《一元一次不等式组 ( 三 ) 》教学案例点评

合集下载

人教版七年级数学下册9.2.1一元一次不等式优秀教学案例

人教版七年级数学下册9.2.1一元一次不等式优秀教学案例
4.关注学生个体差异,实施个性化指导
在本案例中,教师关注每个学生的学习特点,给予个性化的指导。这种关注个体差异的教学策略,有助于激发学生的学习潜能,使他们在数学学习过程中都能获得成功的体验。
5.反思与评价相结合,促进全面发展
本案例将反思与评价贯穿于整个教学过程。教师引导学生进行自我反思,总结学习过程中的收获与不足,帮助他们形成自我认知。同时,采用多元化的评价方式,关注学生的知识掌握、能力提升以及情感态度等方面,促进学生的全面发展。
(二)过程与方法
1.通过自主探究、合作交流的学习方式,让学生在实践中掌握一元一次不等式的解法。
2.引导学生运用已学的代数知识,将实际问题抽象为一元一次不等式,培养学生的建模能力。
3.教学过程中,注重启发式教学,激发学生的思维,培养他们分析问题、解决问题的能力。
4.针对不同学生的学习特点,给予个性化的指导,使他们在探索过程中,形成适合自己的学习方法。
2.问题驱动的教学策略
本案例以问题为导向,引导学生进行自主探究和思考。通过设计具有启发性和挑战性的问题,让学生在解决问题的过程中,掌握一元一次不等式的解法,培养他们的逻辑思维能力和问题解决能力。
3.小组合作与交流
案例中,小组合作是核心教学策略。学生在小组内部分工合作,共同探讨问题,培养了团队合作精神。同时,通过小组间的交流与分享,学生能够借鉴他人的思路和方法,拓宽自己的视野,提高沟通能力。
三、教学策略
(一)情景创设
为了让学生更好地理解一元一次不等式的实际意义,我将创设贴近学生生活的教学情景。例如,通过设计购物比较、身高体重比较等实际问题,引导学生从具体情境中抽象出一元一次不等式的概念。通过这种方式,让学生感知到数学知识在实际生活中的应用,激发他们的学习兴趣。

人教版初中数学一元一次不等式教案范文优秀7篇

人教版初中数学一元一次不等式教案范文优秀7篇

人教版初中数学一元一次不等式教案范文优秀7篇一元一次不等式教案篇一一、教学目标:(一)知识与能力目标:(课件第2张)1.体会解不等式的步骤,体会比较、转化的作用。

2.学生理解、巩固一元一次不等式的解法。

3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。

4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。

(二)过程与方法目标:1.介绍一元一次不等式的概念。

2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。

3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。

4.学生将文字表达转化为数学语言,从而解决实际问题。

5.练习巩固,将本节和上节内容联系起来。

(三)情感、态度与价值目标:(课件第3张)1.在教学过程中,学生体会数学中的比较和转化思想。

2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式的解法,树立辩证统一思想。

3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。

4.通过本节的学习,学生体会不等式解集的奇异的数学美。

二、教学重、难点:1.掌握一元一次不等式的`解法。

2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。

3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。

三、教学突破:教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。

在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。

在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。

四、教具:计算机辅助教学。

五、教学流程:(一)、复习:教学环节教师活动学生活动设计意图一元一次不等式教案篇二师:下面我们先看一下购物金额对选择哪家超市有何影响?请同学们根据老师给出的学习目标和问题,自学课文一三1页至一三2页例1上边的内容,要求独立或者小组合作,完成书上的问题(1)、(2),时间是10分钟。

《一元一次不等式组》教案

《一元一次不等式组》教案

《一元一次不等式组》教案——九年义务教育七年级下册第九章第三节执教者:性质:时间:2014年6月《一元一次不等式组》教案教材分析本节课的内容是人教版七年级下册第九章第三节《一元一次不等式组》。

本节课,是在学生学习了一元一次不等式,知道了一元一次不等式的有关概念及其解法的基础上学习的。

本节主要学习一元一次不等式组及其解法,这是学好利用一元一次不等式组解决实际问题的基础和关键。

教材通过一个实例入手,引出要解决的问题必须同时满足两个不等式,进而通过一元一次不等式的概念及其解法等,来类推学习一元一次不等式组及其相关解法。

学情分析从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。

但同时,这一阶段的学生好动,注意力易分散,善于发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

从认知状况来说,学生已经学习了一元一次不等式,并能较熟练地解一元一次不等式,能将简单的实际问题抽象为数学模型,有一定的数学化能力,这为顺利完成本节课的教学任务打下了基础,但对于不等式基本性质的理解,由于其抽象程度较高,学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

教学目标1、知识与技能:了解一元一次不等式组的概念,在了解一元一次不等式组的解集的概念的基础上会求解一元一次不等式组的解集。

2、过程与方法:经历一元一次不等式组解集的探究过程,体会不等式之间的内在联系,通过利用数轴解一元一次不等式组,培养学生数形结合的思想方法。

3、情感、态度与价值观:学生充分参与数学学习活动,从而获得成功的体验,建立良好的自信心。

教学重点:掌握一元一次不等式组的含义及其解法。

教学难点:1、将两个不等式的解表示在同一数轴上,并通过找公共部分确定不等式组的解集;2、理解不等式的解集。

浙教版数学八年级上册《第3章 一元一次不等式》全章教案

浙教版数学八年级上册《第3章 一元一次不等式》全章教案

浙教版数学八年级上册《第3章一元一次不等式》全章教案一. 教材分析《浙教版数学八年级上册》第3章《一元一次不等式》是学生在学习了有理数、整式乘法等基础知识后的进一步拓展。

本章主要通过引入一元一次不等式,让学生掌握不等式的概念、性质和运算方法,培养学生解决实际问题的能力。

本章内容在初中数学中占据重要地位,为后续学习一元二次不等式、不等式组等知识打下基础。

二. 学情分析八年级的学生已经具备了一定的数学基础,对整式、有理数等概念有一定的了解。

但部分学生在解决实际问题时,还不能很好地将数学知识运用其中。

因此,在教学过程中,要注重培养学生运用数学知识解决实际问题的能力,激发学生的学习兴趣。

三. 教学目标1.理解一元一次不等式的概念,掌握一元一次不等式的性质。

2.学会解一元一次不等式,并能运用一元一次不等式解决实际问题。

3.培养学生的逻辑思维能力和解决实际问题的能力。

四. 教学重难点1.一元一次不等式的概念和性质。

2.一元一次不等式的解法。

3.运用一元一次不等式解决实际问题。

五. 教学方法采用问题驱动法、案例教学法、合作学习法等,引导学生主动探究、合作交流,培养学生的数学素养。

六. 教学准备1.教材、教案、PPT等教学资料。

2.练习题、测试题等。

3.教学工具(如黑板、粉笔等)。

七. 教学过程1.导入(5分钟)利用生活实例引入不等式概念,如:“小明有5个苹果,小华有3个苹果,谁的数量多?”引导学生思考,引出不等式的概念。

2.呈现(10分钟)讲解一元一次不等式的定义、性质和表示方法。

通过PPT展示一元一次不等式的图像,让学生直观理解不等式的性质。

3.操练(10分钟)让学生独立完成练习题,如解以下不等式:2x + 3 > 7。

教师巡回指导,解答学生疑问。

4.巩固(10分钟)讲解练习题的解题思路,分析解题过程中容易出现的问题。

让学生互相讨论,加深对一元一次不等式的理解。

5.拓展(10分钟)引导学生运用一元一次不等式解决实际问题,如:“一个数的平方大于另一个数,求这个数的范围。

浙教版数学八年级上册3.3《一元一次不等式》教案(1)

浙教版数学八年级上册3.3《一元一次不等式》教案(1)

浙教版数学八年级上册3.3《一元一次不等式》教案(1)一. 教材分析《一元一次不等式》是浙教版数学八年级上册第三章第三节的内容。

本节内容是在学生已经掌握了不等式的概念和性质的基础上进行教学的。

通过本节课的学习,使学生掌握一元一次不等式的定义、解法及其应用,培养学生解决实际问题的能力。

二. 学情分析学生在七年级时已经学习了不等式的基本概念和性质,对不等式有了一定的认识。

但他们对一元一次不等式的定义、解法和应用还不够了解。

因此,在教学过程中,教师需要引导学生从实际问题中抽象出一元一次不等式,并通过实例让学生掌握一元一次不等式的解法和应用。

三. 教学目标1.知识与技能:使学生掌握一元一次不等式的定义、解法及其应用。

2.过程与方法:通过实际问题引导学生从数学的角度进行分析,提高学生解决实际问题的能力。

3.情感态度与价值观:培养学生对数学的兴趣,使学生感受到数学在生活中的应用。

四. 教学重难点1.重点:一元一次不等式的定义、解法及其应用。

2.难点:一元一次不等式的解法。

五. 教学方法采用情境教学法、问题教学法和小组合作学习法。

通过实际问题引入一元一次不等式,引导学生主动探索、发现问题,并通过小组合作学习,共同解决问题。

六. 教学准备1.准备一些实际问题,用于导入和巩固知识点。

2.准备PPT,用于呈现知识点和示例。

3.准备练习题,用于课后巩固和拓展。

七. 教学过程1.导入(5分钟)通过展示一些实际问题,让学生思考如何用数学的方法来解决这些问题。

例如,小明有2个苹果,小红有3个苹果,问小明和小红谁苹果多?引导学生发现这个问题可以用不等式来表示和解决。

2.呈现(10分钟)通过PPT呈现一元一次不等式的定义、解法及其应用。

讲解一元一次不等式的定义,例如:ax > b(a、b为实数,a≠0)。

讲解一元一次不等式的解法,例如:将不等式两边同除以a,得到x > b/a。

同时,展示一些实例,让学生理解一元一次不等式的应用。

浙教版数学八年级上册3章:《一元一次不等式组》参考教案

浙教版数学八年级上册3章:《一元一次不等式组》参考教案

浙教版数学八年级上册3章:《一元一次不等式组》参考教案一. 教材分析《一元一次不等式组》是浙教版数学八年级上册第3章的内容,这部分内容是在学生已经掌握了不等式的基本性质和一元一次不等式的解法的基础上进行教学的。

通过这部分的学习,使学生能够理解不等式组的含义,掌握解一元一次不等式组的方法,提高学生解决实际问题的能力。

二. 学情分析学生在学习这部分内容时,已经有了一定的数学基础,但对于不等式组的解法可能会感到困惑。

因此,在教学过程中,需要关注学生的学习情况,针对学生的困惑进行讲解,帮助学生理解和掌握不等式组的解法。

三. 教学目标1.让学生理解不等式组的含义,掌握解一元一次不等式组的方法。

2.培养学生解决实际问题的能力,提高学生的数学思维能力。

3.培养学生合作学习、积极探究的学习习惯。

四. 教学重难点1.教学重点:让学生掌握解一元一次不等式组的方法。

2.教学难点:对于不等式组的解法的理解和应用。

五. 教学方法采用问题驱动法、案例分析法、合作学习法等教学方法,引导学生通过自主学习、讨论交流,掌握解一元一次不等式组的方法。

六. 教学准备1.准备相关的教学案例和练习题。

2.准备多媒体教学设备,制作课件。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾不等式的基本性质和一元一次不等式的解法,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过课件展示不等式组的含义和解法,让学生直观地感受不等式组的特点和解法。

3.操练(10分钟)学生分组进行讨论,每组解答一个不等式组,教师巡回指导,帮助学生解决解答过程中遇到的问题。

4.巩固(10分钟)学生独立完成一些关于不等式组的练习题,教师选取部分题目进行讲解,巩固学生对不等式组的解法的掌握。

5.拓展(10分钟)教师提出一些实际问题,引导学生运用不等式组的知识解决问题,提高学生的实际应用能力。

6.小结(5分钟)教师引导学生总结本节课所学的内容,加深学生对不等式组的解法的理解。

《一元一次不等式组》说课稿

《一元一次不等式组》说课稿《一元一次不等式组》说课稿1各位评委老师:大家好!我是九集镇龙门中学老师,今天我展示课的内容是人教版数学七年级下册第九章第二节的第一课时《一元一次不等式》。

下面我就分别从教材、教法、学法、教学过程设计四个方面来说明我对这节课的教学设想。

一、教材分析教材的地位和作用在前面已学习了一元一次方程的相关知识和不等式的性质,本节课主要是通过类比一元一次方程的解法总结归纳出一元一次不等式的解法,并熟练运用不等式的性质解一元一次不等式。

只有学生掌握好了一元一次不等式的解法,才能更好学习后面的不等式组及不等式(组)的应用。

同时,学习本节课时涉及的类比思想、化归思想和数形结合思想对后续学习也是十分有益的,所以本课的教学不能仅仅停留在知识的探索上,更要注重数学方法和数学思想的渗透和传播。

日常生产生活中不等关系的情况常常发生,所以不等式在日常生产生活中的应用很广泛,它与数、式、方程、函数甚至几何图形有着密切的联系,它几乎渗透到初中数学的每一部分。

可见,本节课内容在本章乃至整个初中数学中都具有承上启下的作用,处于一个基础性、工具性的地位,不仅是对已有知识的运用和深化,还为后续继学习打下基础。

教学目标根据《课标》要求和上述教材分析,结合学生的实际情况,我制定了以下教学目标:知识与技能1.了解一元一次不等式、2.利用不等式性质解一元一次不等式,并通过解一元一次方程的步骤来探索解一元一次不等式的一般步骤,体会“比较”和“转化”的数学学习方法、3.用数轴表示解集,启发学生对数形结合思想的进一步理解和掌握、过程与方法1.通过类比一元一次方程的解法,引导启发学生掌握一元一次不等式的解法、2.通过练习巩固,能正确应用不等式性质解一元一次不等式、情感、态度与价值观3.在教学过程中引导学生体会数学中“比较”和“转化”的思想方法、4.通过本节的学习让学生体会不等式解集的奇异的数学美,激发学生学习数学的兴趣、教学重难点和教学关键根据上面的教材分析和《课标》要求,确定本节课的教学重点是:初步掌握一元一次不等式的解法;掌握解一元一次不等式的一般步骤,并能用数轴表示解集、为突出重点,本节课让学生积极参与、自主探索并掌握一元一次不等式的解法。

一元一次不等式和一元一次不等式组试卷讲评课教学案例

第一章一元一次不等式和一元一次不等式组试卷讲评课教学案例一、试卷分析:本章试卷覆盖第一章的基本的知识点和重难点,考查学生对不等式基本性质与不等式(组)解集的理解与应用,反馈学生解不等式(组)的基本技能,渗透数形结合思想,题目中设计了不等式与一次函数,不等式组与方程组相结合的题目,使学生进一步感受不等式、方程、函数之间的联系与区别,第19题是2008年深圳的中考题,让学生利用方程、不等式、函数解决实际问题,提高学生分析问题、解决问题的能力。

二、学情分析:学生通过对本章内容的学习,知道了不等式的相关概念、不等式的基本性质、不等式的解法,能在数轴上画图表示不等式的解集,了解不等式是解决实际问题的一种数学模型,知道在现实生活中可以通过数学计算选择最优方案。

但是学生在应用不等式的基本性质3时容易出错,当不等式(组)、方程组中出现待定字母时,给学生的思维带来了障碍,学生的符号感不强,缺少分析的思路和解决方法,学生分析问题、解决问题的能力有待于提高。

三、教学目标:知识目标:对概念、性质、解法进行剖析,对知识的整合进行辨析,对运用知识解决问题进行探析。

涉及①不等式的基本性质的应用②解一元一次不等式(组)③利用一次函数图像解不等式(组)④解方程组与不等式(组)结合的题目⑤利用不等式模型解决实际问题。

能力目标:通过对上述几种题型的分析、讲解和进一步的练习,提高学生综合、灵活运用各知识点的能力,提高学生运用数形结合思想、方程、函数、不等式解决问题的能力。

情感目标:通过学习进一步激发学生学习数学的兴趣,培养学生对数学学习的自信心,提高数学素养。

四、重点和难点:解不等式与不等式组,应用不等式解决实际问题,数学思想方法在解题中的应用。

五、教学方法:本节课在教学中充分安排研讨、归纳、尝试、提升、变式和巩固,采用学生自主解决,教师适时点拨的方法让学生在问题解决中对相关知识形成精准的认识,能够熟练应用,举一反三,体会如何根据题目中的条件展开分析,选择模型,开阔解题思路。

《一元一次不等式组》评课稿

《一元一次不等式组》评课稿授课人评课人《一元一次不等式组》评课稿聆听了王老师的课。

下面就王老师的《一元一次不等式组》这一课谈谈自己的看法。

王老师这堂课充满了活力,渗透了新的教育理念,教法灵活,趣味盎然。

学生在课堂中能认真地倾听,自由地表达,灵活地运用,整堂课如行云流水,步步流畅,充分地达到了知识的渗透,能力的培养,情感的交流,有效地训练了学生敏锐地观察力,发展了学生的思维能力,激发了学生的想象力和创造力。

从教师个人素质上看,教师的教学水平,组织课堂教学的能力,激发学生兴趣的手段都非常高,正因为有王老师的指导,学生在课堂中肯学,乐学,老师教态自然、亲切,明朗活泼,富有感染力;仪表端庄,举止从容;课堂语言准确清楚,快慢适度,条理性强。

老师的一举手,一投足,一个眼神,都深深地感染着学生,给学生极大的鼓舞,让学生充满了朝气。

从教学程序上看,王老师首先带领学生认识什么是不等式组,老师认识到单纯的讲解不等式组略显单调,于是引领学生以实体问题为依托,训练学生寻找不等量的能力,找出不等式组,最后提出解决策略。

学生思考,并且逐步尝试,最终总结一般办法。

教学思路清晰,结构较严谨,环环相扣,过渡自然。

当然,数学是一门逻辑性较强的科目,任何好的理念和设计在实际的教学过程中总会留下一些遗憾:这节课也不例外,授人以鱼,不如授人以渔。

教学过程中有三点,王老师没有注意到。

之前学生对不等式的解集理解还不是特别清晰,仅仅是在数轴上表达出来,并没有真正的做到掌握。

本节课的不等式组的解集让学生更加的不理解,尤其是看图得出解集环节。

包含与被包含关系学生不易掌握,而且情况比较多,有时考虑一边的障碍,有时必须两边都要考虑。

当然,金无足赤,课无完美。

但瑕不掩玉,王老师这节课仍是一堂体现新课程理念的成功案例,具有一定的借鉴意义。

课堂教学无论怎样改,教师都应该以学生能力发展为重点,把促进学生终身发展放在首位,一切与之相悖的做法和想法都摒弃。

尤其在课程改革的今天,我们更应保持清醒头脑,严防热闹背后的误区。

华东师大版七年级数学下册《一元一次不等式组》评课稿

华东师大版七年级数学下册《一元一次不等式组》评课稿一、课程评述《一元一次不等式组》是华东师大版七年级数学下册的一堂重要课程,该课程主要围绕一元一次不等式组的概念、解法和应用展开。

通过本堂课的学习,学生可以进一步理解不等式组的概念,并掌握解一元一次不等式组的基本方法。

本评课稿将对该课程的设计、内容、教学手段和学生反应进行评价和总结。

二、教学设计1. 教学目标本堂课的教学目标主要包括以下几个方面: - 理解不等式组的概念和性质; - 掌握解一元一次不等式组的基本方法;- 能够灵活运用所学知识解决实际问题; - 培养学生合作学习和思维能力。

2. 教学重点和难点本堂课的教学重点主要集中在以下几个方面: - 不等式组的概念和性质的理解; - 解一元一次不等式组的基本方法的掌握; - 实际问题与一元一次不等式组的联系。

教学难点主要包括以下几点: - 不等式组的概念与方程组的区别和联系; - 解一元一次不等式组时的思维方法; - 将实际问题转化为一元一次不等式组的过程。

3. 教学内容和流程3.1 教学内容本堂课的主要内容包括以下几个部分: - 不等式组的概念和性质; - 解一元一次不等式组的基本方法; - 实际问题与一元一次不等式组的联系。

3.2 教学流程本堂课的教学流程分为以下几个步骤: 1. 导入:通过提问和引入实际问题,激发学生的学习兴趣。

2. 概念讲解:对不等式组的概念和性质进行详细讲解,并举例说明。

3. 解题方法介绍:介绍解一元一次不等式组的基本方法,并进行示范。

4. 练习:提供一些实例进行练习,并让学生归纳总结解题方法。

5. 应用拓展:通过实际问题的讨论和解决,将一元一次不等式组与实际问题联系起来。

6. 总结归纳:对本堂课的内容进行总结和归纳,激发学生的思考。

三、教学手段与方法1. 教学手段本堂课主要采用以下教学手段: - 板书:用于展示概念和示例,方便学生理解和记忆。

- 问题导入:通过提问和实际问题引入,激发学生的思考和讨论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《一元一次不等式组 ( 三 ) 》教学案例点评背景介绍本学期,我们二中八年级的数学老师在渤海大学范文贵老师的指导下进行了一些教学上的改革尝试。

范老师现正在华东师大攻读博士学位,他研读的课题是探究式教学。

本节课是在范老师初次介绍了探究式教学的意义等理论知识的基础上上的一堂课,我的这堂课得到了范老师的肯定,他鼓励我就这节课写一篇教学案例,既是对自己授课思想的整理,也是对于学生思维火花的收集。

案例描述一、创设问题情境引入新课师:同学们,我们在前面利用两节课的时间探究了一元一次不等式组的解法,那么如何利用这部分知识解决实际问题呢?这节课让我们一起来研究这个问题。

[ 点评:引课开门见山,简单明了,问题与前两节课学过的知识有关,学生的兴趣立刻被调动起来。

]二、探究例题的解法师:小黑板出示例题:例4 一群女生住若干间宿舍,每间住 4 人,剩19 人无房住;每间住6 人,有一间宿舍不满,问可能有多少间宿舍、多少名学生?同学们,这道题给出了几组条件?关键句是哪句?把两个问中的哪一个设为未知数?生:这道题给出了两组条件,“ 有一间宿舍住不满” 是关键句。

生:设有x 间宿舍。

师:为什么要设宿舍的间数,而不是学生的人数?生:便于用x 表示学生人数。

师:对于关键句的分析理解,同学们可以独立探究,也可以与他人合作探讨,然后列出不等式组。

生:进行多种形式的探究活动。

师:同学们,能把你们得到的结果展示给大家吗?生:写出解题全过程并讲解。

列法一:列法二:6(x-1) <4x+19 <6x 。

师:同学们对于这道题还有什么问题吗?生:对于列出的不等式组还是不太理解。

师:那么对于此题还有其它的列法吗?生:有。

师:孙倩你能给大家讲讲吗?生:设的未知数不变,不等式组可以列为0 <(4x+19)-6(x-1) < 6 ,或其中4x+19 表示学生总数,6(x-1) 表示住满(x-1) 间的学生数,4x+19-6(x-1) 表示住不满的那个房间的人数,因此有0 <(4x+19)-6(x-1) < 6 。

师:对于这种列法和解释大家能理解吗?生:都说能。

[ 点评:这一环节没有教师的反复讲解,即使是学生在理解例题的过程中出现困难,教师也没有作为主角出现,而是作为组织者、指导者,让学生作为主角用学生的语言来给学生讲解,课堂的理解效果非常好,学生非常接受。

]师:下面请同学们利用探究的方法解决教材32 页随堂练习的第1 题。

关注学生的练习情况并找两种不同解法的学生进行板演。

生:两名学生板演,其他学生在练习本上练习。

生1 :解:设小朋友的人数为x 人。

根据题意,得解这个不等式组,得5 <x <8 。

因为x 是整数,所以x=6 ,7 。

因此,可能有6 个小朋友、22 件玩具,或有7 个小朋友、25 件玩具。

生2 :解:设小朋友的人数为x 人。

根据题意,得…………师:组织学生进行评价。

生:我在接受了孙倩的方法之后,现在再来看第一种解法也能看明白这种列法的思路了。

师:我对同学们的解题情况进行了观察,发现同学们大部分都运用了孙倩同学的解题方法,孙倩同学介绍的这种方法帮助我们加深了对例题的理解,那么这种解题的方法就以孙倩的名字来命名,请大家用掌声对孙倩同学表示感谢!生:鼓掌。

[ 点评:此时的表扬既是对课堂气氛的一种调控,也是对孙倩同学的肯定,有助于树立学生的自信心、成就感,为下面更有深度的问题的探究扫清了障碍。

]师:既然大家都觉得孙倩同学的方法好,既方便理解又便于应用,那么这种方法能否用于解决其它类型的问题呢?( 小黑板出示“ 做一做”)师:同学们可以独立探究,也可以小组讨论、合作探究。

生:以极大的热情投入到解题方法的探讨中。

师:巡视,与学生探讨,发现不同的方法,选出代表到黑板上板演。

师:请大家坐好,下面我们来听听黑板上这几种解法的思路。

生:在黑板前进行讲解。

方法一:解:设乙骑车的速度是xkm/h ,根据题意,得解这个不等式组,得13≤x≤15 。

因此,乙骑车的速度应控制在13km/h ~15km/h 之间。

生 1 :因为甲的路程等于乙的路程,表示最慢时乙的速度,表示最快时乙的速度,所以x 介于与之间。

师:对这种解法其他同学有疑义吗?生:没有。

师:对于第二种解法同学们能看明白吗?生:能看明白,但我觉得这里面的不等号的方向好像是弄反了。

师:那么,请第二名同学来解释一下吧!方法二:解:设乙骑车的速度是xkm/h ,。

根据题意,得生2 :不等号的方向没有反,因为表示最快的时间,最快的时间当然不会超过1 小时,对于第二个不等号也是这个道理。

师:大家对第三种解法有看不明白的地方吗?方法三:解:设乙骑车的速度是xkm/h ,。

根据题意,得生:没有。

师:下面我们来听听第四种方法的解题思路。

方法四:解:设从出发到被乙追上甲共走了xkm 的路程。

根据题意,得1≤ -2≤ 。

解这个不等式组,得15≤x≤16.25 。

生 4 :不等式组中的x 表示甲的路程,表示甲的总时间,-2 表示乙追甲用的时间。

生:但是你求出的只是路程的取值范围,没有回答出题中的问题。

生 4 :这个问题我也知道,但是我也没有想出办法来。

师:哪位同学能帮助他把这种方法完善一下呢?生:路程为15 说明速度快、时间短,所以应用=15 求出最快的速度,再用求出最慢的速度,所以速度还是在13-15 之间。

师:同学们还有要交流的其它方法吗?生:没有了![ 点评:这部分内容是本节课的点睛之笔,在这一部分运用了探究式教学方法中的探究解题方法来引导学生,效果非常理想。

首先,教师在巡堂的过程中找出了两种比较普遍的解法,然后让学生进行板演,果然起到了抛砖引玉的作用,激起了其他同学的探究欲望,使学生的思维状态达到了一个高潮,方法四的出现也就是非常正确的事了。

这里,方法四的出现有两层意义:首先它是学生思维极其活跃的产物,是对本节课课堂效果的一个肯定;其次它同前3 个方法不同,不是直接设,而是间接设,是从另一个角度来研究问题,对于对直接设法不理解的学生来说,这种方法简直是独辟蹊径,降低了难度。

]三、归纳总结师:有的同学可能对这几种方法中的个别方法还不太明白,课下我们大家再继续交流、探讨。

现在请同学们谈谈本节课的收获。

生 1 :我觉得孙倩的方法很好,对我的帮助很大,我相信很多题都可以用这个思路来思考,下课后我还要反复体会。

生2 :我觉得学好数学很有用,能帮助我们解决生活中的实际问题。

生 3 :我觉得这堂课的内容有一定的难度,但我发现只要找准关键句,利用关键句列出不等关系,问题就迎刃而解了。

师:同学们总结的很好,也很具体,那么就让今天的作业来延伸我们的探究思路。

今天的作业是教材32 页习题 1.10 的1 、2 题。

教学反思这堂课是以学生探究为主的一堂例题课。

一、教材处理在阅读教材时我就发现教材中的“ 做一做” 中的题很有难度,而且书上在做一做前并没有给出例题,这样学生课前的预习就没有参考的内容,难度就更大了。

因此,在安排教学内容时,我把难度低、而且又有解答过程的例 4 放在了第一内容的位置上,而把“ 做一做” 放在了第二内容的位置上,这样安排由浅入深,符合学生的认知规律。

二、教法学法对于这一堂例题课,我打破了传统教学的教师讲、学生练的教学模式,取而代之的是教师引导、学生主动探究的教学方式。

第一个梯度例 4 的探究达到了预计的目标,在此基础上的第二个梯度“ 做一做” 完全超出了教者的预计,效果非常好,学生在探究过程中,发现了四种解题方法,尤其是第四种方法是利用间接设未知数、列不等式组来解决的。

整个教学过程从多角度对例题的解法进行了阐述,避免了教师一种讲法部分学生不理解的尴尬,既调动了学生探究的积极性,又有利于学生对知识的理解和吸收。

三、不足之处1. 对基础差的学生关注不够,他们在合作探究的过程中遇到的困难会很多,可是由于在课堂上需要面对的是大多数学生,另外在课堂上时间也是一个原因,如果是小班型授课这个问题就解决了。

2. 对于错误的处理方法需要完善,在以后的教学中要鼓励学生发现错误、纠正错误。

进货次数问题探讨题目某公司某年需要某种计算机元件8000个,在一年内连续作业组装成整机卖出(每天需同样多的元件用手组装,并随时运出整机至市场),该元件向外购买进货,每次(不论购买多少件)须花手续费500元,如一次进货,可少花手续费,但8000个元件的保管费很有观,如果多次进货,手续费多了,但可节省保管费,请你帮该公司出个主意,每年进货几次为宜,该公司的库存保管费可按下述方法计算:每个元件每年2元,并可按比例折算成更短的时间:如每个元件保管一天的费用为元(一年按360天计算)。

每个元件的买价、运输费及其他费用假设为一常数。

解:设购进8000个元件的总费用为F,一年总保管费为E,手续费为H,元件买价、运输费及其他费用为C(C为常数),则如果每年进货次,则每次进货个,用完这些元件的时间是年。

进货后,因连续作业组装,一天后保管数量只有个(为一天所需元件),两天后只有个,……,因此年中个元件的保管费可按平均数计算,即相当于个保管了年,每个元件保管须元,做这年中个元件的保管费为每进货一次,花保管费元,一共次,故,,所以当且仅当,即时,总费用最少,故以每年进货4次为宜。

说明这道寻求最佳进货次数的问题,是北京市首届“方正杯“中学生数学知识应用竞赛初赛试题(1993.11),求解的关键数学知识是“ 的极小值是”一节习题课的尝试深圳市竹林中学/甘继凤摘自:《初中数学教艺网》八年级数学(下)北师大版第六章第216页布置了两道习题,即A组第6题和B组第2题。

编者在这里设置了两级引导学生探究的好台阶,提供了教师发掘教材的好机会。

可是,很多师生只是把它们作为两道习题,一解而过,而没有去探究、去挖掘,没有从这里体会数学曲径通幽处的奥妙,无异于入宝山而空手归。

而我也是大姑娘上轿----头一回尝试去这样上习题课。

走上讲台,我像以往一样,面带微笑,眼睛扫视了一遍课室。

接着我先疏通有关知识,然后,出示了这样一道题:如图(1),直线MA∥NB,点P在MA和NB之间,求证:∠APB=∠MAP+∠NBP。

学生很快就作出来了。

接着,我又问当点P在MA和NB之外时[如图(2)]又会有什么结果?没一会,学生就得出了结论:∠MAP=∠NBP+∠APB(证明略)。

我又问当点P位置不同时,你们还能就本题作出什么猜想?同学们这时议论纷纷。

有同学提出来:当点P在MA 和NB之间[如图(3)]时,有∠MAP+∠PBN+∠APB=360°。

有同学补充道:当点P在MA 和NB之外时[如图(4)],有∠NBP=∠MAP+∠APB。

师:很好。

请同学们对比图(2)与图(4),看看它们有什么相同和不同?生:虽然两个结论形式上不一样,但它们没有本质的不同。

师:可看作是同一种类型吗?。

相关文档
最新文档