偏序集与全序集的主要区别在于全序集中任两个 元素均可比较“大小”,而在偏序集中任意两个元素 不一定都能比较大小。
8/30
集合与图论
等价关系与集合的划分
定理1 设R是X上的一个等价关系,则R的所有等 价类的集合是X的一个划分。 定理2 设是集合X的一个划分,令 R ={(x,y) | x,yX∧x与y在的同一划分块中} 则R是X上的一个等价关系,并且就是R的等价类之 集。 注: 由定理1、2可得:X上的等价关系与X的划分 是一一对应的,并且互相确定。
[2]=[5]=[8]={2,5,8}
[3]=[6]={3,6}
5/30
集合与图论
等价类的性质
定理1 设R是非空集合X上的等价关系, 则 (1) xX, [x]≠ 。
(2) x, yX, 如果(x, y)R, 则 [x]=[y]。 (3) x, yX, 如果(x, y)R, 则 [x]∩[y]=。 (4) ,即所有等价类的并集就是X。
9/30
集合与图论
商 集
等价关系R确定的划分是R的所有等价类之集 {[x]xX}
定义4 设R是X上的等价关系,由R所确定的X的 划分也就是R的所有等价类之集称为X对R的商集, 并记X/R。 即:X/R={[x] xX,[x]是x的等价类}。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有向边
若 (x,y)∊R 且 (y,z)∊R 则(x,z)∊R
如果顶点A到 B有边,B到C 有边,则从A 到C有边
2/49
7.5 等价关系和集合的划分
7.5.1 等价关系与等价类 7.5.2 商集合 7.5.3 集合的划分
3/55
例 试画出关系图
A={1,2,3,4,5,6,7,8} R={(x,y) │x,y ∊A, x≡y(mod 3)} 其中x≡y(mod 3)的含义就是x-y可以被3整除.
(AA)/R={ {<1,1>}, {<1,2>,<2,1>}, {<1,3>, <2,2>, <3,1>}, {<1,4>, <2,3>, <3,2>, <4,1>}, {<2,4>, <3,3>, <4,2>}, {<3,4>, <4,3>}, {<4,4>} }
24
小结 等价关系
等价关系 等价类
主对角线 主对角线 元素全为1 元素全为
0
每个顶点 每个顶点 都有环 都没有环

(x,y)∊R,则有 (y,x)∊R

(x,y)∊R 且 (y,x)∊R,则x= y
矩阵为对称矩 如果rij=1,且

i≠j,则rji=0
如果两个顶点 如果两个顶
之间有边,一 点之间有边,
定是一对方向 一定是一条
相反的边
1
4
72
5
83
6
4/55
等价关系
定义1 A是一个非空集, R是A上的一个二元关系, 若R有自反性、 对称性、 传递性, 则说R是A上的等价关系。
设 R 是一个等价关系, 若<x, y>∈R, 称 x 等价于 y, 记做 x~y.
5/55
例(1)人类集合中的“同龄”、 “同乡”关系都是 等价关系。
π1 对应等价关系 R1 ={<2,3>,<3,2>}∪IA π2 对应等价关系 R2={<1,3>,<3,1>}∪IA π3 对应等价关系 R3={<1,2>,<2,1>}∪IA
π4 对应于全域关系 EA,π5 对应于恒等关系 IA
22
例3 设 A={1, 2, 3, 4},在 AA上定义二元关系R: <<x,y>,<u,v>>R x+y = u+v,
证: (1) 自反性 对于∀(a,b)∊A×A, 因为ab=ba, 则有(a,b) ~(a,b) 。
(2) 对称性 如果(a,b) ~(c,d),即有 ad=bc, 即有 cb=da, 故有(c,d) ~(a,b)。
(3) 传递性 如果(a,b) ~(c,d),(c,d) ~(e,f), 即有 ad=bc, cf=de, 于是有 adcf=bcde 即 af=be, 故有 (a,b)~(e,f) 8/55
定义 性质
商集、集合的划分 等价关系和划分的对应
25
α∊B
(1) π (2) xy (x,y∈π∧x≠y→x∩y=) (3) ∪π=A 则称π是A的一个划分, 称π中的元素为A的划分块.
18/55
例1 设A={a, b, c, d}, 给定π1,π2,π3,π4,π5,π6如下:
π1= { {a, b, c}, {d} }, π2= { {a, b}, {c}, {d} } π3= { {a}, {a, b, c, d} }, π4= { {a, b}, {c} } π5= { ,{a, b}, {c, d} }, π6= { {a, {a}}, {b, c, d} }
14/55
商集合
定义2 A是一个非空集合,R是A上的一个等价关 系,集合{[x]R│x∊A} 叫集合A的商集合,记 为
A/R= {[x]R│x∊A}
例 A={1,2,3},
1
2
3
A/R={ [1]R , [3]R}={ {1,2} , {3} }
15/55
例 Z是整数集,在Z上定义一个二元关系R: 对于任意的 x,y∊Z, (x,y) ∊R 当且仅当x与y被5除余数相同。 则 Z/R={ [0]R, [1]R, [2]R, [3]R, [4]R}
求该划分所对应的等价关系.
解: R={(a,a), (b,b), (c,c), (b,c),(c,b),(d,d)}
求其等价类 [a]={a}, [b]=[c]={b,c}, [d]={d}
商集A/R={[a],[b],[c]} ={{a},{b,c},{d}}
21/55
例:给出A={1,2,3}上所有的等价关系
等价类、代表元
若R是A上的等价关系, a是A中任意一个元素, 集合
{x∊A│(x,a) ∊ R} 称为集合A关于关系R的一个等价类,记
[a]R= {x∊A│(x,a) ∊ R}, 简记[a] 其中a叫代表元。
9/55
例1
A={1,2,3}, R={(1,1), (2,2), (3,3), (1,2), (2,1)} 则R是A上一个等价关系。
(2) 三角形集合的相似关系、 全等关系都是 等价关系。
(3) 住校学生的"同寝室关系"是等价关系。 (4)命题公式间的逻辑等价关系是等价关系。 (5) 对任意集合A, A上的恒等关系IA和全域关
系EA是等价关系。
6/55
例3 (p106) Z是整数集,在Z上定义一个二元关系R:
对于任意的 x,y∊Z, (x,y) ∊R当且仅当x与y被 5除余数相同。R是Z上的等价关系。
显然, x与y被5除同余的充要条件是5|(x-y), 这里符号 a|b表示a整除b,a与b是两个整数。 对于 x∊Z,有5|(x-x), 即(x,x) ∊R,亦即R有自反性。 对于 x,y∊Z,若(x,y) ∊R, 即5|(x-y),
也即5|(y-x), 所以(y,x) ∊R, 亦即R有对称性。 对于 x,y,z∊Z,若(x,y) ∊R, 且(y,z) ∊R,
求 R 导出的划分.
实例
解 AA={<1,1>, <1,2>, <1,3>, <1,4>, <2,1>, <2,2>, <2,3>,<2,4>, <3,1>, <3,2>, <3,3>, <3,4>, <4,1>, <4,2>, <4,3>, <4,4>}
23
根据 <x,y> 的 x + y = 2,3,4,5,6,7,8 将AA划分成7 个等价类:
即5|(x-y),且5|(z-y),则 5|[(x-y)+(y-z)], 亦即5|(x-z),所以(x,z) ∊1,2,3,…},并设~是A×A上的关系,其 定义为:若ad=bc, 则(a,b) ~(c,d)。证明 ~ 是一个等价关系。
13/55
定理1’
A是一个非空集合,R是A上的一个等价关系,则有 (1) ∪x∊A[x]R=A, (2) 对于任意的x,y∊A,若[x]R∩[y]R≠Ø ,
则[x]R=[y]R。 (3) [x]R≠Ø, 且[x]R⊆A. (4) 若xRy, 则[x]R=[y]R. (5) 若xRy, 则[x]R∩[y]R=Ø
则π1和π2 是A的划分, 其他都不是 A 的划分.
(1) π (2) xy (x,y∈π∧x≠y→x∩y=) (3) ∪π=A
19/55
集合的划分——等价关系
若给定集合A上的一个划分π, 可以在A上定义一个二元关系R, 使得R成为A上的一个等价关系,且有
A/R =π
20/55
例:考虑集合A={a,b,c,d}的一个划分: {{a}, {b,c}, {d}}
1
2
3 显然 [1]R={1,2}
[2]R={1,2}
[3]R={3}
10/55
例2 A={ 1, 2, … , 8 }上模 3 等价关系的等价类: [1]=[4]=[7]={1,4,7} [2]=[5]=[8]={2,5,8} [3]=[6]={3,6}
11/55
定理1(p107) 等价类的性质
A/R={[1]R, [2]R, [3]R}
={ {1,4,7}, {2,5,8}, {3,6} }
A关于恒等关系和全域关系的商集为: A/IA = { {1},{2}, … ,{8}} A/EA = { {1, 2, … ,8} }
17/55
集合的划分
定义3 设A为非空集合, 若A的子集族π(πP(A)) 满 足下面条件:
A是一个非空集合,R是A上的一个等价关系,则有
(1) ∪x∊A[x]R=A, (2) 对于任意的x,y∊A,
若[x]R∩[y]R≠Ø ,则[x]R=[y]R。
证明(1)
显然,对于任意的x∊A,有[x]R⊆A,
所以 x∪∊A[x]R ⊆ A. 反之,对于任意的x’ ∊A,则x’ ∊[x’],
即 x’ ∊ x∪∊A[x]R ,
[0]R={x∊Z│∃n∊Z, x=5n} [1]R={x∊Z│∃n∊Z, x=5n+1} [2]R={x∊Z│∃n∊Z, x=5n+2} [3]R={x∊Z│∃n∊Z, x=5n+3} [4]R={x∊Z│∃n∊Z, x=5n+4}
16/55
例 A={1,2,3,4,5,6,7,8} R={(x,y) │x,y ∊A, x≡y(mod 3)}
二元关系的性质与闭包(7.3-7.4)
性质
自反性、反自反性 对称性、反对称性 传递性
相关文档
最新文档