1.1.3四种命题间的相互关系 (2)
1.1.3四种命题间的相互关系

反证法的步骤:
1. 假设命题的结论不成立,即假设结论的 反面成立。 推理过程中一定要用到才行
王新敞
奎屯 新疆
2. 从这个假设出发,通过推理论证,得出 矛盾。 显而易见的矛盾(如和已知条件矛盾). 3. 由矛盾判定假设不正确,从而肯定命题 的结论正确。
可能出现矛盾四种情况:
• • • • 与题设矛盾; 与反设矛盾; 与公理、定理矛盾; 在证明过程中,推出自相矛盾的结论。
(真 ) (假 ) (假 ) (真 )
例题讲解
例1:设原命题是:当c>0时,若a>b,则ac>bc. 写出它的逆命题、否命题、逆否命题。 并分别判断它们的真假。
分析:“当c>0时”是大前提,写其它命题时应该保留。 原命题的条件是“a>b”, 结论是“ac>bc”。 解:逆命题:当c>0时,若ac>bc, 则a>b. (真) (真) (真) (真)
A O
已知:如图,在⊙O中,弦AB、 CD交于点P,且AB、CD不是直径. 求证:弦AB、CD不被P平分.
D
证明:假设弦AB、CD被P平分,
由于P点一定不是圆心O,连结OP, 根据垂径定理的推论,有
P
C
B
OP⊥AB,OP⊥CD, 即过点P有两条直线与OP都垂直,这与垂 线性质矛盾。
所以,弦AB、CD不被P平分。
所以假设不成立, 从而______________ x =y=0。 成立。
反 证 法
例 2
用反证法证明 : 如果a b 0, 那么 a b .
或者 a b
证明: 假设 a不大于 b , 则或者 a b ,
因为a 0, b 0, 所以 a b a a b a与 a b b b a b a bab
2020-2021人教版数学1-1教师用书:第1章 1

2020-2021学年人教A版数学选修1-1教师用书:第1章1.1 1.1.2四种命题1.1.3四种命题间的相互关系1.1。
2四种命题1。
1。
3四种命题间的相互关系学习目标核心素养1。
了解命题的四种形式,能写出一个命题的逆命题、否命题和逆否命题.(重点)2.理解并掌握四种命题之间的关系及其真假性之间的关系.(易混点)3.能够利用命题的等价性解决有关问题.(难点)借助命题的等价性解题培养数学抽象、逻辑推理素养.1.四种命题的概念及结构(1)四种命题的概念对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么把这样的两个命题叫做互逆命题,如果恰好是另一个命题的条件的否定和结论的否定,那么把这样的两个命题叫做互否命题,如果恰好是另一个命题结论的否定和条件的否定,那么把这样的两个命题叫做互为逆否命题,把第一个叫做原命题时,另三个可分别称为原命题的逆命题、否命题、逆否命题.(2)四种命题结构2.四种命题间的相互关系(1)四种命题之间的关系(2)四种命题间的真假关系原命题逆命题否命题逆否命题真真真真真假假真假真真假假假假假①两个命题互为逆否命题,它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.思考:(1)“a=b=c=0”的否定是什么?(2)在原命题、逆命题、否命题和逆否命题四个命题中,真命题的个数会是奇数吗?[提示](1)“a=b=c=0"的否定是“a,b,c至少有一个不等于0”.(2)真命题的个数只能是0,2,4,不会是奇数.1.命题“若m=10,则m2=100”与其逆命题、否命题、逆否命题这四个命题中,真命题是()A.原命题、否命题B.原命题、逆命题C.原命题、逆否命题D.逆命题、否命题C[原命题正确,则逆否命题正确,逆命题不正确,从而否命题不正确.故选C.]2.给出以下命题:①若一个四边形的四条边不相等,则它不是正方形;②若一个四边形的对角互补,则它内接于圆;③正方形的四条边相等;④圆内接四边形的对角互补;⑤对角不互补的四边形不内接于圆;⑥若一个四边形的四条边相等,则它是正方形.其中互为逆命题的有________;互为否命题的有______;互为逆否命题的有________.③和⑥,②和④①和⑥,②和⑤①和③,④和⑤[互为逆命题有③和⑥,②和④;互为否命题有①和⑥,②和⑤;互为逆否命题有①和③,④和⑤。
人教版高中数学选修1-1课件:1.1.3 四种命题间的相互关系

常用逻辑用语
1.1 命题及其关系 1.1.2 四种命题 1.1.3 四种命题间的相互关系
三维目标
1.知识与技能 (1)了解原命题、逆命题、否命题、逆否命题这四种命题的概念. (2)掌握四种命题的形式和四种命题间的相互关系,会用等价命题判断四种命题的真假. 2.过程与方法 多让学生举例,培养学生发现问题、提出问题、分析问题、有创造性地解决问题的能 力;培养学生的抽象概括能力和思维能力. 3.情感、态度与价值观 通过学生的举例,激发学生学习数学的兴趣和积极性,培养他们的辨析能力以及分析 问题和解决问题的能力.
备课素材
对于含有大前提的命题,在改写时大前提不动.如“已知a,b为正数,若a>b,则 |a|>|b|”中,“已知a,b为正数”在四种命题中是相同的大前提,写其他命题时都 把它作为大前提. 在写一个命题的否命题时要将命题中的关键词语改写成否定词语,特别地,“且” 的否定是“或”,“都是”的否定是“不都是”等.
备课素材
[例]写出下列命题的逆命题、否 命题和逆否命题. (1)若 a+ 5是有理数,则 a 是无 理数; (2)若 ab=0,则 a,b 中至少有 一个为零; (3)垂直于同一平面的两条直线 平行.
解: (1)逆命题:若 a 是无理数,则 a+ 5是 有理数; 否命题:若 a+ 5不是有理数,则 a 不是无 理数; 逆否命题:若 a 不是无理数,则 a+ 5不是 有理数.
新课导入
[导入一] 情景引入 在商品大战中,广告成了电视节目中一道美丽的风景线.几乎所有的广告商都熟 谙这样的命题变换艺术,如宣传某种食品,其广告词为:“拥有的人们都幸福, 幸福的人们都拥有”,初听起来,这似乎只是普通的赞美说词,然而它的实际效 果相当大.哪个家庭不希望幸福呢,掏钱买一盒就得了.你能写出其广告词的一 个等价命题吗?
1.1.3 四种命题间的相互关系

(二)四种命题的真假关系
1.互逆命题的真假关系
判断下列命题的真假,并总结规律。 原命题:若a>b,则a+c>b+c 真 (1) 逆命题:若a+c>b+c,则a>b 真 原命题:若四边形是正方形,则四边形两对角线垂直。 真 (2) 逆命题:若四边形两对角线垂直,则四边形是正方形。 假 原命题:若a>b,则ac2>bc2 假 (3) 逆命题:若ac2>bc2,则a>b 真
分析
直接证明这个命题比较困难,可考虑转化为对它 的逆否命题的证明. 将“若p2 + q2 =2,则p + q ≤ 2”视为原命题, 要证明原命题为真命题,可以考虑证明它的逆否 命题“若p + q >2,则p2 + q2 ≠2”为真命题, 从而达到证明原命题为真命题的目的.
例1:
证明:若p2 + q2 =2,则p + q ≤ 2.
(1)设原命题:若a+b ≥2,则a,b 中至少 有一个不小于1,则原命题与其逆命题的真假 情况是( A ) A.原命题真,逆命题假 B.原命题假,逆命题真 C.原命题与逆命题均为真命题 D.原命题与逆命题均为假命题
(2) 命题“若a>b则ac>bc”(这里a、b、c 都是实数)与它的逆命题,否命题、逆否命 题中,真命题的个数为( D )
(1)两个命题互为逆否命题,它们有 相同的真假性. (2)两个命题互为逆命题或互为否命 题,它们的真假性没有关系.
由于原命题和它的逆否命题有 相同的真假性,所以在直接证明某 一个命题为真命题有困难时,可以 通过证明它的逆否命题为真命题, 来间接地证明原命题为真命题.
例1:
证明:若p2 + q2 =2,则p + q ≤ 2.
1.1.3 四种命题间的相互关系(共39张ppt)

它们之间的关系为: 互逆命题 原命题与逆命题 互否命题 原命题与否命题 互为逆否命题 原命题与逆否命题 逆命题与否命题
否命题与逆否命题 逆命题与逆否命题
2.对四种命题真假关系的两点说明 (1)由于一个命题与其逆否命题具有相同的真假性 ,四种命题 中有两对互为逆否命题,所以四种命题中真命题的个数必须是 偶数,即真命题可能有4个、2个或0个. (2)由于原命题与其逆否命题的真假性相同 ,所以原命题与其 逆否命题是等价命题,因此,当直接证明原命题困难时,可以转 化为证明与其等价的逆否命题,这种证法是间接证明命题的方 法,也是反证法的一种变通形式.
类型 二
原命题与逆否命题的等价性应用
【典型例题】
1.“正弦值不相等的两个角的终边不相同”是
(填真、假). 2.判断下列命题的真假,并说明理由: (1)若x2≠9,则x≠3. (2)若方程x2+2ax+a2+a-1=0无实数根,则a≤2.
命题
【解题探究】1.题1中命题的条件与结论有什么特点?
2.当直接判断一个命题的真假比较困难时 ,我们一般如何处理?
∴p3+q3>2, 即p3+q3≠2,„„„„„„„„„„„„„„„„„„„11分 这表明原命题的逆否命题为真命题 ,从而原命题也为真命题. „„„„„„„„„„„„„„„„„„„„„„„„12分
【失分警示】
【防范措施】 1.正难则反思想的应用 若判断或证明一个命题有困难时,可以利用等价命题即它的逆 否命题来处理,如本例直接证明有困难,可以证明它的逆否命
【知识点பைடு நூலகம்】
1.对四种命题相互关系的两点认识
(1)四种命题中,任意确定一个为原命题,其逆命题、否命题、
逆否命题就确定了,所以“互逆”“互否”“互为逆否”具有
新课标人教版数学Ⅱ课本练习选修2-12-22-34-44-5答案 (3)

高三理科党整合,仅供高三复习全部书参考,以及高一二订正,不建议直接抄袭。
只要努力一切来得及在高考吧里零基础学生逆袭高考仅一年时间考上一本重点的例子不少。
课本是一切知识的基础,万变不离其宗! 望广大学子加油考上自己理想的大学!感谢各位提供资料的老师与同学。
答案包括选修2-1 2-2 2-3 4-4极坐标与参数方程4-5 不等式- 7 左整合人教版数学选修2—1第一章常用逻辑用语1.1.命题及其关系1.1.1命题1.1.2 四种命题1.C 2.C 3.D 4.若A不是B的子集,则A∪B≠B 5.① 6.逆7.(1)若一个数为一个实数的平方,则这个数为非负数.真命题(2)若两个三角形等底等高,则这两个三角形全等.假命题8.原命题:在平面中,若两条直线平行,则这两条直线不相交.逆命题:在平面中,若两条直线不相交,则这两条直线平行.否命题:在平面中,若两条直线不平行,则这两条直线相交.逆否命题:在平面中?若两条直线相交,则这两条直线不平行。
以上均为真命题9.若ab≠0,则a,b都不为零.真命题10.逆否命题:已知函数f(x)在R上为增函数,a,b∈R,若f(a)+f(b)<f(-a)+f(-b),则a+b<0,真命题.证明略11.甲1.1.3 四种命题间的相互关系1.C 2.D 3.B 4.0个、2个或4个 5.原命题和逆否命题6.若a+b是奇数,则a,b至少有一个是偶数;真7.逆命题:若a^2=b^2,则a=b.假命题.否命题:若a≠b,则a^2≠b^2.假命题.逆否命题:若a^2≠b^2,则a≠b.真命题8.用原命题与逆否命题的等价性来证.假设a,b,c都是奇数,则a^2,b^2,c2也都是奇数,又a^2+b^2=c^2,则两个奇数之和为奇数,这显然不可能,所以假设不成立,即a,b,c不可能都是奇数9.否命题:若a^2+b^2≠0,则a≠0或b≠0.真命题.逆否命题:若a≠0,或b≠0,则a2+b2≠0.真命题10.真┌(4a)2一4(一4a+3)<0,11.三个方程都没有实数根的情况为┤(a-1)2一4a2<0, =>-3/2<a<-l└4a2+8a<0 所以实数a的取值范围a≥一l,或a≤-3/21.2 充分条件与必要条件1.2.1 充分条件与必要条件1.A 2.B 3.A 4.(1) ≠> (2) ≠> (3) ≠> (4)≠> 5.充分不必要6.必要不充分 7.“c≤d”是“e≤f”的充分条件 8.充分条件,理由略9.一元二次方程ax^2+2x+l=0 (a≠0)有一个正根和一个负根的充要条件为a<010.m≥9 11.是1.2.2 充要条件1.C 2.B 3.D 4.假;真 5.C和D 6.λ+μ=1 7.略 8.a=-39.a≤l 10.略 11.q=-1,证明略1.3 简单的逻辑联结词1.3.1 且(and)1.3.2 或(or)1.3.3 非(not)1.A 2.C 3.C 4.真 5.①③ 6.必要不充分7.(1)p:2<3或q:2=3;真 (2)p:1是质数或q:1是合数;假 (3)非p,p:0∈φ;真(4)p:菱形对角线互相垂直且q:菱形对角线互相平分;真8,(1)p∧q:5既是奇数又是偶数,假;p∨q:5是奇数或偶数,真;┑p:5不是偶数,真(2)p∧q:4>6且4+6≠10,假;p∨q:4>6或4+6≠10,假;┑p:4≤6,真9.甲的否定形式:x∈A,且x∈B;乙的否命题:若(x-1)(x-2)=0,则x=1,或x=2 10.m<-l 11.(5/2,+∞)1.4 全称量词与存在量词1.4.1 全称量词1.4.2 存在量词1.D 2.C 3.(1)真 (2)真 4,③5.所有的直角三角形的三边都满足斜边的平方等于两直角边的平方和6.若一个四边形为正方形,则这个四边形是矩形;全称;真7.(1)x,x^2≤0 (2)对x,若6|x则3|x (3)正方形都是平行四边形8.(1)全称;假 (2)特称;假 (3)全称;真 (4)全称;假9.p∧q:有些实数的绝对值是正数且所有的质数都是奇数,假;p∨q:有些实数的绝对值是正数或所有的质数都是奇数,真;┑p:所有实数的绝对值都不是正数,假10.(1)存在,只需m>一4即可 (2)(4,+∞) 11.a≥一21.4.3 含有一个量词的命题的否定1.C 2.A 3.C 4.存在一个正方形不是菱形 5.假6.所有的三角形内角和都不大于180°7.(1)全称;┑p假 (2)全称;┑p假 (3)全称;┑p真8.(1)┑p:存在平方和为0的两个实数,它们不都为0(至少一个不为0);假⑵┑p: 所有的质数都是偶数;假 (3)┑p:存在乘积为0的三个实数都不为0;假9.(1)假 (2)真 (3)假 (4)真 10.a≥3 11.(一√2,2)单元练习1.B 2.B 3.B 4.B 5.B 6.D 7.B 8.D 9.C 10.D11.5既是17的约数,又是15的约数:假 12.[1,2)13.在△ABC中,若∠C≠90°,则∠A,∠B不都是锐角 14.充要;充要;必要 15.b≥016.既不充分也不必要 17.①③④ 18.a≥319.逆命题:两个三角形相似,则这两个三角形全等;假;否命题:两个三角形不全等,则这两个三角形不相似;假;逆否命题:两个三角形不相似,则这两个三角形不全等;真;命题的否定:存在两个全等三角形不相似;假20.充分不必要条件21.令f(x) = x^2+(2k一1)x+k^2,方程有两个大于1的实数根┌ △=(2k2-1)-4k2≥0,<=>┤->1,即是k<-2,所以其充要条件为k<-2.└ f (1)>0,22.(-3,2]10.a√3/3第一章导数及其应用第二章推理与证明第三章数系的扩充与复数的引入。
人教A版高中数学必修五课件四种命题的相互关系
解 : b2 4ac (a c)2 4ac (a c)2 0,
原命题为真,
其逆否命题也为真.
4.课本P8.练
五、提高 : 已知命题 P:lg(x 2 2x 2) ≥ 0 的解集是 A;命 题 Q: x(4 x) ≤ 0 的解集不是 B.若 P 是真命题,Q 是假 命题,求 A∩B.
(4)命题四种形式的结构:
原命题:若p,则q 否命题:若┐p,则┐q 4.常见的否定形式: ①都是---- 不都是 逆命题:若q,则p 逆否命题:若┐q,则┐p
②或---- 且
③至少有n个---- 至多有(n-1)个
④至多有n个---- 至少有(n+1)个
二、校对课本的练习、习题 ①P6.练(2)(3) (3)奇函数的图象关于原点中心对称 原命题:若一个函数是奇函数,则它的图象关于原点中 心对称; 真命题 逆命题:若一个函数的图象关于原点中心对称,则它是 真命题 奇函数; 否命题:若一个函数不是奇函数,则它的图象不关于原 真命题 点中心对称; 逆否命题:若一个函数的图象不关于原点中心对称,则 真命题 它不是奇函数.
3.(1)线段的垂直平分线上的点到这条线段两个端点的距 离相等。 原命题:若一个点在线段的垂直平分线上,则这个点到 这条线段两个端点的距离相等。(真) 逆命题:若一个点到线段两个端点的距离相等,则这个 点在这条线段的垂直平分线上。(真) 否命题:若一个点不在线段的垂直平分线上,则这个点 到这条线段两个端点的距离不相等。(真) 逆否命题:若一个点到线段两个端点的距离不相等,则 这个点不在这条线段的垂直平分线上。(真) (2)原命题有两种写法: 原(真)逆(假)否(假)逆否(真) ①若一个四边形是矩形,则这个四边形的对角线相等. ②若一个平行四边形是矩形,则这个平行四边形的对 角线相等. 原(真)逆(真)否(真)逆否(真)
四种命题 四种命题间的相互关系
否命题:若 m·n≥0,则方程 mx2-x+n=0 没有实数 根,假命题.
逆否命题:若方程 mx2-x+n=0 没有实数根,则 m·n ≥0,真命题.
(2)逆命题:若一条直线经过圆心,且平分弦所对的 弧,则这条直线是弦的垂直平分线,真命题.
否命题:若一条直线不是弦的垂直平分线,则这条直 线不过圆心或不平分弦所对的弧,真命题.
3.四种命题真假性之间的关系 (1)两个命题互为逆否命题时,它们有相同的真假性; (2)两个命题为互逆命题或互否命题时,它们的真假 性没有关系.
温馨提示 在四种命题中,真命题的个数可能为 0,2,4 个,不 会出现奇数个.
1.下列判断中不正确的是( ) A.命题“若 A∩B=B,则 A∪B=A”的逆否命题 为真命题 B.“矩形的两条对角线相等”的否命题为假命题 C.“已知 a,b,m∈R,若 am2<bm2,则 a<b”的逆 命题是真命题 D.“若 x∈N*,则(x-1)2>0”是假命题
解析:A 中,逆否命题“若 A∪B≠A,则 A∩B≠B” 是真命题,正确;B 中,否命题“不是矩形的四边形的两 条对角线不相等”是假命题,正确;C 中,逆命题“已知 a,b,m∈R,若 a<b,则 am2<bm2”是假命题.所以 C 错误,符合题意.D 中,因为 x=1 时,(1-1)2=0,所以 是假命题,正确.
答案:C
2.命题“若 a>b,则 2a>2b-1”的否命题为 ___________________________________________. 解析:否命题为“若¬ p,则¬ q”,则否命题为“若 a≤b,则 2a≤2b-1”. 答案:“若 a≤b,则 2a≤2b-1”
3.下列命题: ①“等边三角形三内角都为 60°”的逆命题; ②“若 k>0,则 x2+2x-k=0 有实根”的逆否命题; ③“全等三角形的面积相等”的否命题; ④“若 ab≠0,则 a≠0”的否命题; 其中真命题的序号为________. 解析:①逆命题“三内角都为 60°的三角形为等边 三角形”,真命题;②逆否命题“若 x2+2x-k=0 没有实 根,则 k≤0”,因为Δ=4+4k<0,所以 k<-1,满足 k
高二数学优质课件精选人教A版选修2-1课件1.1.3四种命题与四种命题间的相互关系
逆否命题:若一个数的平方不是非负数,则这个 数不是实数.真命题.
(2)逆命题:若两个三角形全等,则这两个三角形 等底等高.真命题.
否命题:若两个三角形不等底或不等高,则这两 个三角形不全等.真命题.
逆否命题:若两个三角形不全等,则这两个三角 形不等底或不等高.假命题.
答案:若sinα≠sinβ,则α≠β
5.把命题“当x=2时,x2-3x+2=0”写成“若p, 则q”的形式,并写出它的逆命题、否命题与逆否命题, 并判断它们的真假.
解:原命题:若x=2,则x2-3x+2=0,真命题. 逆命题:若x2-3x+2=0,则x=2,假命题. 否命题:若x≠2,则x2-3x+2≠0,假命题. 逆否命题:若x2-3x+2≠0,则x≠2,真命题.
方法 2:先判断原命题的真假. 因为 a,x 为实数,且关于 x 的不等式 x2+(2a+ 1)x+a2+2≤0 的解集非空. 所以 Δ=(2a+1)2-4(a2+2)≥0,即 4a-7≥0, 解得 a≥74.因为 a≥74,所以 a≥1, 所以原命题为真. 又因为原命题与其逆否命题等价, 所以逆否命题为真.
逆否命题 真 真 假 假
思考感悟 四种命题中真命题的个数可能为多少? 提示:由于互为逆否关系的命题同真同假,真 命题可能有 0 个,2 个或 4 个.
尝试应用
1.若x>y,则x2>y2的否命题是( ) A.若x≤y,则x2>y2 B.若x>y, 则x2<y2 C.若x≤y,则x2≤y2 D.若x<y, 则x2<y2 答案:C
方法 3:利用集合的包含关系求解. 命题 p:关于 x 的不等式 x2+(2a+1)x+a2+2≤0 有非空解集. 命题 q:a≥1. 所以 p:A={a|关于 x 的不等式 x2+(2a+1)x+ a2+2≤0 有实数解}={a|(2a+1)2-4(a2+2)≥0}= {a|a≥74}.
1.1.2 四种命题 1.1.3 四种命题间的相互关系
预习导学
课堂讲义
当堂检测
预习导学 1.1.2
四种命题1.1.3
四种命题间的相互关系
答:命题(1)的条件是命题(2)的结论,且命题(1)的结论是命题(2) 的条件. 对于命题(1)和(3).其中一个命题的条件和结论分别是另一个命
题的条件的否定和结论的否定;
对于命题(1)和(4).其中一个命题的条件和结论分别是另一个命 题的结论的否定和条件的否定.
预习导学
课堂讲义
当堂检测
预习导学 1.1.2
四种命题1.1.3
四种命题间的相互关系
2.四种命题的真假性的判断 原命题为真,它的逆命题 不一定为真 不一定为真 ;它的否命题也 .原命题为真,它的逆否命题 一定为真 .
预习导学
课堂讲义
当堂检测
课堂讲义 1.1.2
四种命题1.1.3
四种命题间的相互关系
预习导学
课堂讲义
当堂检测
1.1.2 四种命题1.1.3
四种命题间的相互关系
再见
预习导学
课堂讲义
当堂检测
2.认识四种命题之间的相互关系以及真假性之间的联系. 3.会利用逆否命题的等价性解决问题.
预习导学
课堂讲义
当堂检测
预习导学 1.1.2
[知识链接]
下列四ห้องสมุดไป่ตู้命题:
四种命题1.1.3
四种命题间的相互关系
(1)若f(x)是正弦函数,则f(x)是周期函数; (2)若f(x)是周期函数,则f(x)是正弦函数; (3)若f(x)不是正弦函数,则f(x)不是周期函数; (4)若f(x)不是周期函数,则f(x)不是正弦函数. 观察命题(1)与命题(2)(3)(4)的条件和结论之间分别有什么关系?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例2、 下列“若p,则q”形式的命题中,
哪些命题中的q是p的必要条件? (1)若 x=y,则x2=y2; (2)若x<3,则x<5; (3)若a>b,则ac>bc.
小试牛刀
类型 一 充分条件与必要条件的判断 【典型习题】 1.命题“已知n∈Z,若a=4n,则a是偶数” 中,“a是偶数”是“a=4n”的必要 条 件,“a=4n”是“a是偶数”的充分 条 件(用充分、必要填空).
当当堂堂检测检测
1、已知p:|x|=|y|,q:x=y,则p是q的什么条件?
2、已知p,q都是r的必要条件,s是r的充分条件 ,q是s的充分条件,那么: (1)Байду номын сангаас是q的什么条件? (2)p是q的什么条件?
3、若“x2 +ax+2=0”是“x=1”的必要条件, 则a= 。
4、已知p: x2 +x-6=0和q:mx+1=0,且p是q的必 要条件但不是充分条件,求实数m的值。
2.下列“若p,则q”形式的命题中:
①若lgx=0,则2x=2; 真命题
②若sinx= 1
2
,则x=
6
; 假命题
③已知n∈N+,若an=2n,则{an}是等差数列.真命题
其中,p是q的充分条件的是 ①③ ,q是p
的必要条件的是 ①③ ,p不是q的充分
条件的是 ② ,q不是p的必要条件的
是 ② .(将符合题意的所有序号都填
2.若“x=2”是“x2-2x+c=0”的充分条件,
则c= 0
.
3、是否存在实数p,使4x+p<0是x2-x-2>0的充分 条件?如果存在,求出p的取值范围;否则,说明 理由.
课堂小结
(一)这节课你收获了什么? (二)归纳总结: 1.充分条件、必要条件的概念. 2.充分条件、必要条件的判定方法主要有: ①定义法;②集合法;③等价命题法. 3.利用集合法可以解决充分条件、必要条件 中一些参数的范围问题.
四种命题间的关系
四种命题的真假性
原命题
逆命题
否命题
逆否命题
真
真
真
真
真
假
假
真
假
真
真
假
假
假
假
假
四种命题真假性之间的关系
(1)两个命题互为逆否命题,它们有 相同 的真假性;
(2)两个命题为互逆命题或互否命题,它们的真假
性 没有关系
.
学习目标: 1、结合具体实例,理解充分条件、必要
条件的意义。 2、会判断某些条件之间的关系。
4
4
5
5
4
5
例 :判断下列命题的真假。 (1)若x>a2+b2,则x>2ab 。 (2)若ab=0,则a=0。
巩固新知
例1、下列“若p,则q”形式的命题中, 哪些命题中的p是q的充分条件?
(1)若 x=1,则x2 -4x+3=0; (2)若f(x)=x,则f(x)为增函数; (3)若x为无理数,则x2为无理数 .
导学案问题: 1、例3错的多,没看清问题。 例3(3)没看见。 2、类型二1的变式训练写的x,题上是a。 3、态度不好,字迹龙飞凤舞。
问题探究
音乐欣赏:《我是一只鱼》
提问:鱼非常需要水,没了水,鱼就 无法生存,但只有水,够吗?
探究: p:“有水”;q:“鱼能生存”. 判断“若p,则q”和“若q,则p”的真假.
上)
3.“x2=2x”是“x=0”的 必要 条件 “x=0”是“x2=2x”的 充分 条件(用充 分、必要填空).
类型 二 充分条件与必要条件的应用 【典型习题】 1.若“x>1”是“x>a”的充分条件,则实 数a的取值范围是(D ) A.a>1 B.a≥1 C.a<1 D.a≤1
变式训练:若1中的“充分条件”改为“必 要条件”,则实数a的取值范围__a_≥__1___
1.2.1充分条件与必要条件
复习回顾
1.命题:一般地,我们把用语言、符号或式子表达的,可 以 判断真假 的陈述句叫做命题.
2.命题的真假:判断 为真 的语句叫真命题,判断为假 的
语句叫假命题.
3.命题的形式:在数学中,“ 若p,则q ”是命题的常见 形式,其中 p 叫做命题的 条件 ,q 叫做命题的结论.
定义新知
充分条件与必要条件
命题真假 “若 p,则 q”是真命题 “若 p,则 q”是假命题
推出关系 条件关系
P⇒ q p 是 q 的充分 条件 q 是 p 的必要 条件
P
q
p 不是 q 的充分条件 q 不是 p 的必要条件
小组
1
2
作业
任务
类型二1 例3
展示
5
5
点评
5
5
质疑
3
4
5
6
类型一1 类型一2 类型一3 类型二2