二项式应用——系数最大值求法

合集下载

专题39 二项式展开项的通项及应用--《2023年高考数学命题热点聚焦与扩展》【原卷版】

专题39  二项式展开项的通项及应用--《2023年高考数学命题热点聚焦与扩展》【原卷版】

【热点聚焦】二项展开式定理的问题是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1r n r rr n T C a b -+=;(可以考查某一项,也可考查某一项的系数);(2)考查各项系数和和各项的二项式系数和; (3)二项式定理的应用.【重点知识回眸】1. 二项式定理()()011*nn n r n r rn nn n n n a b C a C a b C a b C b n N --+=+++++∈,这个公式所表示的定理叫做二项式定理,右边的多项式叫做()na b +的二项展开式,其中的系数rn C (0,1,2,3,,r n =)叫做二项式系数.式中的r n r rn C a b -叫做二项展开式的通项,用1r T +表示,即展开式的第1r +项;1r n r rr n T C a b -+=.2.二项展开式形式上的特点 (1)项数为1n +.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .(4)二项式的系数从0n C ,1n C ,一直到1n n C -,nn C . 3. 二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等,即0n n n C C =,11n n n C C -=,,m n m n n C C -=.(2)增减性与最大值:二项式系数rn C ,当12n r +≤时,二项式系数是递增的;由对称性知:当12n r +>时,二项式系数是递减的. 当n 是偶数时,中间的一项2n nC 取得最大值. 当n 是奇数时,中间两项12n nC+ 和12n nC-相等,且同时取得最大值.(3)各二项式系数的和()na b +的展开式的各个二项式系数的和等于2n ,即012r nn n n n n C C C C +++++=,二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即02413512n n n n n n n C C C C C C -+++=+++=,(4)常用结论①0n C =1;②1nn C =;③m n m n n C C -=;④11m m m n n n C C C -+=+.4.二项式的应用(1)求某些多项式系数的和; (2)证明一些简单的组合恒等式;(3)证明整除性,①求数的末位;②数的整除性及求系数;③简单多项式的整除问题; (4)近似计算.当x 充分小时,我们常用下列公式估计近似值: ①()11nx nx +≈+;②()()21112nn n x nx x -+≈++;(5)证明不等式.【典型考题解析】热点一 二项式展开式的通项公式的应用【典例1】(2020·全国·高考真题(理))262()x x+的展开式中常数项是__________(用数字作答).【典例2】(2019·浙江·高考真题)在二项式9(2)x 的展开式中,常数项是________;系数为有理数的项的个数是_______.【典例3】(2022·山西·高三阶段练习)二项式()4x ay +的展开式中含22x y 项的系数为24,则=a ______.【典例4】(2022·全国·高考真题)81()y x y x ⎛⎫-+ ⎪⎝⎭的展开式中26x y 的系数为________________(用数字作答). 【总结提升】1.二项展开式中的特定项,是指展开式中的某一项,如第n 项、常数项、有理项等,求解二项展开式中的特定项的关键点如下:①求通项,利用(a +b )n 的展开式的通项公式T r +1=C r n an -r b r (r =0,1,2,…,n )求通项. ②列方程(组)或不等式(组),利用二项展开式的通项及特定项的特征,列出方程(组)或不等式(组).③求特定项,先由方程(组)或不等式(组)求得相关参数,再根据要求写出特定项.2.已知展开式的某项或其系数求参数,可由某项得出参数项,再由通项公式写出第k +1项,由特定项得出k 值,最后求出其参数.3.求解形如()()nma b c d ++的展开式问题的思路 (1)若n ,m 中一个比较小,可考虑把它展开得到多个,如222()()()(2)m m a b c d a ab b c d ++=+++,然后展开分别求解.(2)观察(a +b )(c +d )是否可以合并,如5752252()()[()()11]()11111()()x x x x x x x +-=+--=--;(3)分别得到(),()nma b c d ++的通项公式,综合考虑.4.求几个多项式积的展开式中的特定项(系数)问题,可先分别化简或展开为多项式和的形式,再分类考虑特定项产生的每一种情形,求出相应的特定项,最后进行合并即可. 热点二 形如()na b c ++的展开式问题【典例5】(2021·江西南昌·高三阶段练习)5144x x ⎛⎫++ ⎪⎝⎭的展开式中含3x -的项的系数为( ) A .1-B .180C .11520-D .11520【典例6】(2022·全国·高三专题练习)()52x y z +-的展开式中,22xy z 的系数是( ) A .120B .-120C .60D .30【典例7(2022·山东济南·模拟预测)()3221x x -+的展开式中,含3x 项的系数为______(用数字作答). 【规律方法】求三项展开式中某些特定项的系数的方法(1)通过变形先把三项式转化为二项式,再用二项式定理求解. (2)两次利用二项式定理的通项公式求解.(3)由二项式定理的推证方法知,可用排列、组合的基本原理去求,即把三项式看作几个因式之积,要得到特定项看有多少种方法从这几个因式中取因式中的量. 热点三 二项式系数的和与各项的系数和问题【典例8】(2022·全国·高三专题练习)已知012233C 2C 2C 2C 2C 243n nn n n n n +++++=,则123C C C C nn n n n ++++=( )A .31B .32C .15D .16【典例9】(2023·全国·高三专题练习)若9290129(2)(1)(1)(1)++=+++++⋅⋅⋅++x m a a x a x a x ,且()()22028139++⋅⋅⋅+-++⋅⋅⋅+a a a a a a 93=,则实数m 的值可以为( ) A .1或3-B .1-C .1-或3D .3-【典例10】(2022·北京四中高三开学考试)设多项式51010910910(1)(1)x x a x a x a x a ++-=++++,则9a =___________,0246810a a a a a a +++++=___________. 【规律方法】赋值法在求各项系数和中的应用(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可.(2)对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可. (3)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1). ①奇数项系数之和为a 0+a 2+a 4+…=.②偶数项系数之和为a 1+a 3+a 5+…=.热点四 二项式系数的性质【典例11】(2023·全国·高三专题练习)在()1nx +(*n ∈N )的展开式中,若第5项为二项式系数最大的项,则n 的值不可能是( ) A .7B .8C .9D .10【典例12】(2022·全国·高三阶段练习)已知()610ax a x ⎛⎫+> ⎪⎝⎭的展开式中含2x -的系数为60,则下列说法正确的是( )A .61ax x ⎛⎫+ ⎪⎝⎭的展开式的各项系数之和为1 B .61ax x ⎛⎫+ ⎪⎝⎭的展开式中系数最大的项为2240xC .61ax x ⎛⎫- ⎪⎝⎭的展开式中的常数项为160-D .61ax x ⎛⎫- ⎪⎝⎭的展开式中所有二项式的系数和为32【典例13】(2022·浙江·三模)在二项式4(2)+x 的展开式中,常数项是__________,二项式系数最大的项的系数是__________. 【规律方法】1.二项式系数最大项的确定方法(1)如果n 是偶数,则中间一项⎝ ⎛⎭⎪⎫第n2+1项的二项式系数最大;(2)如果n 是奇数,则中间两项⎝ ⎛⎭⎪⎫第n +12项与第n +12+1项的二项式系数相等并最大.2.展开式系数最大值的两种求解思路(1)由于展开式系数是离散型变量,因此在系数均为正值的前提下,求最大值只需解不等式(1)(1)2f f +-(1)(1)2f f --组⎩⎪⎨⎪⎧a k ≥a k -1,a k ≥a k +1即可求得答案.(2)由于二项展开式中的系数是关于正整数n 的式子,可以看作关于n 的数列,通过判断数列单调性的方法从而判断系数的增减性,并根据系数的单调性求出系数的最值. 热点五 二项式定理应用【典例14】(2022·全国·高三专题练习)“杨辉三角”是中国古代数学文化的瑰宝之一,最早出现在中国南宋数学家杨辉于1261年所著的《详解九章算法》一书中,法国数学家帕斯卡在1654年才发现这一规律.“杨辉三角”揭示了二项式系数在三角形数表中的一种几何排列规律,如图所示.则下列关于“杨辉三角”的结论正确的是( )A .222234510C C C C 165++++=B .在第2022行中第1011个数最大C .第6行的第7个数、第7行的第7个数及第8行的第7个数之和等于9行的第8个数D .第34行中第15个数与第16个数之比为2:3【典例15】(2023·全国·高三专题练习(理))设0122191919191919C C 7C 7C 7a =++++,则a 除以9所得的余数为______.【典例16】(2021·山东·高三阶段练习)某同学在一个物理问题计算过程中遇到了对数据100.98的处理,经过思考,他决定采用精确到0.01的近似值,则这个近似值是________.【规律方法】1.二项式定理应用的常见题型及求解策略(1)逆用二项式定理的关键是根据所给式的特点结合二项展开式的要求,使之具备二项式定理右边的结构,然后逆用二项式定理求解.(2)利用二项式定理解决整除问题的思路:①观察除式与被除式间的关系;②将被除式拆成二项式;③结合二项式定理得出结论.(3) 近似计算要首先观察精确度,然后选取展开式中若干项. 2.特别提醒: (1)分清是第项,而不是第项.(2)在通项公式中,含有、、、、、这六个参数,只有、、、是独立的,在未知、的情况下,用通项公式解题,一般都需要首先将通式转rn rr n C ab -1r +r 1r n r r r n T C a b -+=1r T +rn C a b n r a b n r n r化为方程(组)求出、,然后代入通项公式求解.(3)求二项展开式中的一些特殊项,如系数最大项,常数项等,通常都是先利用通项公式由题意列方程,求出,再求所需的某项;有时则需先求,计算时要注意和的取值范围以及 它们之间的大小关系.(4)在中,就是该项的二项式系数,它与,的值无关;而项的系数是指化简后字母外的数.(5)在应用通项公式时,要注意以下几点:①它表示二项展开式的任意项,只要与确定,该项就随之确定; ②是展开式中的第项,而不是第项;③公式中,,的指数和为且,不能随便颠倒位置; ④对二项式展开式的通项公式要特别注意符号问题.⑤在二项式定理的应用中,“赋值思想”是一种重要方法,是处理组合数问题、系数问题的经典方法.【精选精练】一、单选题1.(2022·全国·高三阶段练习(理))612x x ⎛⎫+ ⎪⎝⎭展开式中的常数项为( ) A .160 B .120 C .90D .602.(2022·全国·高三专题练习)()()52x y x y +-的展开式中的33x y 项系数为( ) A .30B .10C .-30D .-103.(2022·黑龙江哈尔滨·高三开学考试)在812x x ⎫⎪⎭的展开式中5x 的系数为( )A .454B .458-C .358D .74.(2022·湖南·高三开学考试)已知()522x a x x ⎛⎫+- ⎪⎝⎭的展开式中各项系数的和为3-,则该展开式中x 的系数为( ) A .0B .120-C .120D .160-5.(2022·全国·高三专题练习)设()011nn n x a a x a x +=++⋅⋅⋅+,若1263n a a a ++⋅⋅⋅+=,则展开式中系数最大的项是( ) A .315xB .320xC .321xD .335x6.(2023·全国·高三专题练习)511x x ⎛⎫+- ⎪⎝⎭展开式中,3x 项的系数为( )n r r n n r 1r n r r r n T C a b -+=rn C a b 1r T +n r 1r T +1r +r a b n a b ()na b -A .5B .-5C .15D .-15二、多选题7.(2023·全国·高三专题练习)62⎛⎫+ ⎪⎝⎭x x 的展开式中,下列结论正确的是( ) A .展开式共6项 B .常数项为160C .所有项的系数之和为729D .所有项的二项式系数之和为648.(2022·湖北·黄冈中学高三阶段练习)已知660(2)ii i x a x =+=∑,则( )A .123456666a a a a a a +++++=B .320a =C .135246a a a a a a ++>++D .1034562234a a a a a a +=+++9.(2022·河北张家口·三模)已知52(1)(0)b ax x b x ⎛⎫-+> ⎪⎝⎭的展开式中x 项的系数为30,1x 项的系数为M ,则下列结论正确的是( ) A .0a > B .323ab b -=C .M 有最大值10D .M 有最小值10-三、填空题10.(2022·全国·高三专题练习(文))“杨辉三角”是二项式系数在三角形中的一种几何排列,如图所示,在“杨辉三角”中,除每行两边的数都是1外,其余每个数都是其“肩上”的两个数之和,例如第4行的6为第3行中两个3的和.若在“杨辉三角”中从第二行右边的1开始按“锯齿形”排列的箭头所指的数依次构成一个数列:1,2,3,3,6,4,10,5,…,则在该数列中,第35项是______.11.(2022·河北·三河市第三中学高三阶段练习)在3nx x ⎛⎫+ ⎪⎝⎭的展开式中,所有二项式系数的和是16,则展开式中的常数项为 ____.12.(2022·全国·高三专题练习)(1)已知()31nx -的展开式中第2项与第5项的二项式系数相等,则n =__________.(2)1921C C n nn n --+=__________.13.(2019·浙江·高考真题)在二项式9(2)x 的展开式中,常数项是________;系数为有理数的项的个数是_______.14.(2022·浙江省春晖中学模拟预测)二项式3nx x ⎫⎝的展开式中共有11项,则n =___________,常数项的值为___________.15.(2022·全国·高三专题练习)在()413x +的展开式中,二项式系数之和为_________;各项系数之和为_________.(用数字作答) 四、解答题16.(2019·江苏·高考真题)设2*012(1),4,n n n x a a x a x a x n n +=++++∈N .已知23242a a a =. (1)求n 的值;(2)设(13)3n a =+*,a b ∈N ,求223a b -的值.。

二项展开式系数的求法

二项展开式系数的求法

二项展开式系数的求法苏清军(山东省无棣二中,山东 251913)中图分类号:O122.4-44 文献标识码:A 文章编号:0488-7395(2001)12-0007-01收稿日期:2001-01-05作者简介:苏清军(1969—),男,山东无棣人,山东无棣二中一级教师. 对于(a +b )n 展开式中特定项的系数,常常从通项公式入手,学生容易掌握.而对于较复杂的展开式,如(a +b )m(c +d )n 、(a +b +c )n等,多有畏难情绪.这里介绍三种行之有效的方法,供大家学习时参考.1 有效展开 对于次数不大的二项式,可先作适当变形,然后部分展开,便可确定系数.例1 求(1+x )2(1+2x )5展开式中x 3的系数.解 (1+x )2(1+2x )5=(1+2x +x 2)(1+10x+40x 2+80x 3+…),所以x 3的系数为80+2×40+10=170.2 利用通项公式 即从通项公式入手,先得到问题的解,再得出项的系数.例2 在(1-2x )5(1+3x )4展开式中,若按x 的升幂排列,求展开式中的第三项.解 展开式中的第三项含x 2.二项式(1-2x )5的通项公式为R m +1=C m5(-2x )m,二项式(1+3x )4的通项公式为R n +1=C n4(3x )n.(m =0,1,2,3,4,5;n =0,1,2,3,4.)T m +1·R n +1=C m 5(-2x )m ·C n4(3x )n=C m 5C n 4(-2)m ·3n ·x m +n,令m +n =2,解得m =0,n =2,或m =1,n =1,或m =2,n =0.所以(1-2x )5(1+3x )4展开式中第三项的系数为C 05C 24(-2)0·32+C 15C 14(-2)·3+C 25C 04(-2)2·30=54-120+40=-26.3 利用求组合数的方法 这种方法并不需要借助二项展开式,对于形式各异的题目都可以实施.例3 (1996年上海高考题)在(1+x )6(1-x )4的展开式中,x 3的系数是.解 利用组合知识.展开式中含x 3项有x 3·x 0,x 2·x ,x ·x 2,x 0·x 3四种情况.所以x 3的系数是C 36+C 26·C 14·(-1)+C 16·C 24(-1)2+C 06·C 34(-1)3=20-60+36-4=-8.例4 (1992年全国高考题)在(x 2+3x +2)5的展开式中x 的系数为( )(A )160. (B )240. (C )360. (D )800.分析:本题是三项展开式,可以通过分解因式、配方或加法结合律等方法转化为二项式进行展开.若借用组合知识解决可省却很多麻烦.解 根据三项的特点,展开式中x 项只能源于3x ·2·2·2·2,所以x 的系数为C 15·3·24=240,选(B ).例5 求(2x -3y -4z )6的展开式中x 3y 2z 的系数.解 利用组合知识,x 3y 2z 的系数为C 36·23·C 23·(-3)2·(-4)=-17280.72001年第12期 数学通讯。

专题44 二项式定理(学生版)高中数学53个题型归纳与方法技巧总结篇

专题44 二项式定理(学生版)高中数学53个题型归纳与方法技巧总结篇

专题44二项式定理【题型归纳目录】题型一:求二项展开式中的参数题型二:求二项展开式中的常数项题型三:求二项展开式中的有理项题型四:求二项展开式中的特定项系数题型五:求三项展开式中的指定项题型六:求几个二(多)项式的和(积)的展开式中条件项系数题型七:求二项式系数最值题型八:求项的系数最值题型九:求二项展开式中的二项式系数和、各项系数和题型十:求奇数项或偶数项系数和题型十一:整数和余数问题题型十二:近似计算问题题型十三:证明组合恒等式题型十四:二项式定理与数列求和题型十五:杨辉三角【考点预测】知识点1、二项式展开式的特定项、特定项的系数问题(1)二项式定理一般地,对于任意正整数n ,都有:011()()n n n r n r r n n nn n n a b C a C a b C a b C b n N --*+=+++++∈ ,这个公式所表示的定理叫做二项式定理,等号右边的多项式叫做n b a )(+的二项展开式.式中的r n r rnC a b -做二项展开式的通项,用1r T +表示,即通项为展开式的第1r +项:1r n r r r n T C a b -+=,其中的系数rn C (r =0,1,2,…,n )叫做二项式系数,(2)二项式()n a b +的展开式的特点:①项数:共有1n +项,比二项式的次数大1;②二项式系数:第1r +项的二项式系数为r n C ,最大二项式系数项居中;③次数:各项的次数都等于二项式的幂指数n .字母a 降幂排列,次数由n 到0;字母b 升幂排列,次数从0到n ,每一项中,a ,b 次数和均为n ;④项的系数:二项式系数依次是012r nn n n n nC C C C C ⋅⋅⋅⋅⋅⋅,,,,,,,项的系数是a 与b 的系数(包括二项式系数).(3)两个常用的二项展开式:高中数学53个题型归纳与方法技巧总结篇①011()(1)(1)n n n r r n r r n n nn n n n a b C a C a b C a b C b ---=-++-⋅++-⋅ (*N n ∈)②122(1)1n r r nn n n x C x C x C x x +=++++++ (4)二项展开式的通项公式二项展开式的通项:1r n r rr nT C a b -+=()0,1,2,3,,r n =⋯公式特点:①它表示二项展开式的第1r +项,该项的二项式系数是rn C ;②字母b 的次数和组合数的上标相同;③a 与b 的次数之和为n .注意:①二项式()n a b +的二项展开式的第r +1项r n r rnC a b -和()n b a +的二项展开式的第r +1项r n r r n C b a -是有区别的,应用二项式定理时,其中的a 和b 是不能随便交换位置的.②通项是针对在()n a b +这个标准形式下而言的,如()n a b -的二项展开式的通项是1(1)r r n r rr n T C a b-+=-(只需把b -看成b 代入二项式定理).2、二项式展开式中的最值问题(1)二项式系数的性质①每一行两端都是1,即0n n n C C =;其余每个数都等于它“肩上”两个数的和,即11m m mn n n C C C -+=+.②对称性每一行中,与首末两端“等距离”的两个二项式系数相等,即mn m nn C C -=.③二项式系数和令1a b ==,则二项式系数的和为0122r nn nn n n n C C C C C ++++++= ,变形式1221rn n n n n n C C C C +++++=- .④奇数项的二项式系数和等于偶数项的二项式系数和在二项式定理中,令11a b ==-,,则0123(1)(11)0n n n nn n n n C C C C C -+-++-=-= ,从而得到:0242132111222r r nn n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=⋅= .⑤最大值:如果二项式的幂指数n 是偶数,则中间一项12n T +的二项式系数2n nC 最大;如果二项式的幂指数n 是奇数,则中间两项12n T +,112n T ++的二项式系数12n nC-,12n nC+相等且最大.(2)系数的最大项求()n a bx +展开式中最大的项,一般采用待定系数法.设展开式中各项系数分别为121n A A A +⋅⋅⋅,,,,设第1r +项系数最大,应有112r rr r A A A A +++≥⎧⎨≥⎩,从而解出r 来.知识点3、二项式展开式中系数和有关问题常用赋值举例:(1)设()011222nn n n r n r r n n nn n n n a b C a C a b C a b C a b C b ---+=++++++ ,二项式定理是一个恒等式,即对a ,b 的一切值都成立,我们可以根据具体问题的需要灵活选取a ,b 的值.①令1a b ==,可得:012n nn n nC C C =+++ ②令11a b ==,,可得:()012301nnn n n n n C C C C C =-+-+- ,即:02131n n n n n n n n C C C C C C -+++=+++ (假设n 为偶数),再结合①可得:0213112n n n n n n n n n C C C C C C --+++=+++= .(2)若121210()n n n n n n f x a x a x a x a x a ----=+++++ ,则①常数项:令0x =,得0(0)a f =.②各项系数和:令1x =,得0121(1)n n f a a a a a -=+++++ .③奇数项的系数和与偶数项的系数和(i )当n 为偶数时,奇数项的系数和为024(1)(1)2f f a a a +-+++= ;偶数项的系数和为135(1)(1)2f f a a a --+++=.(可简记为:n 为偶数,奇数项的系数和用“中点公式”,奇偶交错搭配)(ii )当n 为奇数时,奇数项的系数和为024(1)(1)2f f a a a --+++= ;偶数项的系数和为135(1)(1)2f f a a a +-+++=.(可简记为:n 为奇数,偶数项的系数和用“中点公式”,奇偶交错搭配)若1210121()n n n n f x a a x a x a x a x --=+++++ ,同理可得.注意:常见的赋值为令0x =,1x =或1x =-,然后通过加减运算即可得到相应的结果.【典例例题】题型一:求二项展开式中的参数例1.(2022·湖南·模拟预测)已知6a x x ⎛⎫+ ⎪⎝⎭的展开式中的常数项为160-,则实数=a ()A .2B .-2C .8D .-8例2.(2022·全国·高三专题练习)62ax x ⎛⎫- ⎪⎝⎭展开式中的常数项为-160,则a =()A .-1B .1C .±1D .2例3.(2022·全国·高三专题练习)已知二项式52a x x ⎛⎫+ ⎪⎝⎭的展开式中,4x 项的系数为40,则=a ()A .2B .-2C .2或-2D .4例4.(2022·湖北·高三阶段练习)若(21)n x +的展开式中3x 项的系数为160,则正整数n 的值为()A .4B .5C .6D .7例5.(2022·四川·乐山市教育科学研究所三模(理))()5m x -展开式中3x 的系数为20-,则2m =()A .2B .1C .3D 【方法技巧与总结】在形如()m n N ax bx +的展开式中求t x 的系数,关键是利用通项求r ,则Nm tr m n-=-.题型二:求二项展开式中的常数项例6.(2022·全国·高三阶段练习(理))612x x ⎛⎫+ ⎪⎝⎭展开式中的常数项为()A .160B .120C .90D .60例7.(2022·浙江·慈溪中学高三开学考试)62x⎛⎝的展开式中的常数项为()A .60-B .60C .64D .120例8.(2022·全国·高三专题练习(理))二项式()5*nx n ⎛∈ ⎝⎭N 的展开式中含有常数项,则n 的最小值等于()A .2B .3C .4D .5例9.(2022·全国·模拟预测)二项式10的展开式中的常数项为()A .210B .-210C .252D .-252【方法技巧与总结】写出通项,令指数为零,确定r ,代入.题型三:求二项展开式中的有理项例10.(2022·全国·高三专题练习)在二项式)11x的展开式中,系数为有理数的项的个数是_____.例11.(2022·湖南·长郡中学模拟预测)已知)nx 展开式的二项式系数之和为64,则展开式中系数为有理数的项的个数是________.例12.(2022·湖南长沙·模拟预测)已知)()*,112nn N n ∈≤≤的展开式中有且仅有两项的系数为有理数,试写出符合题意的一个n 的值______.例13.(2022·全国·高三专题练习)100+的展开式中系数为有理数项的共有_______项.例14.(2022·上海·格致中学高三阶段练习)在50的展开式中有__项为有理数.【方法技巧与总结】先写出通项,再根据数的整除性确定有理项.题型四:求二项展开式中的特定项系数例15.(2022·北京海淀·一模)在4)x 的展开式中,2x 的系数为()A .1-B .1C .4-D .4例16.(2022·云南·高三阶段练习(理))在621x x ⎛⎫- ⎪⎝⎭的二项展开式中,第4项的二项式系数是()A .20B .20-C .15D .15-例17.(2022·全国·高三专题练习)若()2nx y -的展开式中第4项与第8项的二项式系数相等,则n =().A .9B .10C .11D .12例18.(2022·甘肃·武威第八中学高三阶段练习)在51x x ⎛⎫- ⎪⎝⎭的展开式中,x 的系数为()A .10-B .5-C .5D .10【方法技巧与总结】写出通项,确定r ,代入.题型五:求三项展开式中的指定项例19.(2022·广东·高三阶段练习)()102321x x ++的展开式中,2x 项的系数为___________.例20.(2022·广东·仲元中学高三阶段练习)25()x x y ++的展开式中,52x y 的系数为______.例21.(2022·山西大附中高三阶段练习(理))5212x x ⎛⎫+- ⎪⎝⎭的展开式中常数项为_________.例22.(2022·广东·广州市庆丰实验学校一模)622(21)x x+-的展开式中的常数项为__________.(用数字填写正确答案)例23.(2022·全国·高三专题练习)151234()x x x x +++的展开式合并前的项数为()A .415C B .415A C .44154A A ⋅D .154例24.(2022·河北邢台·高三期末(理))411()x y x y+--的展开式的常数项为A .36B .36-C .48D .48-例25.(2022·四川绵阳·三模(理))在521x x ⎛⎫+- ⎪⎝⎭的展开式中,2x 项的系数为()A .50-B .30-C .30D .50例26.(2022·全国·高三专题练习)()52x y z +-的展开式中,22xy z 的系数是()A .120B .-120C .60D .30【方法技巧与总结】三项式()()n a b c n N ++∈的展开式:()[()]n n a b c a b c ++=++()n rrr n C a b c -=+++ ()rq n r q q r nn r C C a b c ---=++++ r q n r q q r n n r C C a b c ---=++若令n r q p --=,便得到三项式()()n a b c n N ++∈展开式通项公式:()r q p q r n n r C C a b c p q r N p q r n -∈++=,,,,其中!(r)!!!()!!()!!!!r q n n r n n n C C r n r q n r q p q r --==---叫三项式系数.题型六:求几个二(多)项式的和(积)的展开式中条件项系数例27.(2022·江苏江苏·高三阶段练习)()61y x y x ⎛⎫-+ ⎪⎝⎭的展开式中42x y 的系数为()A .6B .9-C .6-D .9例28.(2022·四川·高三开学考试(理))()632112x x x ⎛⎫+⋅- ⎪⎝⎭的展开式中的常数项为()A .240B .240-C .400D .80例29.(2022·云南师大附中高三阶段练习)6211(2)x x ⎛⎫-+ ⎪⎝⎭的展开式中3x 的系数为()A .160B .160-C .148D .148-例30.(2022·新疆克拉玛依·三模(理))已知51m x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中常数项为-40,则m =()A .3-B .3C .13D .13-例31.(2022·江苏南京·三模)(1+x )4(1+2y )a (a ∈N*)的展开式中,记xmyn 项的系数为f (m ,n ).若f (0,1)+f (1,0)=8,则a 的值为()A .0B .1C .2D .3例32.(2022·全国·高三专题练习)在5221y x x x x ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭的展开式中,含32x y 的项的系数是()A .10B .12C .15D .20【方法技巧与总结】分配系数法题型七:求二项式系数最值例33.(2022·全国·高三专题练习)在()1nx +(*n ∈N )的展开式中,若第5项为二项式系数最大的项,则n 的值不可能是()A .7B .8C .9D .10例34.(2022·全国·高三专题练习)7(12)x +展开式中二项式系数最大的项是()A .3280x B .4560x C .3280x 和4560x D .5672x 和4560x例35.(2022·湖南·高三阶段练习)设m 为正整数,2()m x y +的展开式中二项式系数的最大值为a ,21()m x y ++的展开式中的二项式系数的最大值为b .若158a b =,则m 的值为()A .5B .6C .7D .8例36.(2022·全国·高三专题练习)5a x ⎫⎪⎭的展开式中x 的系数等于其二项式系数的最大值,则a 的值为()A .2B .3C .4D .2-例37.(2022·安徽·高三阶段练习(理))在1)2nx -的展开式中,只有第五项的二项式系数最大,则展开式中6x 的系数为()A .454B .358-C .358D .7【方法技巧与总结】利用二项式系数性质中的最大值求解即可.题型八:求项的系数最值例38.(2022·全国·高三专题练习)已知(13)n x -的展开式中各项系数之和为64,则该展开式中系数最大的项为___________.例39.(2022·重庆巴蜀中学高三阶段练习)()91-x 的展开式中系数最小项为第______项.例40.(2022·全国·高三专题练习)若n 展开式中前三项的系数和为163,则展开式中系数最大的项为_______.例41.(2022·江苏·姜堰中学高三阶段练习)()2*nn N ∈展开式中只有第6项系数最大,则其常数项为______.例42.(2022·上海·高三开学考试)假如1n x x ⎛⎫- ⎪⎝⎭的二项展开式中3x 项的系数是84-,则1nx x ⎛⎫- ⎪⎝⎭二项展开式中系数最小的项是__________.【方法技巧与总结】有两种类型问题,一是找是否与二项式系数有关,如有关系,则转化为二项式系数最值问题;如无关系,则转化为解不等式组:11r r r r T T T T +-≥⎧⎨≥⎩,注意:系数比较大小.题型九:求二项展开式中的二项式系数和、各项系数和例43.(2022·全国·高三专题练习)若7270127(1)x a a x a x a x -=++++ ,则1237a a a a ++++= _________.(用数字作答)例44.(2022·广东·高三阶段练习)已知2012(2)+=++++ n n n x a a x a x a x ,若01281n a a a a ++++= ,则自然数n 等于_____.例45.(2022·广东·广州大学附属中学高三阶段练习(理))若35()(2)x y x y a +-+的展开式中各项系数的和为256,则该展开式中含字母x 且x 的次数为1的项的系数为___________.例46.(2022·全国·高三专题练习)设()20202202001220201ax a a x a x a x -=+++⋅⋅⋅+,若12320202320202020a a a a a +++⋅⋅⋅+=则非零实数a 的值为()A .2B .0C .1D .-1例47.(2022·全国·高三专题练习)已知202123202101232021(1)x a a x a x a x a x +=+++++ ,则20202019201820171023420202021a a a a a a ++++++= ()A .202120212⨯B .202020212⨯C .202120202⨯D .202020202⨯例48.(多选题)(2022·全国·高三专题练习)若()()()220222022012022111x x x a a x a x ++++++=+++ ,则()A .02022a =B .322023a C =C .20221(1)1ii i a =-=-∑D .202211(1)1i i i ia -=-=∑例49.(2022·全国·高三专题练习)设2002200012200(21)x a a x a x a x -=++++ ,求(1)展开式中各二项式系数的和;(2)12200a a a +++ 的值.例50.(2022·全国·高三专题练习)在①只有第5项的二项式系数最大;②第4项与第6项的二项式系数相等;③奇数项的二项式系数的和为128;这三个条件中任选一个,补充在下面(横线处)问题中,解决下面两个问题.已知2012(21)n nn x a a x a x a x -=+++(n ∈N*),___________(1)求122222n na a a +++ 的值:(2)求12323n a a a na +++ 的值.例51.(2022·全国·高三专题练习)()()202222022012202212R x a a x a x a x x -=++++∈ .求:(1)0122022a a a a ++++ ;(2)1352021a a a a +++ ;(3)0122022a a a a ++++ ;(4)展开式中二项式系数和以及偶数项的二项式系数和;(5)求展开式二项式系数最大的项是第几项?(6)1232022232022a a a a ++++ .例52.(2022·全国·高三专题练习)已知8280128(13)x a a x a x a x-=++++ (1)求128a a a +++ ;(2)求2468a a a a +++.【方法技巧与总结】二项展开式二项式系数和:2n ;奇数项与偶数项二项式系数和相等:12n -.系数和:赋值法,二项展开式的系数表示式:2012()...n n n ax b a a x a x a x +=++++(01...n a a a ,,,是系数),令1x =得系数和:01...()n n a a a a b +++=+.题型十:求奇数项或偶数项系数和例53.(2022·浙江·模拟预测)已知多项式()4228012832-+=++++ x x a a x a x a x ,则1357a a a a +++=_______,1a =________.例54.(2022·全国·模拟预测)若()()9911x ax x +-+的展开式中,所有x 的偶数次幂项的系数和为64,则正实数a 的值为______.例55.(2022·内蒙古·海拉尔第二中学模拟预测(理))已知2220122(2)1+)1+)...1+)nnn x a a x a x a x +=++++(((,若15246222...21n n a a a a a -+++++=-,则n =_____________.例56.(2022·湖北武汉·模拟预测)在5()(1)a x x ++展开式中,x 的所有奇数次幂项的系数之和为20,则=a _____________.例57.(2022·全国·高三专题练习)若9290129(2)(1)(1)(1)++=+++++⋅⋅⋅++x m a a x a x a x ,且()()22028139++⋅⋅⋅+-++⋅⋅⋅+a a a a a a 93=,则实数m 的值可以为()A .1或3-B .1-C .1-或3D .3-例58.(2022·江苏南通·高三开学考试)在61⎛ ⎝的二项展开式中,奇数项的系数之和为()A .365-B .364-C .364D .365例59.(2022·全国·高三专题练习)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=()A .40B .41C .40-D .41-【方法技巧与总结】2012()...n n n ax b a a x a x a x +=++++,令1x =得系数和:01...()n n a a a a b +++=+①;令1x =-得奇数项系数和减去偶数项系数和:01230213...()(...)(...)n n a a a a a a b a a a a -+-=-=++-++②,联立①②可求得奇数项系数和与偶数项系数和.题型十一:整数和余数问题例60.(2022·全国·高三专题练习)已知3029292828130303022C 2C 2C S =+++⋅⋅⋅+,则S 除以10所得的余数是()A .2B .3C .6D .8例61.(2022·河南·南阳中学高三阶段练习(理))已知202274a +能够被15整除,则a 的一个可能取值是()A .1B .2C .0D .1-例62.(2022·陕西·西安中学一模(理))设a Z ∈,且013a ≤<,若202251a +能被13整除,则=a ()A .0B .1C .11D .12例63.(2022·全国·高三专题练习)1223310101010101010180808080(1)8080k k k C C C C -+-++-++ 除以78的余数是()A .1-B .1C .87-D .87例64.(2022·全国·高三专题练习(文))中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究.设a ,b ,()0m m >为整数,若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为()mod a b m ≡.若0122202020C C 2C 2=+⋅+⋅++ a 202020C 2⋅,()mod10a b ≡,则b 的值可以是()A .2022B .2021C .2020D .2019题型十二:近似计算问题例65.(2022·山西·应县一中高三开学考试(理))6(1.05)的计算结果精确到0.01的近似值是_________.例66.(2022·山东·高三阶段练习)某同学在一个物理问题计算过程中遇到了对数据100.98的处理,经过思考,他决定采用精确到0.01的近似值,则这个近似值是________.例67.(2022·全国·高三专题练习)71.95的计算结果精确到个位的近似值为A .106B .107C .108D .109题型十三:证明组合恒等式例68.(2022·江苏·高三专题练习)(1)阅读以下案例,利用此案例的想法化简0112233434343434C C C C C C C C +++.案例:考查恒等式523(1)(1)(1)x x x +=++左右两边2x 的系数.因为右边2301220312232223333(1)(1)()()x x C C x C x C x C x C x C ++=+++++,所以,右边2x 的系数为011223232323C C C C C C ++,而左边2x 的系数为25C ,所以011223232323C C C C C C ++=25C .(2)求证:22212220(1)()(1)nr n nn n n r r C n C n C --=+-=+∑.例69.(多选题)(2022·江苏·海安市曲塘中学高三期末)下列关系式成立的是()A .0n C +21n C +222n C +233n C +…+2n nn C =3nB .202nC +12n C +222n C +32n C +…+212n n C -+222n n C =3·22n-1C .1n C ·12+2n C ·22+3n C ·32+…+nn C n 2=n ·2n -1D .(0n C )2+(1n C )2+(2n C )2+…+(nn C )2=2nnC 例70.(多选题)(2022·全国·高三专题练习)设*N n ∈,下列恒等式正确的为()A .1212n n n n n C C C -+++= B .121122n n n n n C C nC n -+++=⋅ C .()2122221212n n n n n C C n C n n -+++=+ D .()31323112432n n n n n C C n C n -+++=- 题型十四:二项式定理与数列求和例71.(2022·全国·高三专题练习(理))伟大的数学家欧拉28岁时解决了困扰数学界近一世纪的“巴赛尔级数”难题.当*n ∈N 时,sin x x =222222222111149x x x x n ππππ⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,又根据泰勒展开式可以得到35sin 3!5!x x x x =-+++()()121121!n n x n ---+- ,根据以上两式可求得22221111123n +++++= ()A .26πB .23πC .28πD .24π例72.(2022·全国·高三专题练习)已知数列{}n a 是等比数列,11a =,公比q 是4214x x ⎛⎫+ ⎪⎝⎭的展开式的第二项(按x 的降幂排列).(1)求数列{}n a 的通项n a 与前n 项和n S ;(2)若1212C C C nn n n n n A S S S =++⋅⋅⋅+,求n A .例73.(2022·全国·高三专题练习)已知数列{}n a 满足1a a =,*1(46)410()21n n n a n a n N n ++++=∈+.(1)试判断数列2{}21n a n ++是否为等比数列?若不是,请说明理由;若是,试求出通项n a .(2)如果1a =时,数列{}n a 的前n 项和为n S .试求出n S ,并证明341111(3)10nn S S S ++⋯+< .题型十五:杨辉三角例74.(2022·山东·高三开学考试)杨辉三角是二项式系数在三角形中的一种几何排列.某校数学兴趣小组模仿杨辉三角制作了如下数表.123456…35791113…81216202428…………………该数表的第一行是数列{}n ,从第二行起每一个数都等于它肩上的两个数之和,则这个数表中第4行的第5个数为______,各行的第一个数依次构成数列1,3,8,…,则该数列的前n 项和n S =______.例75.(2022·浙江省杭州学军中学模拟预测)“杨辉三角”是我国数学史上的一个伟大成就,是二项式系数在三角形中的一种几何排列.如图所示,第()N ,2n n n *∈≥行的数字之和为__________,去除所有1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,…,则此数列的前28项和为_____________.例76.(2022·安徽·合肥市第五中学模拟预测(理))杨辉是我国南宋末年的一位杰出的数学家.他在《详解九章算法》一书中,画了一个由二项式()()1,2,3,na b n +=⋅⋅⋅展开式的系数构成的三角形数阵,称作“开方作法本源”,这就是著名的“杨辉三角”.在“杨辉三角”中,从第2行开始,除1以外,其他每一个数值都是它上面的两个数值之和,每一行第()*,k k n k ≤∈N 个数组成的数列称为第k 斜列.该三角形数阵前5行如图所示,则该三角形数阵前2022行第k 斜列与第1k +斜列各项之和最大时,k 的值为()A .1009B .1010C .1011D .1012例77.(多选题)(2022·全国·高三专题练习)在1261年,我国南宋数学家杨辉所著的《详解九章算法》中提出了如图所示的三角形数表,这就是著名的“杨辉三角”,它是二项式系数在三角形中的一种几何排列.从第1行开始,第n 行从左至右的数字之和记为n a ,如:{}12112,1214,,n a a a =+==++=⋯的前n 项和记为n S ,依次去掉每一行中所有的1构成的新数列2,3,3,4,6,4,5,10,10,5,…,记为n b ,{}n b 的前n 项和记为n T ,则下列说法正确的有()A .91022S =B .14n n n a S S +⎧⎫⎨⎬⋅⎩⎭的前n 项和为1111n a +--C .5666b =D .564084T =【过关测试】一、单选题1.(2022·江苏·金陵中学高三阶段练习)()()8x y x y -+的展开式中36x y 的系数为()A .28B .28-C .56D .56-2.(2022·福建师大附中高三阶段练习)在()522x x +-的展开式中,含4x 的项的系数为()A .-120B .-40C .-30D .2003.(2022·福建泉州·模拟预测)101x ⎛⎫⎪⎝⎭的展开式中,2x 的系数等于()A .45-B .10-C .10D .454.(2022·湖南益阳·模拟预测)若()526012612(12)x x a a x a x a x +-=++++ ,x ∈R ,则2a 的值为()A .20-B .20C .40D .605.(2022·湖南·高三开学考试)已知()522x a x x ⎛⎫+- ⎪⎝⎭的展开式中各项系数的和为3-,则该展开式中x 的系数为()A .0B .120-C .120D .160-6.(2022·北京房山·高三开学考试)若443243210(21)x a x a x a x a x a -=++++,则2a =()A .6B .24C .6-D .24-7.(2022·江苏省泰兴中学高三阶段练习)设*n N ∈,0101(1)(1)(2)(2)n n n n n x a a x a x b b x b x =+-++-=+-++- ,则()A .001132n nn n b a b a b a -+-++-=- B .0101012()nn nb bb a a a a a a +++=+++ C .0101111()211n n a a a a a a n n +++=+++++ D .21201(1)4()4n n n n b b n b a a a ++++=+++ 8.(2022·河北·高三阶段练习)关于二项式()281(1)ax x x ++-,若展开式中含2x 的项的系数为21,则=a ()A .3B .2C .1D .-19.(2022·黑龙江·大庆实验中学模拟预测(理))已知()()()()727012723111x a a x a x a x -=+-+-++- ,则3a =()A .280B .35C .35-D .280-二、多选题10.(2022·湖北·黄冈中学高三阶段练习)已知660(2)ii i x a x =+=∑,则()A .123456666a a a a a a +++++=B .320a =C .135246a a a a a a ++>++D .1034562234a a a a a a +=+++11.(2022·浙江·高三开学考试)在二项式6⎛⎝的展开式中,正确的说法是()A .常数项是第3项B .各项的系数和是1C .偶数项的二项式系数和为32D .第4项的二项式系数最大12.(2022·江苏镇江·高三开学考试)已知函数()6260126()(12),0,1,2,3,,6i f x x a a x a x a x a i =-=+++⋅⋅⋅+∈=⋅⋅⋅R 的定义域为R .()A .01261a a a a +++⋅⋅⋅+=-B .135364a a a ++=-C .123623612a a a a +++⋅⋅⋅+=D .(5)f 被8整除余数为713.(2022·湖南师大附中高三阶段练习)已知2012(12)n n n x a a x a x a x +=++++ ,下列结论正确的是()A .0123n n a a a a +++=+ B.当5,==n x()(12),*+=+∈n x a a b N ,则a b=C .当12n =时,012,,,,n a a a a 中最大的是7a D .当12n =时,3124111223411121222222-+-++-= a a a a a a 14.(2022·全国·高三阶段练习)已知()610ax a x ⎛⎫+> ⎪⎝⎭的展开式中含2x -的系数为60,则下列说法正确的是()A .61ax x ⎛⎫+ ⎪⎝⎭的展开式的各项系数之和为1B .61ax x ⎛⎫+ ⎪⎝⎭的展开式中系数最大的项为2240x C .61ax x ⎛⎫- ⎪⎝⎭的展开式中的常数项为160-D .61ax x ⎛⎫- ⎪⎝⎭的展开式中所有二项式的系数和为32三、填空题15.(2022·浙江省苍南中学高三阶段练习)()()()357222x y y z z x ---的展开式中不含z 的各项系数之和______.16.(2022·广东广东·高三阶段练习)6(23)x y z ++的展开式中,32xy z 的系数为___________.17.(2022·河北邯郸·高三开学考试)已知()52345601234561(1)x x a a x a x a x a x a x a x +-=++++++,则03a a +的值为___________.18.(2022·浙江省淳安中学高三开学考试)已知51m x x x x ⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭的展开式中常数项为20,则m =___________.19.(2022·浙江·高三开学考试)多项式()287801781(1)(1)x x a a x a x a x +=+++++++ ,则3a =___________.20.(2022·江苏·南京市中华中学高三阶段练习)将(1+x )n (n ∈N *)的展开式中x 2的系数记为n a ,则232022111a a a +++= ________.。

二项式定理的应用--求系数

二项式定理的应用--求系数
“分步”要连续完整;各步间要关联独立
两理两数四原则 十大题型递推法
1.阶乘: n!1 23 n
A 2.排列数: m n! n • (n 1) • (n 2) (n m 1) n (n m)!
C C 3.组合数:
m n
nm Anm
n
m!
注1.一般的,乘积式用于计算,阶乘式用于证明
§251 二项式定理的应用——求系数
一、求指定项的系数(等价于求指定项):
1. (a b)n 型: 2.(a b)m ○* (c d)n 型: 3. (a b c)n 型:
4.导பைடு நூலகம்型:
二、求系数和(差) :
1.赋值法: 2.其他法:
计数问题知识网络
复杂的计数问题 简单的计数问题
组合数的性质
x
为-20,则自然数n=_______
法2:由多项式乘法法则,结合组合的知识可得
(x 1 2)n x
的通项为
Cnk
Cnrk
x
k
(
1 x
)r
(2)nk
r
Cnk
Cr nk
x
k
r
(2)
nk
r
由题意得
kr 0
Cnk
Cr nk
(2)
nk
r
20
后续工作等同法1,操作量较大……
(3)(2004年安徽春考)若 (x 1 2)n 的展开式中常数项
lnim[(a0 a2 a4 ... a2n )2 (a1 a3 a5 ... a2n1)2 ] ____
析①:ln因im[(a0 a2 a4 ... a2n )2 (a1 a3 a5 ... a2n1)2 ]
(a0a1a2a3 a2n)(a0a1a2a3 a2n)

二项展开式中系数最大项的问题

二项展开式中系数最大项的问题

二项展开式中系数最大项的问题例5 已知(x +12x)n 的展开式中前三项的系数成等差数列. ①求n 的值;②求展开式中系数最大的项.[解析] ①由题设,得C 0n +14×C 2n =2×12×C 1n , 即n 2-9n +8=0,解得n =8,n =1(舍去).②设第r +1项的系数最大,则⎩⎪⎨⎪⎧ 12r C r 8≥12r +1C r +18,12r C r 8≥12r -1C r -18.即⎩⎪⎨⎪⎧ 18-r ≥12(r +1),12r ≥19-r .解得r =2或r =3.所以系数最大的项为T 3=7x 5,T 4=7x 72 .名师点拨 ☞求展开式中系数最大的项如求(a +bx )n (a ,b ∈R )的展开式系数最大的项,一般是采用待定系数法,设展开式各项系数分别为A 1,A 2,…,A n +1,且第k 项系数最大,应用⎩⎪⎨⎪⎧A k ≥A k -1A k ≥A k +1从而解出k 来,即得. 〔变式训练4〕已知(x 23 +3x 2)n 的展开式中第3项与第4项的二项式系数相等. (1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项.[解析] (1)易知n =5,故展开式共有6项,其中二项式系数最大的项为第三、第四两项.所以T 3=C 25(x 23 )3·(3x 2)2=90x 6,T 4=C 35(x 23 )2·(3x 2)3=270x 223 .(2)设展开式中第r +1项的系数最大.T r +1=C r 5(x 23 )5-r ·(3x 2)r =C r 5·3r ·x 10+4r 3 , 故有⎩⎪⎨⎪⎧C r 5·3r ≥C r -15·3r -1,C r 5·3r ≥C r +15·3r +1, 即⎩⎪⎨⎪⎧ 3r ≥16-r .15-r ≥3r +1.解得72≤r ≤92.因为r ∈N , 所以r =4,即展开式中第5项的系数最大.T 5=C 45·x 23 ·(3x 2)4=405x 263 .。

二项式系数最大值公式

二项式系数最大值公式

二项式系数最大值公式
首先,二项式系数定义为在数学中用来表示n阶多项式(a + bx^n)^n中x^n系数的值。

通常,当n很大时,二项式系数很难精确地计算。

因此,我们可以使用两种方法来计算最大值。

第一种方法是使用二项式定理,它位于数学的第二部分中。

它的通用表达式为:(a + bx^n)^n = (2n)!/n!,其中a和b为多项式的值。

具体来说,我们可以通过计算(2n)!/n!的除数的期望值(平均值)来获得二项式系数最大值公式,即平均值等于二项式系数最大值公式。

另一种方法是使用概率分布模型,可以通过公式P(X = nX)= n/(2n)! 来计算二项式系数最大值。

这种方法也可以被称为二项式分布,它在统计学的第四部分中有重要的应用。

总的来说,如果想要计算二项式系数最大值,我们可以根据参数a和b的数值,按照上述两种方法中的公式来计算出来。

如果使用它们,那么就可以更准确地计算出最大值。

在总结二项式系数最大值公式时,要记住以下信息:使用二项式定理来计算它,可以通过计算(2n)!/n!的平均值。

此外,也可以使用概率分布模型,可以通过公式P(X = nX)= n/(2n)! 计算最大值。

记住了这些,想要计算出二项式系数的最大值就不再是什么难事了。

高考数学复习:二项式定理

高考数学复习:二项式定理

思维升华
(1)赋值法的应用 一般地,对于多项式(a+bx)n=a0+a1x+a2x2+…+anxn,令 g(x)=(a+bx)n, 则(a+bx)n 的展开式中各项的系数和为 g(1),(a+bx)n 的展开式中奇数项 的系数和为12[g(1)+g(-1)],(a+bx)n 的展开式中偶数项的系数和为12[g(1) -g(-1)].
自主诊断
2.(选择性必修第三册P31T4改编) 1x-
x10
的展开式中x2的系数等于
√A.45
B.20
C.-30
D.-90
k
因为展开式的通项为Tk+1=(1)k C1k0x 2
·x-(10-k)=(
1)k
C1k0
x
10
3 2
k

令-10+32k=2,得 k=8,
所以展开式中 x2 的系数为(-1)8×C810=45.
(x+y)8 展开式的通项为 Tk+1=Ck8x8-kyk,k=0,1,…,7,8. 令 k=6,得 T6+1=C68x2y6; 令 k=5,得 T5+1=C58x3y5, 所以1-yx(x+y)8 的展开式中 x2y6 的系数为 C68-C58=-28.
(2)若(x2+a)x+1x8 的展开式中 x8 的系数为 9,则 a 的值为__1___.
因为(x-2y)8 的展开式中含 x6y2 的项为 C28x6(-2y)2=112x6y2, 所以(x-2y)8的展开式中x6y2的系数为112.
(2)已知x-
a
5
x
的展开式中
x5
的系数为
A,x2
的系数为
B,若
A+B=11,
则 a=__±_1___.
x-

二项式定理的常见题型及解法

二项式定理的常见题型及解法

二项式定理的常见题型及解法二项式定理的问题相对较独立,题型繁多,解法灵活且比较难掌握。

二项式定理既是排列组合的直接应用,又与概率理论中的三大概率分布之一的二项分布有着密切联系。

二项式定理在每年的高考中基本上都有考到,题型多为选择题,填空题,偶尔也会有大题出现。

本文将针对高考试题中常见的二项式定理题目类型一一分析如下,希望能够起到抛砖引玉的作用。

一、求二项展开式1.“(“+〃)"”型的展开式例1.求(3« + J)4的展开式:解:原式=(亨)4 = 3 y/x X-=3Gt),+ 0: 3靖 +(3x)2 + d 由)+。

:]A= -4(8 lx4 + 84x3 + 54x2 +12x +1) =81x2 +84x+—+ -4 + 54厂x 厂2."(“一匕)"”型的展开式例2.求(36一,=)4的展开式:分析:解决此题,只需要把(34一3)4改写成[36+(—一的形式然后按照二项展开式yjx y]X 的格式展开即可。

本题主要考察了学生的“问题转化”能力。

3.二项式展开式的“逆用”例3.计算1—3C:+9C:—27C:+~・+(-1)"3"C;:解:原式=<7>d(一到+C:(-3)2+C:(—3)3+....+ C»3)” =(1-3)” =(-2)”二、通项公式的应用1.确定二项式中的有关元素a反 Q? 9例4.已知(一一1一)’的展开式中工3的系数为一,常数4的值为______________x V 2 4解:= C;(色尸(J) = G;(-l)r-2^ •,产「x V 23 Q令三•一9 = 3,即〃=8依题意,得C;(一1)8・27.。

内=“解得。

=一12.确定二项展开式的常数项例5.(五一二,)1°展开式中的常数项是]5-5 5解:7;+1 =c;Q ^)i0-r (--y=(-\yc;0-x 令5—7r= 5 即r= 6. 所以常数项是(-l )6c* =2103 .求单一二项式指定器的系数例6.(』一一-)9展开式中X 9的系数是 _____________ 2%解:心=仁“产(-/ =仁”2(一'7=仁(-;)“心令18 - 3x = 9,则广=3,从而可以得到的系数为:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设展开式各Ai项系数分别为
(i=1,2,3 ,n+1),第r+1项系数最大,应


Ar 1 Ar 1

,A求r 出r Ar 2
这节课我们通过两个例题研究了二项展 开式中两类系数最大项的求解方法,它们的实 质都是分析通项公式,结合二项式系数的性质 去求解。希望同学们在解题中认真思索,细心 体会,加以总结,积累经验,形成方法。
1二项式定理 a b n an c1nan1b cnnbn
2 二项展开式的 通项 Tr1 cnr anrbr
3 二项式系数的性质
对称性 增减性与最大值 各二项式系数和
思考
例1 在 x y11的展开式中,求(1)二项式系
数最大的项;(2) 项的系数绝对值最大的项; (3)项的系数最大的项。
Tr1 Tr Tr1 Tr2
即为
c8r c8r
4r 4r

c8r1 4r1 c8r1 4r1
解得
31 5

r

36 5
即可得
r=7
T 8

c87
47
131072
规律
如果求 a bxn展开式中系数最
大项,对a,b为1或-1较简单,对一般情形
a,b均为正数时,应采用待定系数法,
解:由于
Tr1 c1r1x11r y r 1 r c1r1x11r yr
(1)由二项式系数性质知,第6, 7项二 项式系数最大
T6 462x6 y5 T7 462x5 y6
(2) 设第r+1项系数绝对值为 Ar 1
则 Ar 1 c1r1
T6 462x6 y5 T7 462x5 y6
T5 c84 2x4 1120x4
1 前面的系数 2 剩下的项
(2)设二项展开式第r+1项系数最大,记为 Ar
Ar1 Ar

ArBiblioteka 1Ar 2cc88rr
2r 2r

c8r 1 2r 1
c r 1 8
2r
1
解得 5 r 6
T6 c85 2x5 1792x5 T7 c86 2x6 1792x6
(3) 由上可以知道系数最大项为第7项
T7 462x5 y6
例2 在(1 2x)n的展开式中,已知第6项与
第7项系数相等,求它展开式中:(1)二项式 系数最大的项;(2)系数最大的项;(3)当 x=2时展开式中最大的项.
解:
T6

cn5
2x5

T7

cn6
2x6
n=8
(1)由二项式系数性质知,第5项二项式系数 数最大
相关文档
最新文档