6.2_实数第一课时
6.2实数-实数的概念及分类-教案

第六章 实数6.2实数第1课时 实数的概念及分类一、教学目标1.理解并掌握无理数的概念,会判定一个数是不是无理数;2.理解实数的概念,会把实数进行分类.二、教学重点及难点重点:理解并掌握无理数的概念,会判定一个数是不是无理数.难点:理解实数的概念,会把实数进行分类.三、教学用具多媒体教室四、相关资料微课,动画.五、教学过程【情景引入】1.我们知道有理数包括整数和分数,利用计算器把下列分数写成小数的形式,它们有什么特征?.119591144273532251);();();();()(答案:(1)2.5;(2)-0.6;(3)6.75;(4)1.2;(5)0.81.2.整数能写成小数的形式吗? 3可以看成是3.0吗?答案:3=3.0.【探究新知】根据以上问题我们可以得出:1.任何分数都可以化成有限小数或无限循环小数的形式.2.任何一个有理数都可以写成有限小数或无限循环小数的形式.反过来,任何有限小数或无限循环小数也都是有理数.即:小数形式的有理数包括有限小数或无限循环小数两类.3.任何有理数均可写成分数的形式(整数可看作是分母为1的分数),也就是说有理数总可以写成mn (m 、n 是整数,且m ≠ 0)的形式.如:212=,5.021=. 【合作探究】活动一:探究无理数.问题1:2是一个有理数吗?解析:∵1²=1, 2²=4,∴1 <2< 2,∵1.4²=1.96, 1.5²=2.25,∴1.4 <2< 1.5,∵1.41²=1.9881, 1.42²=2.0164∴1.41 <2< 1.42,∵1.414²=1.9881, 1.415²=2.002225∴1.414 <2< 1.415 ……2=1.414213562373…总结1:(1)我们把这种无限且不循环的小数叫做无理数.开不尽方的数都是无理数.像7、3、12-这样的数是无理数.注意:带根号的数不一定是无理数.如25=5,25是有理数.(2)有一定的规律,但不循环的无限小数都是无理数.例如:0.1010010001…(两个1之间依次多1个0)-168.3232232223…(两个3之间依次多1个2)0.12345678910111213 …(小数部分有相继的正整数组成)问题2:π是无理数吗?含π的一些数是无理数吗?解析:π=3.14159265...它们都是无限不循环小数,是无理数.总结2:常见的无理数的三种形式:(1)含π的一些数;(2)开不尽方的数;(3)有规律但不循环的数,如1.010 010 001 000 01…总结3:无理数也像有理数一样广泛存在着. 无理数也有正负之分,例如:2、-3.活动二:探究实数的分类.问题1:(1)你还记得有理数的分类吗?分类的基本原则是什么?⎩⎨⎧分数整数有理数, ⎪⎩⎪⎨⎧负有理数正有理数有理数0分类的原则:不重不漏.问题2:你能对我们学过的数进行合理的分类吗?(1)(2)总结4:有理数和无理数统称为实数.设计意图:设置问题让学生通过自主练习、合作探究等方法自主总结出关于有理数、无理数的定义和实数的概念及分类等知识点,在探究的过程中加深了学生对重要知识点的理解与记忆.【新知应用】1.在下列实数中:157,3.14,0,9,π,3,0.1010010001…,无理数有( ) A .1个 B .2个 C .3个 D .4个解:根据无理数的定义可以知道,上述实数中是无理数的有:π,3,0.1010010001….故选C.2.设n 为正整数,且n <65<n +1,则n 的值为( ).A .5B .6C .7D .8解:根据特殊有理数找出最接近的完全平方数,问题可得到解决.∵64<65<81,∴8<65<9.∵n <65<n +1,∴n =8.故选D .设计意图:促进学生在练习的过程中熟练掌握有理数和无理数的概念,加深学生对实数的理解.【随堂检测】1.把下列各数分别填到相应的集合内:-3.6,27,4,5,3-7,0,π2,-3125,227,3.14,0.10100…. (1)有理数集合{ …};(2)无理数集合{ …};(3)整数集合{ …};(4)负实数集合{ …}.解:(1)有理数集合{-3.6,4,5,0,-3125,227,3.14,…}; (2)无理数集合{27,3-7,π2,0.10100…,…}; (3)整数集合{4,5,0,-3125,…};(4)负实数集合{-3.6,3-7,-3125,…}.2.判断.(1)实数不是有理数就是无理数.(√)(2)无理数都是无限不循环小数.(√)(3)无理数都是无限小数.(√)(4)带根号的数都是无理数.(×)(5)无理数一定都带根号.(×)(6)两个无理数之积不一定是无理数.(√)设计意图:针对本节课学习的内容进行巩固,让学生在练习的过程中熟练掌握实数的性质及分类.六、课堂小结本节课主要学习了哪些知识?1.什么是有理数?任何有限小数或无限循环小数也都是有理数.2.什么是无理数?无限且不循环的小数叫做无理数.3.实数的概念及分类.有理数和无理数统称为实数.设计意图:通过问题的设置将本节课所学的知识点进行集中的梳理,归纳总结出本节课的重点知识.七、板书设计第1课时实数的概念及分类1.有理数与无理数2.实数的概念3.实数的分类。
6.2.1实数.2.1实数课件

π3 3 2 10
2 2 1.121121112
实数
四、例题分析 深入探究
沪沪科科版版数数学学学学科科九七年年级级上下册册第第262章第26节第12课时
(1)下列含有根号的数都是无理数吗?
3,3 4, 64, 10, 3 8, 2 2
结论:含有根号的数,不一定是无理数。 (含根号的数中,开方开不尽的数是无理数,
0,1,3,1, 2, 1 ,1 ,0.4, 0.25, 23
3.14,π , 3,3 2, 64, 10, 3 8, 2 , 1.2121121112 。
2
实数
有理数
无理数
0,1,3, 1, 2, 1 ,1 ,
23 0.4, 0.25, 3.14, 64, 3 8,
正有理数
有理数零
实数
负有理数
无理数负正无无理理数数
有限小数或无限循环小数(分数)
无限不循环小数
实数
沪沪科科版版数数学学学学科科九七年年级级上下册册第第262章第26节第12课时
一师一优课教学信息化应用大赛
沪科版数学学科七年级下册第6章第2节第1课时
实数
淮北市相山区钟楼中学
朱格俊
实数
沪科版数学学科七年级下册第6章第2节第1课时
一、知识回顾 师生互动 二、创设情境 引入新课 三、师生合作 探究新知 四、例题分析 深入探究 五、展示才华 练习提升 六、本课小结 七、作业布置
实数
实数
二、创设情境 引入新课
沪沪科科版版数数学学学学科科九七年年级级上下册册第第262章第26节第12课时
阅读课文P9《思考》的内容,思考问题:
问题1: 图1中有面积为1,4,9的格点正方形吗? 分别有几个?边长各是多少?
实数完整版课件

实数完整版课件一、教学内容1. 实数的定义与分类:有理数和无理数。
2. 实数的性质:实数的加法、减法、乘法、除法运算规则。
3. 实数的运算律:交换律、结合律、分配律。
4. 实数与数的比较:实数的大小比较、实数的绝对值。
二、教学目标1. 让学生掌握实数的定义与分类,理解实数的概念。
2. 让学生掌握实数的性质和运算律,能够熟练进行实数的运算。
3. 培养学生运用实数解决实际问题的能力。
三、教学难点与重点1. 教学难点:实数的分类,特别是无理数的概念。
2. 教学重点:实数的性质,实数的运算律。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。
2. 学具:教材、笔记本、文具。
五、教学过程1. 实践情景引入:通过生活实例,如购物时找零钱,引入实数的概念。
2. 知识讲解:讲解实数的定义与分类,重点讲解无理数的概念。
3. 例题讲解:举例子说明实数的性质和运算律的应用。
4. 随堂练习:让学生现场进行实数的运算,巩固所学知识。
5. 板书设计:列出实数的性质和运算律,方便学生记忆。
6. 作业设计:布置有关实数的运算题目,巩固所学知识。
六、作业设计(1)2 + 3 × (4) ÷ 2(2)( 3 )^2 × 3 ÷ ( 6 )(3)√9 √162. 答案:(1)2 + 3 × (4) ÷ 2 = 8(2)( 3 )^2 × 3 ÷ ( 6 ) = 3(3)√9 √16 = 3 4 = 1七、板书设计实数的性质与运算律:性质:1. 加法交换律2. 加法结合律3. 乘法交换律4. 乘法结合律5. 分配律运算律:1. 交换律2. 结合律3. 分配律八、课后反思及拓展延伸本节课通过生活实例引入实数的概念,让学生能够理解实数的重要性。
通过讲解实数的性质和运算律,让学生能够熟练进行实数的运算。
在作业设计中,布置了有关实数的运算题目,让学生能够巩固所学知识。
《实数》精品课件精品公开课

《实数》精品课件精品公开课一、教学内容本节课选自《数学》八年级下册教材第五章“实数”的第一节“实数的概念与性质”。
详细内容包括:实数的定义与分类、实数与数轴的关系、实数的性质(包括大小比较、运算律等)。
二、教学目标1. 理解实数的定义,掌握实数的分类,能将实数与数轴上的点一一对应。
2. 掌握实数的大小比较方法,了解实数的运算律,并能应用于实际计算。
3. 培养学生的数感和逻辑思维能力,提高解决实际问题的能力。
三、教学难点与重点教学难点:实数的性质及其在数轴上的应用。
教学重点:实数的定义与分类,实数的大小比较和运算。
四、教具与学具准备1. 教具:多媒体课件、黑板、实数教学挂图。
2. 学具:直尺、圆规、练习本、铅笔。
五、教学过程1. 实践情景引入(5分钟)通过播放一段关于温度计的视频,引导学生关注温度计上的实数,引出实数的概念。
2. 新课导入(15分钟)(1)讲解实数的定义与分类,让学生了解实数包括有理数和无理数。
(2)通过数轴上点的移动,让学生理解实数与数轴的关系。
3. 例题讲解(20分钟)讲解实数的大小比较、实数的运算等性质,结合例题进行分析。
4. 随堂练习(10分钟)让学生完成教材上的练习题,巩固所学知识。
六、板书设计1. 实数的定义与分类2. 实数与数轴的关系3. 实数的性质① 大小比较② 运算律七、作业设计1. 作业题目:(2)比较下列各组实数的大小:2. 答案:(1)实数:有理数、无理数;不是实数:虚数。
(2)根据实数的大小比较法则进行判断。
(3)根据实数的运算规律进行计算。
八、课后反思及拓展延伸本节课通过实践情景引入,让学生了解实数在生活中的应用,激发学生的学习兴趣。
在讲解实数的性质时,结合例题进行分析,让学生掌握实数的运算方法。
课后,教师应关注学生对实数概念的理解,加强个别辅导,提高学生的数学素养。
拓展延伸方面,可以引导学生研究实数在实际问题中的应用,如物理、化学等领域的计算问题。
重点和难点解析1. 实数的定义与分类2. 实数与数轴的关系3. 实数的大小比较方法4. 实数的运算规律5. 教学过程中的实践情景引入6. 作业设计中的题目难度与答案解析一、实数的定义与分类实数的定义:实数包括有理数和无理数,有理数是可以表示为两个整数之比的数,无理数则不能表示为两个整数之比。
沪科版初中数学七年级下册《6.2实数》课堂教学课件 (4)

中小学精品教学资源 中小学精品教学资源
中小学精品教学资源 中小学精品教学资源
中小学精品教学资源 中小学精品教学资源
实数
学习目标 (1)了解无理数和实数的概念 (2)知道实数和数轴上的点一一对应 (3)会求实数的相反数与绝对值。
把下列各数填入相应的集合内:
- 2 , 3 ,0 , 47 , 9 ,- 3 , 11 , 5 8 11 5 90 9
5.875,
5
8
9
•• 11
•5
•
0.81, 0.12, 0.5
11
90
9
事实上,任何一个有理数都可以写成有限小数 或无限循环小数.
反过来,任何有限小数或无限循环小数也都 是有理数.
、 2 是有理数吗? 、 2 是无理数
无限不循环的小数 ---- 叫做无理数.
如: 3, 3 7 都是无理数 。
(1) 你能举出一些无理数吗? (2)每个有理数都可以用数轴上的点表示,那么无理
数是否也可以用数轴上的点来表示呢?如果可以
你能在数轴上找到表示 、 2 这样的无理数
的点吗?
0 1
2
3 O/ 4
X
B
-2
-1
2
A
0
1 22
每一个实数都可以用数轴上的一个点来表示;反 过来,数轴上的每一点都表示一个实数。即实数 和数轴上的点是一一对应的。
无限不循环小数
正有理数 正无理数
负有理数 负无理数
你学会了吗?
判断快枪手——看准最快最准!
1.实数不是有理数就是无理数。( ) 2.无理数都是无限不循环小数。( )
3.带根号的数都是无理数。( ×)
4.无理数都是无限小数。( )
第六章实数教案

人教版七年级数学下册第六章《实数》教案执教七年级数学集体备课组2013。
3。
8第六章实数6.1平方根【第一课时】教学目标:【知识与技能】了解平方根与算术平方根的概念,理解负数没有平方根及非负数开平方的意义。
【过程与方法】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示,能用科学计算器求平方根及其近似值。
【情感、态度与价值观】体会平方与开平方这一对互逆运算的辩证关系,感受平方根在现实世界中的客观存在,增强数学知识的应用意识。
【教学重点】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示。
【教学难点】会用平方根的概念求某些数的平方根,并能用根号加以表示.【教具准备】小黑板科学计算器【教学过程】一、导入1、通过七年级的学习,相信同学们都对数学这门课程有了更深入的认识,这个学期,我们将一起来学习八年级的数学知识,这个学期的知识将会更加有趣.2、板书:实数 1.1 平方根二、新授(一)探求新知1、探讨:有面积为8平方厘米的正方形吗?如果有,那它的边长是多少?(少数学习超前的学生可能能答上来)这个边长是个怎样的数?你以前见过吗?2、引入“无理数”的概念:像(2.82842712……)这样无限不循环的小数就叫做无理数。
3、你还能举出哪些无理数?(,)、、1/3是无理数吗?4、有理数和无理数统称为实数。
(二)知识归纳:1、板书:1。
1平方根2、李老师家装修厨房,铺地砖10。
8平方米,用去正方形的地砖120块,你能算出所用地砖的边长是多少吗?(0.3米)3、怎么算?每块地砖的面积是:10。
8120=0。
09平方米。
由于0.32=0。
09,因此面积为0。
09平方米的正方形,它的边长为0.3米。
4、练习:由于()=400,因此面积为400平方厘米的正方形,它的边长为()厘米。
5、在实际问题中,我们常常遇到要找一个数,使它的平方等于给定的数,如已知一个数a,要求r,使r2=a,那么我们就把r叫做a的一个平方根。
最新沪科版七年级数学下册6.2实数公开课优质教案(4)

《实数》教学目标:了解无理数和实数地概念及实数地分类,知道实数与数轴上地点具有一一对应地关系. 教学重点:了解无理数和实数地概念;知道实数与数轴上地点地一一对应关系.教学难点:对无理数地认识.问题与情境一、复习引入无理数:通过课前学生地动手操作提出问题:怎样将两个面积是1地正方形通过裁剪拼成一个大正方形,大正方形地边长是多少?和小正方形地对角线有什么关系?具体是多大学生动手操作,直观地从几何图形上感受2地大小,进而提出2具体是多大?是什么样地小2数?无限不循环小数叫做无理数.让学生通过理解,举出无理数地例子. 2=1.41421356237309504880问题:把下列有理数95,119,847,53,3写成小数地形式,它们有什么特征?即:5.095,18.0119,875.5847,6.053,0.33归纳:任何一个有理数(整数或分数)都可以写成有限小数或者无限循环小数地形式,反过来,任何有限小数或者无限循环小数也都是有理数.二、实数及其分类:1、实数地概念:有理数和无理数统称为实数.2、实数地分类:按照定义分类如下:实数数)无理数(无限不循环小小数)(有限小数或无限循环分数整数有理数按照正负分类如下:实数负无理数负有理数负实数零负无理数正有理数正实数问题:我们知道每个有理数都可以用数轴上地点来表示.无理数是否也可以用数轴上地点表示出来吗?活动1:把直径为1个单位长度地圆放在数轴上从原点向右滚动一周,圆上地一点由原点到达另一个点,这个点地坐标就是π. 由此我们把无理数π用数轴上地点表示了出来. 活动2:在数轴上,以一个单位长度为边长画一个正方形,则其对角线地长度就是2以原点为圆心,正方形地对角线为半径画弧,与正半轴地交点就表示2,与负半轴地交点就是2.问题:在实数范围内,相反数、绝对值地意义和有理数范围内地相反数、绝对值地意义是否完全一样?4 1.实数地相反数:数a 地相反数是a .2.一个正实数地绝对值是它本身,一个负实数地绝对值是它地相反数,0地绝对值是0.3.实数之间可以进行加、减、乘、除(除数不为0)、乘方、非负实数地开方运算,还有任意实数地开立方运算,在进行实数地运算中,交换律、结合律、分配律等运算性质也适用.从数系地扩充,进一步引导学生对于实数地相反数、绝对值以及实数地运算地认识与学习.例、计算下列各式地值:(1)2)23(;(2)3233.。
实数完整版课件

实数完整版课件一、教学内容本节课我们将学习教材第十章“实数”部分,详细内容如下:1. 实数的定义及分类;2. 实数的性质及运算规则;3. 实数与数轴的关系;4. 实数在数学中的应用。
二、教学目标1. 理解实数的定义,掌握实数的分类;2. 学会实数的性质和运算规则,并能熟练运用;3. 理解实数与数轴的关系,能将实数在数轴上表示出来。
三、教学难点与重点1. 教学难点:实数的性质及运算规则;2. 教学重点:实数的定义、分类及与数轴的关系。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔;2. 学具:练习本、铅笔、直尺。
五、教学过程1. 导入:通过实际情景引入实数概念,如温度、长度等;2. 新课导入:讲解实数的定义、分类及性质;3. 例题讲解:讲解实数运算规则,如加减乘除、乘方等;4. 随堂练习:让学生进行实数运算的练习,巩固所学知识;5. 知识拓展:介绍实数与数轴的关系,引导学生将实数在数轴上表示出来;7. 课堂作业:布置实数相关的作业,巩固所学知识。
六、板书设计1. 实数的定义及分类;2. 实数的性质及运算规则;3. 实数与数轴的关系。
七、作业设计1. 作业题目:(1)判断下列数哪些是实数,哪些不是:2、3/2、√2、π;(2)计算:2/3 + 5/6 1/2;答案:(1)实数:2、3/2、√2、π;(2)2/3 + 5/6 1/2 = 3/2;(3)见附图。
八、课后反思及拓展延伸1. 了解无理数的概念,探究无理数与有理数的关系;2. 探索实数在生活中的应用,如测量、计算等。
重点和难点解析1. 实数的定义及分类;2. 实数的性质及运算规则;3. 实数与数轴的关系;4. 作业设计中实数在数轴上的表示;5. 课后拓展延伸的无理数概念及实数在生活中的应用。
一、实数的定义及分类实数是数学中一个重要的概念,包括有理数和无理数。
有理数是可以表示为两个整数之比的数,如分数、整数等;无理数则不能表示为两个整数之比,如π、√2等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7
… 无理数集合
有理数集合
引入
在数轴上表示下列各数:
1 2 0 3 1 2 0 3
-3 -2 -1 0
3.6 3.6
1 2 3 4
有理数都可以用数轴上的点表示
探究
直径为1个单位长度的圆从原点沿 数轴向右滚动一周,圆上的一点由原点 到达O′,点O′的坐标是多少?
0
1
2
3 O′
4
探究
0
1
2
3 O′
3.14, 3 ,
1.732,
0,
3
4,
… …
有理数
无理数
作业: 1.39页和40页的随堂练习和习题 2.《天府数学》和《课时达标》
2 ,0 中,有理数的个数有( )
A C 2个 4个 B D 3个 5个
巩固 2、在 0 , 0.100100010000, 3 ,
3
, 9中,无理数分别 8, 1
3
3
是
。
巩固
3、把下列各数分别填在相应的集合中:
0 .3
3.1415926
25 36
…
3
16
1.732
3
巩固
6、请将数轴上是各点与下列实数对应 起来:
2
1.5
A
5
B C DE
3
-3 -2 -1
0
1
2
3
4
巩固 7、下列各数中,互为相反数的是(
A C
)
2
1 3与 3
3 与 1 (1)
2
B D
2 与 (2)
5 与 5
巩固
8、 A C
5 3 2 5 的值是(
)
5
52 5
B D
1
2 5 5
巩固
9、在数轴上距离表示-2的点是 3 个 单位长度的数是 。
小结 1、本节课你学了什么知识?
实数的定义 实数的分类 (二分法、三分法) 实数与数轴上的点一一对应 2、你有什么体会?
有理数 有限小数或 无限循环小数
无理数
无限不循环小数
课堂练习
1、设 3 对应数轴上的点是A, 5 对应数轴上的点是B,那么A、B间的 距离是 。
4
你有什么发现?
无理数π可以用数轴上的点表示
再探
以单位长度为边长画一个正方形,以 原点为圆心,正方形对角线为半径画弧, 与正半轴的交点表示什么?
2 2 2
-2
-1
0
1
2
无理数 2 可以用数轴上的点表示
归纳
1、每一个有理数都可以用数轴上的点 表示; 2、每一个无理数都可以用数轴上的点 表示; 实数与数轴上的点是一一对应的
正实数 正有理数 正无理数 负有理数
实 数
0
负实数
负无理数
你知道怎样区分有理数和无理数吗?
范例 例1、下列各数中,哪些是有理数,哪 些是无理数?
3
22 7
0.4 16
3
3
2
0.23
1 3
27
3
8 64
3
0.131331333
9
0
巩固
1 2 1、下列各数 , , (3) ,3.14 , 7
0
1
2
3
4
巩固
4、下列命题错误的是( ) A.有最小的正数 B.没有最大的有理数 C.有绝对值最小的数 D.正分数既是有理数又是实数
巩固
5、下列结论正确的是( ) A.无限小数是无理数 B.有理数都可以表示成分数形式 C.无理数都是带根号的数 D.无理数都是无限不循环小数
探究
2 的相反数是 2
2.6
实数(一)
复习 你认识下列各数吗?
3
3 5
9 11
5
0.875
0
有理数是分类:
正整数 整数 零 有 负整数 理 数 正分数 分数 负分数
正整数
有 正分数 理 零 数 负整数 负数 负分数
正数
引入 把下列各数写成小数的形式:
3 3.0
有 限 小 数
47 5.875 8
3 0.6 5
无 限 循 环 小 数
11 0.12 9 9 1 0.8 11 5 0 .5 9
整数和分数统称为有理数
有限小数和无限循环小数叫有理数
有理数
实数
整数
正整 数 零 负整数
分 数
无理数
正无理数
负无理数
探究 把下列各数写成小数的形式:
2 1.4142
3 1.7320 5 2.2360
3 3 3
3 1.442 5 1.710 7 1.913
3.14159265
无限不循环小数 无限不循环小数叫无理数
归纳
实数的分类 (二分法)
整数 有理数 有限小数或 无限循环小数 无限不循环小数
实 数 无理数
分数
你还有其它分类方法吗?
归纳
实数的分类 (三分法)
2、在数轴上与原点的距离是 2 6 的点 所表示的数是 。
课堂练习
3、求下列各数的相反,
5 2.
课堂练习
4、求下列各数的绝对值:
3
8,
17 ,
2 , 3
3 1.7,
1.4 2.
课堂练习
5、把下列各数分别填在相应的集合中:
2 , 1 , 3
;
的相反数是
0 的相反数是
2 -2 -1
0
; ;
2
0 1 2
a的相反数是-a
探究
2
2
2 2
0 1
00
-2 2-1
2 2
正数的绝对值是它本身; 负数的绝对值是它的相反数; 0的绝对值是0.
范例 例1、(1)求 64 的绝对值; (2)已知一个数的绝对值是 3 , 求这个数。