实数(第一课时)教学设计

合集下载

6.3实数(第1课时)教学设计-2021-2022学年人教版数学七年级下册

6.3实数(第1课时)教学设计-2021-2022学年人教版数学七年级下册

人教版七年级数学下册第六章第三节《实数》教学设计(第1课时)一、教学目标知识技能1.了解无理数及实数的概念,并会对实数进行分类.2.会对实数按照一定标准进行分类,培养分类能力.3.知道实数和数轴上的点一一对应.数学思考1.经历从有理数逐步扩充到实数,了解到人类对数的认识是不断发展的.2.经历对实数进行分类,发展学生的分类意识.解决问题1.通过无理数的引入,使学生对数的认识由有理数扩充到实数.2在交流中学会与人合作,并能与他人交流自己思维的过程和结果.情感态度1.通过无理数的引入,激发学生的求知欲,使学生感受数学活动充满了探索性与创造性,体验发现的快乐,获取成功的体验.2.通过了解数系扩充体会数系扩充对人类发展的作用.3.敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.二、教学重点和难点教学重点:使学生了解无理数和实数的意义,熟练掌握实数的分类教学难点:无理数意义的理解.三、教学方法讲练结合启发教学学生为主四、教学手段多媒体五、课时安排一课时六、教学设计(一).数学故事——无理数的发现:通过俗语“有理走遍天下,无理寸步难行”引入数学故事,古希腊著名的数学家,哲学家毕达哥拉斯有一句名言“万物皆为数。

”他认为宇宙间的一切事物都归为整数或整数的比。

问:整数的比是什么数?答:分数。

问:整数和分数统称为什么数?答:有理数。

〖设计说明〗让学生了解无理数是怎么发现的,经历从有理数逐步扩充到实数,了解到人类对数的认识是不断发展的,从而对数学充满兴趣(二)、回顾旧知,检查预习:1.有理数怎样分类?有理数分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 或 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负整数负整数负有理数零正分数正整数正有理数有理数 〖设计说明〗让学生进行简单的练习,帮助学生回顾旧知识:有理数,为本节课的迁移伏笔. (三)、创设情境,导入新课:1.展示问题,引导学生探究。

实数全章教学设计北师大版

实数全章教学设计北师大版
(4)实际问题案例:收集一些与实数相关的实际问题,如财务计算、长度测量等,用于课后练习和课堂讨论。
2.拓展建议:
(1)让学生阅读数学绘本,通过故事的形式了解实数的概念和应用,提高学生的学习兴趣。
(2)让学生阅读科普文章,了解实数在现实世界中的重要性,提高学生的数学应用意识。
(3)利用网络资源,让学生自主学习实数相关的知识,通过练习题进行巩固。
(5)教师可组织课后讨论或展示活动,让学生分享自己的拓展学习成果,促进学生之间的相互学习和交流。
(6)教师应鼓励学生积极参与拓展学习,培养学生的自主学习能力和批判性思维能力。
(7)教师应关注学生的学习态度和表现,及时调整拓展学习的内容和难度,以适应学生的个性化学习需求。
八、课堂小结,当堂检测
1. 课堂小结:
七、课后拓展
1.拓展内容:
(1)阅读材料:推荐学生阅读与实数相关的数学故事、科普文章、数学历史等,如《数学家的故事》、《数学与生活》等,增强学生对实数的理解和兴趣。
(2)视频资源:推荐学生观看与实数相关的数学教学视频、纪录片等,如《数学的力量》、《数学之美》等,帮助学生更直观地理解实数的概念和应用。
(3)在线学习平台:鼓励学生登录在线学习平台,如“中国大学MOOC”、“Coursera”等,选择实数相关的课程进行自主学习,提高学生的数学素养。
(4)数学竞赛与活动:鼓励学生参加数学竞赛、数学建模活动等,锻炼学生的数学思维和实际应用能力。
(5)实地考察与实验:组织学生进行实地考察或实验,如测量长度、计算面积等,让学生亲身体验实数的应用。
2.拓展要求:
(1)学生自主选择拓展内容,根据自己的兴趣和学习进度进行学习和探索。
(2)学生可以进行小组讨论或与他人交流,分享自己的学习心得和发现。

实数教学设计

实数教学设计

49 (1)100;(2)1;(3) ;(4)0.0001 64
探究拓展
就是求一个数 x,使 x =100,因为 10 100 提出问题: (课本第 160 页)怎样用两个面积 为 1 的小正方形拼成一个面积为 2 的大正方形?
2
2
2
方法 1:课本中的方法,略; 方法 2:
可还有其他方法,鼓励学生探究。 问题:这个大正方形的边长应该是多少呢? 大正方形的边长是 2 ,表示 2 的算术平方根,它 到底是个多大的数?你能求出它的值吗? 建议学生观察图形感受 2 的大小.小正方形 的对角线的长是多少呢?(用刻度尺测量它与大正 方形的边长的大小)它的近似值我们将在下节课探 究.
教科书在边空提出问 题“小正方形的对角 线的长是多少” , 这是为在 10.3 节介 绍在数轴上画出表示
2 的点做准备.
课堂小结
布置作业
小结与作业 提问:1、这节课学习了什么呢? 2、算术平方根的具体意义是怎么样的? 3、怎样求一个正数的算术平方根? 1、 必做题: 课本第 167 页习题 10.1 第 1、 2、 3 题; 168 页第 11 题。 2、 备选题: (1)判断下列说法是否正确: 在本节的第一个 ① 是 25 的算术平方根; “探究”栏目之前, 2 重点是介绍算术平方 ② 一 6 是 6 的算术平方根; 根的概念,因此所涉 ③ 0 的算术平方根是 0; 及的数(包括例题中 ④ 0.01 是 0.1 的算术平方根; ⑤一个正方形的边长就是这个正方形的 的数)都是完全平方 数(能表示成一个有 面积的算术平方根. 理数的平方) , 所求的 (2)下列各式哪些有意义,哪些没有意义? 是这些完全平方数的 2 ①- 3 ② 3 ③ 3 ④ 102 算术平方根. (3)一个正方形的面积为 10 平方厘米,求以 这个正方形的边为直径的圆的面积。

实数教学设计(学案)

实数教学设计(学案)

课题: 第13.3 实数(1) 一、学习目标1.了解无理数和实数的概念,会对实数按照一定标准进行分类,同时体会“集合”的含义.2.在实数范围内,了解相反数和绝对值的意义,会求一个实数的相反数和绝对值.3.了解实数与数轴上的点一一对应的关系。

二、自学导航P82——P85 三、学习过程【课前准备】做一做探究活动一:1.请使用计算器计算,把下列有理数写成小数的形式,你有什么发现? 3= -52=847= 32= 9011=911=我的发现是: 2.请使用计算器计算,把下列有理数写成小数的形式,你有什么发现?2=-3=-25=37=我的发现是: 3.上面的两组数都可以写成小数的形式,但写成小数的形式是不同的,他们的不同之处是: 探究活动二:1.直径为1cm 长度的圆从数轴的原点O 出发,沿数轴向右滚动一周,圆上的一点由原点到达点0’,点O ’的坐标是多少?(画图说明)通过实践可知,00’的长就是直径为1cm 的圆 的 是 cm,点O ’的坐标是 ;若此圆从数轴原点沿数轴向左滚动一周,此时O ”的坐标是 .2.你能在数轴上找到表示出2这个点吗,2-呢?由此可知:有理数能不能将数轴排满?【探究新知】通过上面探究活动一,我们把第一类数叫做 ,我们把第二类数叫做 ,我们把这两类数统称为 ,用字母 表示此数集合.类比有理数的分类标准,此数能也能进行分类,你来试一试?探究活动二让我们了解到,像有理数一样,①每一个无理数都可以用数轴上的 表示出来,这就是说数轴上的点有些表示 ,有些表示 .所以,当从有理数扩充到实数以后,实数与数轴上的点就 是 的关系. ②与有理数一样,对于数轴上的任意两个点,右边的点所表示的数总比左边的点表示的数 . ③有理数关于相反数、倒数、绝对值的意义同样适合于 .【巩固提升】1.写出一个比1-大的负有理数是 ;比1-大的负无理数是 .2.32-的相反数是 ,32-= .3.实数b a 、在数轴上的位置如图所示, 化简:2a b a --b a4.比较各组数中两数的大小: (1)2332和(2)34-53-与(3)21-5与1【课堂小结】1.你能完成知识清单吗?2.你还有哪些收获?或困惑?(可记录下来共同交流)【课堂反馈】1.在实数23-,0π) A .1个B .2个C .3个D .4个2. 下列各组数中,互为相反数的是( )A .2和21 B .-2和-21 C . 2-和|2-| D .2和213.三个实数0.2-,12-,1( ) A.10.212-<-<B .10.212->->C .10.212->>- D.110.22>->-4. 如图,数轴上A B ,两点表示的数分别为1,点B 关于点A 的对称点为点C ,则点C 所表示的数是( )A 1B .1C .2D 25. 已知a 、b 为两个连续整数,且a <7<b ,则b a += .6.的点是 .7. 2与2-的大小关系,并说明理由.。

人教版数学七年级下册教学设计6.3《 实数》

人教版数学七年级下册教学设计6.3《 实数》

人教版数学七年级下册教学设计6.3《实数》一. 教材分析人教版数学七年级下册第6.3节《实数》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统认识的一节内容。

本节内容主要包括实数的定义、实数与数轴的关系以及实数的分类。

通过本节课的学习,使学生了解实数的丰富性和广泛性,培养学生对实数的认识和理解。

二. 学情分析七年级的学生已经掌握了有理数和无理数的基本概念,对数轴也有了一定的认识。

但学生在实数的分类方面可能会存在一定的困难,因此,在教学过程中,需要教师耐心引导,让学生充分理解实数的内涵和外延。

三. 教学目标1.理解实数的定义,掌握实数与数轴的关系。

2.能够对实数进行分类,了解实数的丰富性和广泛性。

3.培养学生的逻辑思维能力和抽象思维能力。

四. 教学重难点1.实数的定义和实数与数轴的关系。

2.实数的分类和各类实数的特征。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题,引导学生思考和探索,激发学生的学习兴趣;通过案例分析,使学生直观地理解实数的概念;通过小组合作学习,培养学生的团队协作能力和表达能力。

六. 教学准备1.准备与实数相关的案例和图片,以便在教学中进行展示和分析。

2.准备实数的分类表格,方便学生理解和记忆。

3.准备数轴的道具或图片,帮助学生直观地理解实数与数轴的关系。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数和无理数的概念,为新课的学习做好铺垫。

例如:“同学们,我们已经学习了有理数和无理数,那么你们能总结一下有理数和无理数的特征吗?”2.呈现(10分钟)教师通过PPT或板书,呈现实数的定义和实数与数轴的关系。

同时,结合案例和图片,使学生直观地理解实数的概念。

例如:“同学们,今天我们要学习的是实数。

实数包括有理数和无理数,它们都可以用数轴上的点来表示。

请大家观察这个数轴,找出一些特殊的点,并试着解释它们的含义。

”3.操练(10分钟)学生分组讨论,根据实数的定义和实数与数轴的关系,对给定的实数进行分类。

人教版七年级数学下册6.3实数(第1课时)一等奖优秀教学设计

人教版七年级数学下册6.3实数(第1课时)一等奖优秀教学设计

人教版义务教育课程标准实验教科书七年级下册6.3.1实数(第1课时)教学设计一、教材分析1、地位作用:本章内容相当于旧教材《数的开方》一章,但编排顺序有所差别,旧教材先学习平方根,再将算术平方根作为其中的一种特例进行学习,而本套教材先联系实际学习认识算术平方根后,再进一步认识平方根。

这样可以引发学生的疑惑,激发学生学习兴趣,从而使学生积极主动地投入到数学活动中去。

本节篇幅不长,内容也不多,但知识比较抽象,而且与学生以前接触的数学知识差异较大,根据以前的教学经验,我感觉学生学习起来不会很顺手,而且它又是以后学习二次根式、一元二次方程的基础,需要老师在教学中精心构思,认真落实。

2、教学目标:(1)了解无理数和实数的概念.(2)知道实数与数轴上的点具有一一对应关系,初步体会“数形结合”的数学思想。

3、教学重、难点:重点:了解无理数和实数的概念,知道实数与数轴上的点的一一对应关系。

难点:理解实数的概念突破重难点的方法:观察与动手作图实践,让学生知道实数和数轴上的点是一一对应的,从而理解学习实数的必要性。

二、教学准备:多媒体课件、导学案三、教学过程.圆周率及一些含有3、下列结论正确的是( )A.无限小数是无理数B.实数不是正数就是负数合起来就是:数轴上的点。

C.无理数都是带根号的数D.无理数都是无限不循环小数 4、判断:(1).实数不是有理数就是无理数。

( ) (2).无理数都是无限不循环小数。

( ) (3).无理数都是无限小数。

( ) (4).带根号的数都是无理数。

( ) 2、下列说法中,正确的是()、都是无理数234、、A 、B 、无理数都是带根号的数C 、实数分为正实数和负实数D 、实数和数轴上的点是一一对应的D。

实数的教学设计(精编7篇)

实数的教学设计(精编7篇)

实数的教学设计(精编7篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!实数的教学设计(精编7篇)实数的教学设计(1)教学目标知识与技能目标(1)了解有理数的运算法则在实数范围内仍然适用。

《实数》(第一课时)教学设计

《实数》(第一课时)教学设计

实数(第一课时)教学设计
一、教材分析
实数是“数与代数”领域的重要内容。

,本章是在有理数的基础上认识实数,对于实数的学习,除本章外,还要在“二次根式”一章中通过研究二次根式的运算,进一步认识实数的运算。

本节是是实数的第一节课,主要通过折纸活动,让学生感受无理数产生的实际背景和引入的必要性,进而将数的范围从有理数扩充到实数.并类比有理数的有关性质得出实数的有关性质.
二、学情分析也使学生感受到无理数
学生在前面已学习了平房根、立方根的知识,已经具有发现无理数的的能力,本节课通过教师创设的折纸的问题情境,让学生体会无理数是从现实世界中抽象出来的,是一种不同于有理数的数.
三、教学目标
1.通过实际问题,让学生经历无理数发现的过程,使学生认识到数的扩充的必要性.2.能对实数按要求进行分类,会用所学定义正确判断所给数的属性.
3.理解在实数范围内,相反数、倒数、绝对值的意义.
4.通过对有关无理数的数学史的了解,进一步增强学生对数学的兴趣.
四、重点、难点
重点:1.让学生经历无理数发现的过程,使学生认识到数的扩充的必要性.
2.无理数概念的探索过程及无理数概念的建立
3. 能对实数进行分类,并判断所给数的属性.
难点:1.无理数概念的探索过程. 2.用所学定义正确判断所给数的属性.
五、教学设计
0.81,
8
2、在数轴上的表示:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学设计
学科数学年级七年级教学形式新授教师单位
课题名称实数(第一课时)
学情分析
在本节之前学生已学习了平方根、立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数认识进一步深入。

教材分析
本节是义务教育课程标准鲁教版七年级上册第四章《实数》的第六节。

这节内容教材安排了2个课时,本节课为第一课时。

主要是建立实数的概念并能对实数按要求进行不同的分类,同时了解实数范围内的相反数、倒数、绝对值的意义,让学生在动手操作中明确实数和数轴上的点是一一对应的。

教学目标
●知识与技能目标
1.了解实数的意义,能对实数按要求进行分类;
2.了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。

3.了解实数和数轴上的点一一对应。

●过程与方法目标
1.通过对实数分类的探究,增强学生的分类意识;
2.在利用数轴上的点来表示实数的过程中,将数和图形结合在一起,让学生进一步体会数形结合的思想。

●情感与态度目标
1.通过对实数进行分类的练习、进一步领会分类的思想方法;
2.在探究利用数轴上的点表示实数的过程中,训练学生多角度思维,培养和发展学生的合作意识。

教学重难点
重点:
1.了解实数意义,能对实数进行分类;
2.在实数范围求相反数、倒数和绝对值;
3.明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。

难点:建立实数概念及分类,用数轴上的点来表示无理数
教学策略:
多媒体课件、投影仪、电脑
自主探究—交流—发现
教学过程与方法
教学环节教师活动学生活动设计意图
导入新授问题:
(1)什么是有理数?有理数怎样分类?
(2)什么是无理数?带根号的数都是无理数
吗?
(一)实数概念
内容:把下列各数分别填入相应的集合内:
32,
4
1
,7,π,
2
5
-,2,
3
20
,5
-,
38
-,
9
4
,0,0.3737737773……(相邻
两个3之间7的个数逐次增加1)
知识整理:有理数和无理数统称为实数。

(二)实数分类
内容:
1.你能把上面各数分别填入下面相应的集合
内吗?
2.0属于正数吗?0属于负数吗?
知识整理:无理数和有理数一样,也有正负
之分。

1.从符号考虑,实数可以分为正实数、零、
负实数,即:
自主完成
自主完成,
同桌之间互

回顾以前学习
过的内容,为进
一步学习引入
无理数后数的
范围的扩充作
准备。

通过将以上各
数填入有理数
集合和无理数
集合,建立实数
概念。

在实数概念形
成的基础上对
实数进行不同
的分类。

上面的
数中有0,0不
能放入上面的
任何一个集合
中,学生容易遗
漏,强调0也是
实数,但它既不
是正数也不是
负数,应单独作
一类。

提醒学生
分类可以有不
同的方法,但要…
有理数
集合

无理数
集合

正数集
合\

负数集
合\
⎪⎩
⎪⎨⎧负实数零正实数实数
2.另外从实数的概念也可以进行如下分类:
⎩⎨
⎧无理数有理数实数
(三)实数的相关概念 内容1:在有理数中,数a 的相反数是什么?绝对值是什么?当a 不为0时,它的倒数是什么?
内容2:小结
a 是一个实数,它的相反数是,它的绝对值是,当a ≠0时,它的倒数是。

知识整理
(1)相反数:a 与—a 互为相反数;0的相反数仍是0;
(2)倒数:当a ≠0时,a 与
a
1
互为倒数(0没有倒数);
(3)绝对值:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;
即:⎪⎩

⎨⎧<-=>=)
0()0(0
)0(||a a a a a a 四)探究——实数与数轴上点之间的对应关系
内容1:如图所示,认真观察,探讨下列问题:
议一议:
(1)如图,OA =OB ,数轴上A 点对应的数表示什么?它介于哪两个整数之间?
(2)如果将所有有理数都标到数轴上,那么数轴被填满了吗? 知识整理
每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个
同桌两人分工合作,一人任意说一实数,另一人分别说出对应的相反数、倒数、绝对值。

小组合作交流,组长展示成果
按同一标准不重不漏。

从复习入手,类比有理数中的相关概念,建立实数的相反数、倒数和绝对值等概念,它们的意义和有理数范围内的意义是一致的。

加深学生对相关概念的理解
探讨用数轴上的点来表示实数,将数和图形联系在一起,让学生进一步领会数形结合的思想,利用数轴也可以直观地比较两个实数的大小。

0 1 2 -1 -2 A
B。

相关文档
最新文档