高数课件PPT-第六章 定积分的应用(选择填空)
第六节-定积分的应用PPT课件

2tan yR2y2
V 2tan
R
y
R2y2dy
0
y
o
R (x, y) x
-
练习题
1.求ysix,n y0,0x绕 x 轴和 y 轴旋转一周的旋转体 的体积. 解:由公式有 V x 0 si2x nd 2 x 0 (1 co 2 x)d s x 2 2
-
例20. 求由星形线xaco 3t,syasi3tn0t
垂直于x 轴 的截面是直角三角形, 其面积为
A(x)1(R2x2)tan(RxR)
2 利用对称性
V20 R1 2(R 2x2)tan dx
2tanR2x1x3R 2R3 tan
3 03
y
ox
R x
-
机动 目录 上页 下页 返回 结束
思考: 可否选择 y 作积分变量 ? 此时截面面积函数是什么 ?
如何用定积分表示体积 ? 提示:
方法2 利用椭圆参数方程
x a cost
y
b sin
t
则
V2 a y2dx 2
2
ab2sin3tdt
0
0
2ab2 2 1
3
4 ab2
3
特别当b =
a
时,
就得半径为a
的球体的体积
4 3
a3 .
-
机动 目录 上页 下页 返回 结束
例2. 求由曲线 y , 直x 线 及 x轴 所1 围x成的平面图形 绕 轴旋转x一周所生成的旋转体的体积.
例1 由曲线
x2 a2
y2 b2
1
所围图形绕
x
轴旋转而
转而成的椭球体的体积.
y
专升本高数定积分的应用PPT课件

面积 A [( y) ( y)]dy . c
图6.1.3
图6.1.4
例 1. 求 y sin x , y cos x , x 0, x π 所围图形的面积.
2
解 作出简图(如图 6.1.5 所示),利用微元法求面积 A
π
π
A
4 0
(cos
x
sin
x)dx
2 π
(sin
x
cos
2
2
2
因此
V
R
A(x)dx
R 1 (R2 x2 ) tandx
R
R 2
1 2
tan
R2
x
1 3
x3
R R
=
2 3
R3
tan
.
注意,此题也可以用过 y轴上的点 y作垂直于 y轴的平面截
立体所得的截面来计算.
6.1.4 用定积分求平面曲线的弧长
设 一 曲 线 yf(x )在 [a ,b ]上 具 有 一 阶 连 续 的 导 数 f'(x ), 我 们 来 计 算 从 x a 到 x b 的 一 段 弧 的 长 s 度 ( 如 图 8 . 1 . 1 0所 示 ) .
A 1
r2 ( )d .
2
图6.1.6
图6.1.7
例 4 求由曲线r 2cos 2 所围图形的面积.
解 作简图(如图 6.1.7 所示),由于图形的对称性,
只需计算S1,再 8 倍即可,点 A的幅角为0,点 O的幅角为
π ,且 由 0变到 π 时,恰好画出弧 AO.所以
4
4
π
π
S
8S1
仍采用微元法,取 x为积分变 量 , x [a,b] , 在 微 小 区 间 [x, x dx]内,用切线段 MT 近似 代替小弧段 MN ,得弧长微元为
高等数学第六章《定积分的应用》

第六章 定积分的应用一、内容提要(一)主要定义【定义】 定积分的元素法 如果(1)所求量U 是与一个变量x 的变化区间[]b a ,有关的一个整体量; (2)U 对区间[]b a ,具有可加性; (3)部分量i U ∆可表示为()i i i U f x ξ∆≈∆.则可按以下步骤计算定积分(1)选取一个变量x 或y ,并确定它的变化区间[]b a ,;(2)把区间[]b a ,分成n 个小区间, 求任一小区间[],x x dx +的部分量U ∆的近似dU .()U dU f x dx ∆≈=; (3)计算()U=baf x dx ⎰.(二)主要定理与公式根据定积分的元素法可建立一些几何和物理方面的定积分表达式. 1.平面图形面积 (1)直角坐标情形①由()(),(0),,y f x f x x a x b =≥==所围图形的面积()bas f x dx =⎰.②由()()12,,,y f x y f x x a x b ====所围图形的面积()()12 bas f x f x dx =-⎰.③由()()12,,,x y x y y c y d ϕϕ====所围图形的面积()()12dcs y y dy ϕϕ=-⎰(2)参数方程情形 由曲线l :()()x t y t ϕψ=⎧⎪⎨=⎪⎩,12t t t ≤≤,x 轴及,x a x b ==所围图形的面积 ()()21t t s t t dt ψϕ'=⎰(3)极坐标情形① 由(),,ρϕθθαθβ===所围图形的面积()212s d βαϕθθ=⎰ ② 由()()12,,,ρϕθρϕθθαθβ====所围图形的面积()()222112s d βαϕθϕθθ⎡⎤=-⎣⎦⎰ 2.体积(1)旋转体的体积① 由()0,,,y y f x x a x b ====所围图形绕x 轴旋转所得旋转体体积:()2b a V f x dx π=⎡⎤⎣⎦⎰. 当0a b ≤<时,上述曲边梯形绕y 轴旋转所得旋转体的体积: ()22bbaaV x y dx x f x dx ππ==⎰⎰.② 由(),0,,x y x y c y d ϕ====所围图形绕y 轴旋转一周形成的立体体积:()2d c V y dy πϕ=⎡⎤⎣⎦⎰ (2)平行截面面积为已知的立体的体积设以()[],A x C a b ∈表示立体Ω的过点x 且垂直于x 轴的截面面积,且立体Ω夹在平面x a x b ==与之间,则立体Ω的体积:()baV A x dx =⎰.3.平面曲线的弧长(1)光滑曲线():,l y f x a x b =≤≤的弧长为as =⎰.(2)光滑曲线()(),: ,x x t l t y y t αβ=⎧⎪≤≤⎨=⎪⎩的弧长为s βα=⎰.(3)光滑曲线():, l ρϕθαθβ=≤≤的弧长为s βαθ=⎰4.变力沿直线做功、水压力 (1)变力沿直线做功设物体在变力()F x 的作用下,沿变力的方向由x a =移到x b =,在物体的位移区间[],a b 内任一子区间[],x x dx +上功的元素为 ()dW F x dx =,全部功()baW F x dx =⎰.(2)水压力设平板铅直地放入液体中,液体的密度为ρ,平板位于液面下的深度在区间[]0,b 内任一子区间[],x x dx +上,液体深x 处的压强为p gx ρ=,压力元素()dp gx f x dx ρ=⋅. 全部压力为 ()0bp gx f x dx ρ=⋅⎰.二、典型题解析(一)填空题【例6.1】 由曲线,xxy e y e -==及直线1x =所围成图形的面积是 . 解 所求面积 ()()1112xx x x S ee dx e e e e ---=-=+=+-⎰.故应填12e e -+-. 【例6.2】 由222,82x y x y =+=所围成图形(见图6.1)面积A (上半平面部分),则A = .解 两曲线22228x y x y ⎧=⎪⎨⎪+=⎩的交点为()()2,2,2,2-.所求的面积为222)2x A dx -=⎰328226x ⎫=-⎪⎭423π=+. 故应填423π+. 【例6.3】 曲线sin 02y x x π⎛⎫=≤≤⎪⎝⎭与直线,02x y π==围成一个平面图形,此平面图形绕x 轴旋转产生的旋转体的体积 .解 2220s i n 4V x d x πππ==⎰. 故应填24π.【例6.4】 阿基米德螺线()0aeλθρλ=>从0θ=到θα=一段弧长s = .解 0s αθ=⎰ ()01eλαθλ==-⎰.)1eλα-.【例6.5】 曲线322y x x x =-++与x 轴所围成的图形的面积A = . 解 函数322(2)(1)y x x x x x x =-++=--+与x 轴的交点为()()()1,0,0,02,0-.()()023232122A x x x dx x x x dx -=--+++-++⎰⎰3712=. (二)选择题图6.122x y =228x y +=【例6.6】 曲线x y e =与其过原点的切线及y 轴所围成的图形(见图6.2)面积为[ ](A ) ()1x e ex dx -⎰; (B )()1ln ln ey y y dy -⎰;(C )()1e x x e xe dx -⎰; (D )()1ln ln y y y dy -⎰.解 曲线x y e =在任意点(),x y 的切线方程为()x x Y e e X x -=-,由于切线过原点,可以求出1x =,于是过原点的切线方程为Y eX =.所求平面图形的面积等于()1xeex dx -⎰. 故选择A.【例6.7】 由曲线()()12y x x x =--与x 轴围成的平面图形的面积为 [ ]. (A )()()()()12011212x x x dx x x x dx -----⎰⎰;(B )()()212x x x dx ---⎰;(C )()()()()12011212x x x dx x x x dx ---+--⎰⎰;(D )()()212x x x dx --⎰.解 在区间[]0,1,0y <,在区间[]1,2,0y >, 所以 ()()112S x x x dx =---⎰()()2112x x x dx +--⎰.故选择C.【例 6.8】 曲线cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭与x 轴围成的平面图形绕x 轴旋转一周而成的旋转体体积为 [ ](A )2π (B )π (C )212π (D )2π. 解 2222cos2V xdx ππππ-==⎰.故选择C.图6.2【例6.9】 双纽线()22222x yx y +=-围成的平面图形的面积为 [ ](A )402cos 2d πθθ⎰; (B )404cos 2d πθθ⎰;(C)2θ; (D )()2401cos 22d πθθ⎰.解 双纽线的极坐标方程为2cos 2 r θ=,(,44ππθ-≤≤35)44ππθ≤≤由对称性 2244001422S r d r d ππθθ=⨯=⎰⎰402cos 2d πθθ=⎰. 故选择A.【例6.10】 曲线()2ln 1y x =-上102x ≤≤的一段弧长l = [ ].(A); (B )1222011x dx x +-⎰; (C); (D ). 解 曲线是直角坐标表示的曲线,采用公式al =⎰.由曲线方程()2ln 1y x =-可得210x ->,221x y x -'=-,则1222011x l dx x +==-⎰. 故选择B .(三)非客观题 1. 平面图形的面积解题方法 (1)先画出草图;(2)求出交点;(3)选取积分变量、区间,找出面积元素,然后积分. (1)直角坐标情形【例6.11】求曲线22,ax y ay x ==所围(见图6.3)的面积. 解 如图所示,交点为()(),00,0A a O 及.图6.32ax y =2y ax =所围的面积()23232002)333aax x aS dx ax a aa ⎡⎤==-=⎢⎥⎣⎦⎰. 【例6.12】 求介于由曲线2121,2+==x y x y 和x 轴围成的平面图形(见图6.4)的面积.解 (法一)设此面积为S ,有12101111()d ()d 2222S x x x x x -=+++-⎰⎰0122310()()42423x x x x x -=+++-23=(法二)13122002(21)]d ()3S y y y y y =-=-+⎰23=.【例6.12】 求0,2x x π==之间由曲线sin y x =和cos y x =所围成的图形(见图6.5)的面积. 解 20sin cos A x x dx π=-⎰()40cos sin x x dx π=-⎰()544sin cos x x dx ππ+-⎰()254cos sin x x dx ππ+-⎰=【例6.13】 求抛物线243y x x =-+-及其在点()0,3-和()3,0处的切线所围成的图形(见图6.6)的面积.解 由24y x '=-+得过点()0,3-和()3,0的切线方程为1:43l y x =-和2:26l y x =-+,图 6.4图 6.24π54π2π图 6.5图 6.6且可得12,l l 交点坐标为3,32⎛⎫⎪⎝⎭,则所围图形的面积为()32204343A x x x dx ⎡⎤=---+-⎣⎦⎰()32322643x x x dx ⎡⎤+-+--+-⎣⎦⎰94=. 【例6.14】求由曲线322,0a y y a x==+所围的面积. 解 所求面积为33222202lim b b a dx S dx a dx a x a x+∞-∞→+∞==++⎰⎰ 3212limarctan b a b a aπ→+∞==. 【例6.15】确定常数k ,使曲线2y x =与直线,2,0x k x k y ==+=所围成图形的面积最小. 解 选x 为积分变量,变化区间为[],2k k +,面积元素2dA x dx =,所求面积为()()22 k kA k x dx k +=-∞<<+∞⎰,要求k 使()A k 取最小值,()A k 是积分上(下)限函数,故()()22241dA k k k dk=+-=+, 令0dA dk =,解得驻点1k =-,因为2240d Adk=>,则1k =-为()A k 在(),-∞+∞内唯一极小值点,即当1k =-时,所围成图形的面积最小. (2)参数方程情形【例6.16】求摆线()()sin ,1cos x a t t y a t =-=-()020t y π≤≤=及所围的面积. 解 所求面积为20(1cos )(1cos )S a t a t dt π=-⋅-⎰图 6.72220(12cos cos )a t t dt π=-+⎰221cos 2(12cos )2tat dt π+=-+⎰20312sin sin 224t t t π⎡⎤=-+⎢⎥⎣⎦23a π=【例6.17】求椭圆渐趋线()2233222cos ,sin c c x t y t c a b a b===-所围面积. 解 所求面积为223324sin cos c c S t t dt b a π'⎛⎫= ⎪⎝⎭⎰22322034sin cos sin c c t t tdt b aπ=⎰4422012sin (1sin )c t t dt abπ=--⎰438c abπ=.(3)极坐标情形【例6.18】求曲线2(2cos )r a θ=+所围成图形(见图6.7)的面积. 解 所求面积为()201222cos 2S a d πθθ=⋅+⎡⎤⎣⎦⎰ ()220444cos cos a d πθθθ=++⎰201cos 2444cos 2a d πθθθ+⎛⎫=++ ⎪⎝⎭⎰209sin 244sin 24a πθθθ⎡⎤=++⎢⎥⎣⎦ 218a π=【例6.19】 求心脏线1cos r θ=+与圆3cos r θ=公共部分(见图6.8)的面积. 解 由3cos 1cos θθ=+得交点坐标为3,23π⎛⎫± ⎪⎝⎭,()2232031121cos (3cos )22S d d πππθθθθ⎡⎤=++⎢⎥⎣⎦⎰⎰54π=. 【例6.20】 求由双纽线()()222222x ya x y +=-所围成且在圆周22212x y a +=内部的图形(见图6.9)的面积.解将r =代入方程22cos2r a θ=中得6πθ=.令0r =代入22cos 2r a θ=中得4πθ=,故 226410611cos 222A d a d πππθθθ=+⎰⎰ 224611sin 22264a a πππθ=⋅⋅+2(633)24a π=+-, 214(66a A A π∴==+-.【例6.21】求由曲线2cos2r r θθ==及所围成的图形的公共部分(见图6.10)的面积.解 解方程组2cos 2r r θθ⎧=⎪⎨=⎪⎩,得两曲线的交点坐标为26π⎛⎫ ⎪ ⎪⎝⎭. 所求的面积为1r =+图 6.9)2646112cos222S d dπππθθθθ=+⎰⎰[]64061112sin2sin2242πππθθθ⎡⎤=-+⎢⎥⎣⎦1626ππ=+=.2.体积的计算(1)旋转体的体积【例6.22】将抛物线24y ax=及直线x x=()x>所围成的图形绕x轴旋转,计算所得的旋转抛物体的体积.解()2,dV f x dxπ=其中()f x=所求体积()00222002x xV f x dx dx axπππ===⎰⎰.【例6.23】求曲线22,0y x x y=-=所围图形分别绕ox轴,oy轴旋转所成旋转体的体积.解所求体积为()22216215xV x x dxππ=-=⎰;()228223yV x x x dxππ=-=⎰。
六章定积分应用ppt课件

WF(ba)
F
a
b
若F 为变力,力对
物体所作的功W=?
例1 带电量为q0与q1的正电荷分别放在空间两点, 求当q1沿a与b连线从a移到b时电场力所作的功。
解: 如图建立坐标系:在上述移动过程中,电场
对q1作用力是变化的。
(i)取r为积分变量,则 r[a,b] q0
q1
(ii)相应于[a,b]上任一小区间[r,r+dr] o a
br
的功元素
dW Fdrkq0q1dr
(iii)所求功
r2
W
b
k
a
qr0q21dr
kq0q1
(1) r
b a
kq0q1(1ab1)
例2 在底面积为S的圆柱形容器中盛有一定量的气体。在等 温条件下,由于气体膨胀,把容器中的一个活塞(面积为S) 从点a推移至b,计算在移动过程中气体压力所作的功。
解: 如图建立坐标系,活塞位置可用坐标x表示。
引力
问题的提出:从物理学知道,质量分别为m1、m2,相
距为r的两质点间的引力大小为
F Gmr1m2 2
其中G为引力系数,引力的方向沿着两质点的连线。
如何计算一根
细棒对一个质点的 引力F=?
r
o
m1
m2 x
例6 设有一长度为l、线密度为的均匀细棒,在
其中垂线上距棒a单位处有一质量为m 的质点M。
试计算该棒对质点M的引力。
x
问题的解决方法: 定积分元素法
以液面为y轴,x轴铅直向下。
设平板铅直位于液体中形状如图。
o
距离液面x、高为dx、宽为f(x) 的
矩形平板所受压力的近似值,即压力 元素为
a x x+dx
高等数学第六章第二节定积分在几何学上的应用课件.ppt

解:
cos x 0,
2
x
2
s
2
2
2 2 0
1 y2 dx 1 ( cos x)2 dx
2 2
2 cos x dx
0
2
2
2
2
sin
x 2
2
0
4
的弧长.
例11. 计算摆线
一拱
的弧长 .
y
解: ds
(dd
x t
)2
(
d d
y t
)
2
d
t
o
a2 (1 cos t)2 a2 sin2 t d t
1 y2 dx
因此所求弧长
s b 1 y2 dx a
b
a
1 f 2(x) dx
y
y f (x)
ds
o a xxdxb x
(2) 曲线弧由参数方程给出:
弧长元素(弧微分) :
ds (dx)2 (dy)2
2 (t) 2 (t) dt
因此所求弧长
s
2 (t) 2 (t) d t
(3) 曲线弧由极坐标方程给出:
y b
o x ax
则 V 2 a y2 dx 0
(利用对称性)
2
b2 a2
a
(a
2
x2
)
dx
0
2
b2 a2
a2 x
1 3
x3
a 0
4 ab2
3
方法2 利用椭圆参数方程
则 V 20a y2 dx 2 ab2 sin3t d t
2 ab2 2 1
3
4 ab2
3
特别当b
=
a
《高中定积分的应用》课件

定积分在计算曲线形状的质量分布方面具有广泛应用,有助于理解物体的重心和转动惯量等物理量。
详细描述
对于曲线形状的物体,我们可以通过定积分计算其质量分布,进而求出物体的重心和转动惯量。这对于分析物体 的稳定性和运动特性具有重要意义。
电场强度与电势的计算
总结词
在电场分析中,定积分用于计算电场强度和电势,有助于深入理解电场的性质和分布。
详细描述
在解决涉及多个函数的定积分问题时,需要仔细分析这 些函数之间的关系,如一个函数可能对另一个函数求导 或积分,或者两个函数之间存在特定的关系等。
复杂几何形状的分析与计算
总结词
对复杂几何形状的深入分析是解决问题的必要步骤。
详细描述
在解决涉及复杂几何形状的定积分问题时,需要深入理 解几何形状的特点,如面积、体积等,并能够运用适当 的公式进行计算。同时,还需要理解如何将复杂的几何 形状分解为更简单的部分,以便于解决定积分问题。
详细描述
在经济学中,边际分析通过计算边际成本、 边际收益和边际利润等指标,帮助企业决策 者判断生产、定价和销售等方面的最优策略 。弹性分析则通过计算需求价格弹性、供给 价格弹性等指标,分析市场价格的变动对需 求和供给的影响,进而影响市场均衡和资源 配置。
成本与收益计算
总结词
成本与收益计算是经济学中重要的财务分析 工具,用于评估企业的经营绩效和投资回报 。
THANK YOU
定积分的几何意义
总结词
定积分的几何意义有助于直观理解定积分的应用。
详细描述
定积分的几何意义表示一个曲线下的面积。通过计算定积分,可以求出曲线下某 个区间上的面积,从而解决一些实际问题,如求物体的质量、速度等。
定积分的计算方法
高等数学-定积分及其应用ppt课件.ppt
在变速直线运动中, 已知位置函数
与速度函数
之间有关系:
物体在时间间隔
内经过的路程为
这种积分与原函数的关系在一定条件下具有普遍性 .
5.3 定积分的计算
则积分上限函数
证:
则有
定理1. 若
5.3.1 牛顿 – 莱布尼兹公式
说明:
1) 定理 1 证明了连续函数的原函数是存在的.
2) 变限积分求导:
5.6.1 广义积分
引例. 曲线
和直线
及 x 轴所围成的开口曲
边梯形的面积
可记作
其含义可理解为
1 连续函数在无限区间上的积分
定义1. 设
若
存在 ,
则称此极限为 f (x) 在区间 的广义积分,
记作
这时称广义积分
收敛 ;
如果上述极限不存在,
就称广义积分
发散 .
类似地 , 若
公式, 复化求积公式等,
并有现成的数学软件可供调用.
性质1 常数因子可提到积分号外 性质2 函数代数和的积分等于它们积分的代数和。
5.2 定积分的简单性质
性质3 若在区间 [ a , b ]上 f (x)≡K,则 性质4 定积分的区间可加性 若 c 是 [ a , b ] 内的任一点,则
的面积 .
解:
例3. 汽车以每小时 36 km 的速度行驶 ,
速停车,
解: 设开始刹车时刻为
则此时刻汽车速度
刹车后汽车减速行驶 , 其速度为
当汽车停住时,
即
得
故在这段时间内汽车所走的距离为
刹车,
问从开始刹
到某处需要减
设汽车以等加速度
车到停车走了多少距离?
定积分及其应用高数(共68张PPT)
例1 计算广义积分
例(2)4参数计方算程以所下(表定2示积)的分函. 数(t)在 [, ]或 ([,]上 )具有连续导数,
〔2〕无界函数的广义积分
R[a,b], 且其值域 奇、偶函数在对称区间上的定积分性质
变上限的定积分函数的性质
〔1〕无穷限的广义积分
那么有 〔2〕定积分的分部积分法
0
0
1
1(xx3)dx2(x3x)dx5
0
1
2
例3 计算 si3n xsi5n xd.x 0 3
解 f(x)si3x n si5x ncoxssinx2
si3nxsi5n xdx
coxssin x2 3dx
0
0
3
2coxssinx2dx
0
coxssinx23dx
3
2 sinx2dsinx
A1 A2
A3 A4
a bf(x )d x A 1 A 2A 3 A 4
2.定积分的性质
b
b
b
性质1 a [f(x ) g (x )d ] x af(x ) d x a g (x ) dx
性质2
b
b
a kf ( x)dx ka f ( x)dx
( k 为常数)
性质3 〔区间可加性〕
b
c
b
af(x)d x af(x)d x cf(x)dx
0
这个公式就是说: 周期函数在任何长为一周期的
区间上的定积分都相等.
例1 设
f(x)52x
0x1, 求 1x2
2
0 f (x)d.x
解2
1
2
0f(x )d x 0f(x )d x 1f(x )dx
定积分及其应用概要精品PPT课件
若当 0 时, Sn 有确定的极限值 I, 且 I 与区间[a, b]的
分法和 i 的取法无关, 则称函数ƒ(x)在区间[a, b]上可积,
并称此极限值I为ƒ(x)在区间[a, b]上的定积分, 记为
b
f (x)dx
b
a
n
即
a
f (x)dx I
lim 0 i1
f (i )xi
其中ƒ(x)为被积函数, ƒ(x)d x称为被积表达式, x 称为积分
则该窄矩形的面积 f (i )xi
近似等于 Si , 即
f (i )xi Si
III.求和、取极限
为了从近似过度到精确, 将所有的窄矩形的面积相加,
n
n
就得曲边梯形的面积的近似值, 即 S Si f (i )xi
i 1
i 1
记各小区间的最大长度为 max{x1, x2 , , xn}
当分点数n无限增大且各小区间的最大长度 m1iaxn {xi } 0
从而可用下述方法和步骤来求曲边梯形的面积:
I.化整为零(或分割)——任意划分
(如右图)用分点
y
y=ƒ(x)
a x0 x1 x2 xn1 xn b
将区间[a,b]任意地划分为n个小区间
[x0 , x1 ],[x1, x2 ], ,[xn1, xn ],
x2
o a x0 x1
xi1 xi xi
来说是一个变量, 其最大值与最小值之差较大; 但从区间
[a, b]的一个局部(小区间)来看, 它也是一个变量;
但因ƒ(x)连续, 从而当Δ x →0时, Δy→0, y
故可将此区间的高近似看为一个常量,
y=ƒ(x)
A
C
B
66定积分的应用 共15页PPT资料
8
(2) 总收益函数
已知边际收益函数 R (Q ), 则产品未销售前的收益 R0 R(0)0,
从而总收益函数
Q
R(Q)0 R'(Q)dQ.
(3) 总利润函数
总利润函数 L ( Q ) 为 L (Q )R (Q )C (Q ).
例7 设某种产品生产Q单位时的边际成本和边际收益分别为 C(Q) 3 1Q 与 R(Q)6Q 2
1 .
3 练习:P184 ,1(1).
2019/9/18
微积分II 第六章定积分
4
1,(1)由曲线 y x2 3在区间[0,1]上的曲边梯形的面积
解:作图
S 1(x2 3)dx 0
(1 3
x3
3x)
|10
(1 3) 3
10 . 3
y
3
0
1x
2019/9/18
微积分II 第六章定积分
1/3
x
1
(3xln|x|)|1 1/3(3x1 2x2)|1 3
4ln3.
2019/9/18
微积分II 第六章定积分7Βιβλιοθήκη 二、定积分在经济分析中的应用
1.已知边际函数求总函数.
在经济问题中, 经常都要涉及到各种经济量的总量. 这些总量,
在一定条件下, 也可用定积分来进行计算.
由牛顿——莱布尼兹公式知:若 f ( x ) 连续,则
x2
x 0
y
, 0
x 1 y 1
即这两条抛物线的交点为 (0, 0) 及
(1, 1). 从而知道所求图形在
直线 x = 0 及 x = 1 之间.
则
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 定积分的应用 A 卷填空选择答案
1. 曲线 y x3 x2 2x 与 x 轴围成的图形的面积为 37 。 12
解: 函数的草图如下图所示
-
0
2
1
x3 x 2 2x 0 得 x1 1, x2 0, x3 2 ,
S
2
| y | dx =
2 | x3 x2 2x | dx =
x0 e2
,所以
S
e2 | e2 x | dx
e2
|1 ln x
|
dx
1
e2
e。
0
e
2
5. 曲线 y ln 1 x2 上相应于 0 x 1 的一段弧长为 ln 3 1 。
2
2
解: s
1 2 0
1
1 ( y)2 dx = 2 0
1
( 2x 1 x2
)2
dx
ln
3
1 2
。
x(x 1)(2 x)dx
2 x(x 1)(2 x)dx 。
0
1
3. 选 B
设函数 y x02 2x0 (x x0 ) 将(1,0)代入得 x0 0,2 ,切线方程为 y 4x 4
1 x2dx 0
2 x2
1
4x
4dx
1x3 3
|10
(1 3
x3
2x2
4x)12
2 3
。
另: 2 x2dx 1 1 4 2 。
0
2h 2 6
6
4. 从原点向曲线 y 1 ln x 作切线,由曲线、切线及 x 轴所围成的平面图形的
面积为 1 e2 e 。 2
解:
设 切 线 与 曲 线 的 交 点 为 (x0 , y0 ) , y0 1 ln x0 , 此 点 处 切 线 方 程 为
y
y0
1 x0
(x
x0 )
,通过切线过原点得
0 (x3 x2 2x)dx +
2
(
x
3
x2
2x)dx
1
1
1
0
= 5 8 37 。 12 3 12
x t3 1
2.
曲线
L
:
y
3 2
t2
0
1
t
1
的弧长为
2
2 1。
解: s
1 0
(x)2 ( y)2 dt =
1 0
(3t 2 )2 (3t)2 dt =
1
3t
0
t 2 1dt = (t 2 1)3/ 2 |10
|10
xe x
|10
e x
|10
e 1。 2
4. 曲线 y x 3 t 2 的全长为 3 4 。
3
3
解: 3 1 f 2 (x)dx 3 4 x2 dx 2 3
-3
-3
0
x 2sint, x 0,t 0; x 3,t , 3
4 x2 dx ,
上式 2
3 2 cost 2 costdt
0
4
3 1 cos 2tdt
0
4(t
1 2
sin
2t
)
3 0
3 4 。 3
5. 横截面为 S ,深为 h 的水池装满水,把水全部抽到高为 H 的水塔上,所作功
为
h
S (H
h
y)dy
。
0
解:建立坐标系,箭头朝上,选取水池深度为积分变量,切片[y,y+dy],做功元素为
y f (a) f (b) f (a) (x a) 在 曲 线 的 上 方 , 即 得 ba
I2 =
b
(
f
(b)
f
(a)
(x
a)
f
(a))dx =
1
(
f
(a)
f
(b))(b
a) >
a ba
2
b a
f
(x)dx
I1
;
将 f (x) 在 a b 处 具 有 二 阶 导 数 , 展 成 二 阶 泰 勒 公 式 2
=
I3
,故
I3 I1 I2 。
4. 选 A
F 0 Kmdx 。
l (a x)2
5. 选 D
r
e
,
0,
0
,
x y
r r
cos sin
e e
cos sin
,
s (x)2 ( y)2 = e 1 2 d 。
0
0
B 卷填空选择答案
一、填空题
1.
曲线
y
x 1 x2ቤተ መጻሕፍቲ ባይዱ
绕
x
轴旋转一周所得旋转体的体积为
V 2
。
解:
0
(1
x x2
)2
dx
2
0
d (1 x2 ) (1 x 2 )2
2
1 1 x2
|0
2
。
2. 界于 x 0, x 2 之间由曲线 y sin x, y cos x 所围图形的面积 S 4 2 。
解: A
4 (cos x sin x)dx
0
5
4
(sin x
cos x)dx
2
5 (cos x sin x)dx 4
2。
4
4
3. 曲线 y xex 与直线 y ex 所围成的平面图形的面积为 1 e 1 。 2
解: x 0, xe xex;0 x 1, xe xex;x 1, xe xex
1
(
xe
xe
x
)dx
0
e x2 2
f (x) f ( a b) f ( a b)(x a b) f ( )(x a b)2 f ( a b) f ( a b)(x a b)
2
2
2
2
2
2
2
所 以
b
f (x)dx >
a
b
(
f
(a
b)
f
( a
b)(x
a
b))dx
a
2
2
2
=
f ( a b)(b a) 2
0
2
3
4. 选 B
b
(m
g
(
x))
2
dx
b
(m
f
( x)) 2 dx
b
[2m
f
(x)
g(x)][ f
(x)
g(x)]dx 。
a
a
a
5. 选 A
设 L1 为曲线 y sin x 的一个周期的弧长, L2 为椭圆 2x2 y2 2 的周长,显然
= 2 2 1。
3. 一铅直倒立的等腰三角形水闸,其底为 a 米,高为 h 米,且底与水面平齐,水
的比重为 ,则水闸所受压力为 ah2 。 6
解:
此 时 三 角 形 的 腰 的 直 线 方 程 为 y a xa , 由 元 素 法 得 2h 2
P h 2gx( a x a )dx = 1 gah2 ,其中 g ,所以 P 1 ah2 。
二、选择题
1. 选 D
e
S | y | dx =
e
| ln x | dx =
1
( ln x)dx +
e
ln xdx = 2
1 e1
。
e1
e1
e1
1
2. 选 B
V
y 2dx
sin3
xdx =
4
。
0
0
3
3. 选 C
因 为 f x 0 , 所 以 在 区 间 [a,b] 内 是 上 凹 的 , 端 点 连 接 的 弦
dW S(H h y)dy ,所以W
h
S(H
h
y)dy
。
0
二、选择题
1. 选 D
由于 y x 1 在 x 1处取极小值,所以可得 y x 1 y 2, x 2 所围图形面积为
x
x
A 2 (x 1 2)dx 。
1
x
2. 选 C
函数的草图如下图所示
0
1
2
图形面积为
1