高考数学必备知识点总结
数学高考必考知识点

数学高考必考知识点一、代数1. 集合与函数- 集合的基本概念、运算及其性质- 函数的定义、性质和常见类型(如线性函数、二次函数、指数函数、对数函数等)- 函数的图像和变换(平移、伸缩、对称等)2. 不等式与方程- 一元一次不等式和方程的解法- 二元一次不等式组和方程组的解法- 一元二次方程的解法及其判别式- 不等式的解集表示和基本性质3. 数列- 等差数列和等比数列的通项公式、求和公式- 数列的极限概念及其计算- 数列的递推关系和通项公式的求解二、几何1. 平面几何- 点、线、面的基本性质- 三角形、四边形的性质和计算- 圆的性质和相关公式- 相似与全等的判定和应用2. 立体几何- 空间几何体的性质和计算(如棱柱、棱锥、圆柱、圆锥、球等) - 空间向量及其在立体几何中的应用- 立体几何中的表面积和体积计算3. 解析几何- 直线和圆的解析表达式- 圆锥曲线(椭圆、双曲线、抛物线)的标准方程- 坐标变换和参数方程三、概率与统计1. 概率- 随机事件的概率计算- 条件概率和独立事件的概念- 排列组合的基本原理和公式2. 统计- 数据的收集、整理和描述- 均值、中位数、众数、方差、标准差等统计量的计算- 概率分布(如二项分布、正态分布)的概念和应用四、数学分析1. 极限与连续- 数列极限的概念和性质- 函数极限的定义和计算- 连续函数的性质和判断2. 导数与微分- 导数的定义、几何意义和物理意义- 常见函数的导数公式- 微分的概念和应用3. 积分- 不定积分的概念和基本积分表- 定积分的定义、性质和计算- 微积分基本定理及其应用五、数学解题技巧- 快速准确的计算方法- 图形和代数方法的结合使用- 逻辑推理和证明技巧- 常见数学问题的解题策略六、数学思维与应用- 数学建模和实际问题的应用- 创新思维在数学问题解决中的运用- 数学与其他学科的交叉融合七、复习策略- 定期复习和巩固基础知识- 针对性练习和模拟考试- 错题分析和知识点查漏补缺以上是数学高考必考知识点的概览。
高考数学必考知识点归纳总结

高考数学必考知识点归纳总结一、函数与方程1. 一次函数及其表示法一次函数的定义:形如y=kx+b(k≠0)的函数叫一次函数,其中k称为比例系数,b称为常数项。
一次函数的图象:y=kx+b的图象是一条直线,叫做一次函数的图象。
2. 一元二次方程一元二次方程的定义:形如ax²+bx+c=0(a≠0)的方程叫做一元二次方程。
一元二次方程的解:求解一元二次方程ax²+bx+c=0( a≠0 )时,可以使用下列两个公式:(1)根的判别式:Δ=b²-4ac,当Δ=0时,方程有两个相等的实根x1=x2=−b2a;当Δ>0时,方程有两个不相等的实根x1=−b−Δ2a,x2=−b+Δ2a;当Δ<0时,方程无实根。
(2)求根公式:x1=−b−Δ2a,x2=−b+Δ2a。
3. 对数函数对数函数的定义:设a>0且a≠1,且a≠1,那么函数y=loga(x)a>0且a≠1 称为对数函数。
其中a叫底数,x叫实参。
对数函数的基本性质:(1)loga(1)=0;(2)loga(a)=1;(3)loga(xy)=loga(x)+loga(y);(4)loga(x/y)=loga(x)−loga(y);(5)loga(x^n)=nloga(x)。
4. 复合函数复合函数的定义:设y=f(u),u=g(x),函数y=f[g(x)]称为由函数f和g复合而成的复合函数。
复合函数的求导法则:(1)f[g(x)]的导函数:(f[g(x)])′=f′[g(x)]⋅g′(x)。
5. 三角函数三角函数的基本性质:(1) sin(-θ)=-sinθ;(2) cos(-θ)=cosθ;(3) sin(π-θ)=sinθ;(4) cos(π-θ)=-cosθ(5) sin(π/2-θ)=cosθ(6) cos(π/2-θ)=sinθ二、空间几何1. 空间几何基本定理平行公理,在一个平面外一点到平面之间有且只有一条直线与该平面平行;平行公理的逆命题,在一个平面外一点到平面之间不可能有两条以上的直线与该平面平行;平行公理的复合命题,如果一直线与两个不同的平面平行,则这两个平面平行。
高考数学考点大全总结概括

高考数学考点大全总结概括高考数学必考知识点一一、集合、简易逻辑(14课时,8个)1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。
二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。
三、数列(12课时,5个)1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。
四、三角函数(46课时,17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。
五、平面向量(12课时,8个)1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。
六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式。
七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。
高考必背最完整的高中数学知识点

高考必背最完整的高中数学知识点一、代数1. 一次函数的性质:直线的斜率、截距和方程形式。
2. 二次函数的性质:顶点坐标、对称轴、开口方向和方程形式。
3. 幂函数与指数函数的性质。
4. 对数函数的性质:底数为正数时的定义、性质与常见公式。
5. 三角函数的基本概念:正弦函数、余弦函数和正切函数的周期、定义域、值域和图像。
6. 数列的概念及常见数列的通项公式和求和公式。
二、几何1. 平面几何基本概念:点、直线、平行和垂直关系。
2. 三角形的性质:角的度量、三角形类型和重要定理(如余弦定理和正弦定理)。
3. 圆的性质:圆周角、弧长和面积公式。
4. 球和立体几何的基本概念:体积、表面积和投影等。
三、概率与统计1. 概率的基本概念:事件、样本空间、概率以及概率的性质与计算。
2. 随机变量的概念及其分布函数和密度函数。
3. 统计的基本概念:总体、样本、参数和统计量。
4. 样本调查与统计分析的方法和步骤。
四、解析几何1. 向量的基本概念:向量的表示、向量的运算、向量的模和方向角。
2. 平面的方程:一般式、点法式、两点式和法向量式等。
3. 空间几何基本概念:点、直线、平面的关系与位置。
4. 空间直角坐标系:空间直角坐标系的建立与距离公式。
五、数学思维1. 基本解题方法和思维:分类讨论、递推法、数学归纳法等。
2. 数学证明的基本方法:直接证明、间接证明、反证法等。
3. 数学建模的基本流程和方法。
4. 数学问题的模型转化与解决策略。
以上是高考必背的最完整的高中数学知识点。
希望同学们在备考过程中认真复这些知识,做好各种题型的练,提高自己的数学水平,取得好成绩!加油!。
高考数学必考知识点归纳

高考数学必考知识点归纳一、集合与函数1.集合o表示法:列举法、描述法、图示法(韦恩图)。
o运算:交集、并集、补集(相对于全集)。
2.函数o概念:输入与输出之间的对应关系。
o表示法:解析法、列表法、图像法。
o单调性:增函数、减函数。
o奇偶性:奇函数、偶函数、非奇非偶函数。
二、数列1.定义与表示o数列的定义:按一定顺序排列的一列数。
o表示法:通项公式、递推公式。
2.等差数列o定义、通项公式、前n项和公式。
o性质:中项性质、等差中项。
3.等比数列o定义、通项公式、前n项和公式(注意公比不为1的情况)。
o性质:中项性质、等比中项。
4.数列求和o倒序相加法、错位相减法、分组求和法、裂项相消法等。
5.数列的极限o数列极限的概念、性质及简单计算。
三、三角函数1.基本概念o角度与弧度制、三角函数定义(正弦、余弦、正切)。
2.诱导公式o角度加减变换公式。
3.同角关系式o基本恒等式、平方关系、商数关系。
4.性质o周期性、奇偶性、单调性、有界性。
5.图像与性质o各三角函数图像特征、相位变换、振幅变换。
6.三角恒等变换o和差化积、积化和差、倍角公式、半角公式。
7.解三角形o正弦定理、余弦定理、面积公式、海伦公式。
四、向量1.基本概念o向量的模、方向、坐标表示。
2.运算o加法、减法、数乘、数量积(点积)、向量积(叉积)。
o模长与夹角的关系、平行与垂直的条件。
五、解析几何1.直线o方程:点斜式、斜截式、两点式、截距式、一般式。
o斜率:定义、公式、倾斜角。
o位置关系:平行、垂直的条件。
2.圆o方程:标准方程、一般方程。
o性质:圆心、半径、切线、弦的性质(如相交弦定理)。
3.圆锥曲线o椭圆、双曲线、抛物线的定义、标准方程、性质。
六、立体几何1.空间位置关系o直线与平面、平面与平面的平行、垂直关系。
2.几何体o柱体、锥体、球体等的结构特征及表面积、体积公式。
3.三视图o正视图、侧视图、俯视图及其绘制方法。
七、不等式1.性质o基本性质、传递性、可加性、可乘性(正数时)。
2024年高考数学知识点总结整理

2024年高考数学知识点总结整理一、函数与方程1. 函数的概念和性质- 函数的定义:函数是一个将一个集合的元素(称为自变量)映射到另一个集合的元素(称为因变量)的规则。
- 函数的表示:函数可以用函数式表示、图像表示、数据表格表示等。
- 函数的性质:奇偶性、周期性、单调性、极值、零点等。
2. 平面直角坐标系- 坐标系的建立:确定坐标轴的正方向和原点的位置。
- 直角坐标的表示法:点在平面上的位置可以用有序数对表示。
- 直线的方程:点斜式、两点式、截距式等。
3. 一元二次方程- 一元二次方程的定义:形如ax^2 + bx + c = 0的代数方程,其中a、b、c都是已知的实数,a ≠ 0。
- 一元二次方程的解:实数解、复数解、无解等。
- 一元二次方程的求解方法:配方法、公式法、图解法等。
4. 不等式- 不等式的概念:比大小关系不是等号的代数式。
- 不等式的性质:加减、乘除等运算规则。
- 不等式的解集:解集可以用数轴图、区间表示等。
二、数列与数学归纳法1. 等差数列- 等差数列的定义:数列中相邻两项之差相等。
- 等差数列的通项公式:an = a1 + (n - 1)d,其中an是第n项,a1是首项,d是公差。
- 等差数列的性质:求和公式、前n项和等。
2. 等比数列- 等比数列的定义:数列中相邻两项之比相等。
- 等比数列的通项公式:an = a1 * r^(n - 1),其中an是第n项,a1是首项,r是公比。
- 等比数列的性质:求和公式、前n项和等。
3. 数列的求和- 等差数列的前n项和公式:Sn = n/2 * (a1 + an),其中Sn是前n项和,a1是首项,an是第n项。
- 等比数列的前n项和公式:Sn = (a1 * (1 - r^n))/(1 - r),其中Sn是前n项和,a1是首项,r是公比。
4. 数学归纳法- 数学归纳法的基本思想:证明某个命题对于一切自然数n 都成立,先证明对n=1成立,然后假设对n=k成立,再证明对n=k+1成立。
高三数学高考知识点总结

高三数学高考知识点总结1. 函数与方程1.1 一元二次函数及应用1.2 二次函数与一元二次方程1.3 三角函数与解三角形1.4 指数、对数与幂函数1.5 不等式1.6 等式与方程的应用1.7 参数方程与函数的图形2. 数列与数列极限2.1 数列的概念与性质2.2 等差数列与等比数列2.3 数列极限的定义与性质2.4 数列极限的计算方法2.5 无穷数列极限3. 三角函数与三角恒等变换3.1 三角函数的定义与性质3.2 三角函数的图像与变换3.3 三角函数的复合与反函数3.4 三角恒等式的证明与应用3.5 三角函数的基本计算4. 几何与空间几何4.1 平面几何基本概念与定理4.2 平面图形的性质与计算4.3 立体图形的基本概念与定理4.4 空间图形的性质与计算4.5 空间几何的向量与坐标表示4.6 空间几何的相交与平行关系5. 三角函数与向量5.1 向量的概念与性质5.2 平面向量的基本运算5.3 向量的数量积与向量积5.4 向量与空间图形的应用5.5 三角函数与向量的关系6. 概率与统计6.1 随机事件与概率6.2 概率的计算与性质6.3 组合与排列6.4 统计图与频率分布表6.5 参数估计与假设检验7. 导数与微分7.1 导数的概念与性质7.2 导数的计算及应用7.3 高阶导数与隐函数求导7.4 微分的概念与性质7.5 微分中值定理与泰勒展开7.6 极值与最值的判定8. 不定积分与定积分8.1 不定积分及其基本性质8.2 常用的积分公式与方法8.3 定积分的定义及性质8.4 定积分的计算方法8.5 定积分在几何与物理中的应用9. 空间解析几何9.1 空间直线与面的方程9.2 空间几何的两点形式与一般方程9.3 空间几何的交点、距离与投影9.4 空间直线与面的位置关系9.5 空间曲线及其方程10. 数学建模10.1 建模的基本思路与方法10.2 建模中的数学工具与技巧10.3 建模中的数据处理与分析10.4 建模中的模型建立与求解这些都是高中数学高考的核心知识点,在备考过程中需要掌握这些知识点的概念、性质、计算方法和应用。
高考数学必考知识点归纳全

高考数学必考知识点归纳全高考数学是高中阶段学生面临的一次重要考试,它涵盖了多个数学领域的基础知识点。
以下是高考数学必考知识点的归纳:一、集合与函数- 集合的概念:集合的表示、子集、并集、交集、补集。
- 函数的概念:函数的定义、值域、定义域、单调性、奇偶性。
- 函数的表示:函数的图象、函数的解析式。
二、代数基础- 指数与对数:指数函数、对数函数、对数运算法则。
- 幂运算:幂的运算法则、根式。
- 代数方程:一元一次方程、一元二次方程、高次方程、方程组的解法。
三、不等式与不等式组- 不等式的基本性质:不等式的基本解法、不等式组的解集。
- 绝对值不等式:绝对值的定义、绝对值不等式的解法。
四、数列- 等差数列:等差数列的定义、通项公式、求和公式。
- 等比数列:等比数列的定义、通项公式、求和公式。
- 数列的极限:数列极限的概念、极限的运算。
五、三角函数与解三角形- 三角函数:正弦、余弦、正切等基本三角函数的性质和图像。
- 解三角形:正弦定理、余弦定理、三角形的面积公式。
六、解析几何- 直线:直线的方程、直线的位置关系。
- 圆:圆的方程、圆与直线的位置关系。
- 椭圆、双曲线、抛物线:圆锥曲线的性质和方程。
七、立体几何- 空间直线与平面:空间直线的方程、平面的方程、线面关系。
- 多面体与旋转体:多面体的体积、旋转体的表面积和体积。
八、概率与统计初步- 随机事件的概率:概率的定义、概率的计算方法。
- 统计初步:数据的收集、整理、描述。
九、导数与微分- 导数的概念:导数的定义、几何意义。
- 基本导数公式:常见函数的导数公式。
- 微分的概念:微分的定义、微分的应用。
十、积分与应用- 不定积分:不定积分的概念、基本积分公式。
- 定积分:定积分的概念、定积分的计算方法。
- 积分的应用:面积、体积、物理量等的计算。
十一、复数- 复数的概念:复数的定义、复数的运算。
- 复数的几何表示:复平面、复数的模和辐角。
十二、逻辑推理与证明方法- 逻辑推理:命题逻辑、逻辑运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年高考数学必备知识点总结
1、混淆命题的否定与否命题
命题的“否定”与命题的“否命题”是两个不同的概念,命题p 的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。
2、忽视集合元素的三性致误
集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。
3、判断函数奇偶性忽略定义域致误
判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。
4、函数零点定理使用不当致误
如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)0,那么,函数y=f(x)在区间(a,b)内有零点,但f(a)f(b)0时,不能否定函数y=f(x)在(a,b)内有零点。
函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题。
5、函数的单调区间理解不准致误
在研究函数问题时要时时刻刻想到“函数的图像”,学会从函
数图像上去分析问题、寻找解决问题的方法。
对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
6、三角函数的单调性判断致误
对于函数y=Asin(ωx+φ)的单调性,当ω0时,由于内层函数u=ωx+φ是单调递增的,所以该函数的单调性和y=sin x
的单调性相同,故可完全按照函数y=sin x的单调区间解决;但当ω0时,内层函数u=ωx+φ是单调递减的,此时该函数的单调性和函数y=sinx的单调性相反,就不能再按照函数
y=sinx的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决。
对于带有绝对值的三角函数应该根据图像,从直观上进行判断。
7、向量夹角范围不清致误
解题时要全面考虑问题。
数学试题中往往隐含着一些容易被考生所忽视的因素,能不能在解题时把这些因素考虑到,是解题成功的关键,如当a·b0时,a与b的夹角不一定为钝角,要注意θ=π的情况。
8、忽视零向量致误
零向量是向量中最特殊的向量,规定零向量的长度为0,其方向是任意的,零向量与任意向量都共线。
它在向量中的位置正如实数中0的位置一样,但有了它容易引起一些混淆,稍微考虑不到就会出错,考生应给予足够的重视。
9、对数列的定义、性质理解错误
等差数列的前n项和在公差不为零时是关于n的常数项为零的二次函数;一般地,有结论“若数列{an}的前n项和
Sn=an2+bn+c(a,b,c∈R),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差数列。
10、an与Sn关系不清致误
在数列问题中,数列的通项an与其前n项和Sn之间存在下列关系:an=S1,n=1,Sn-Sn-1,n≥2。
这个关系对任意数列都是成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点。
11、错位相减求和项处理不当致误
错位相减求和法的适用条件:数列是由一个等差数列和一个等比数列对应项的乘积所组成的,求其前n项和。
基本方法是设这个和式为Sn,在这个和式两端同时乘以等比数列的公比得到另一个和式,这两个和式错一位相减,就把问题转化为以求一个等比数列的前n项和或前n-1项和为主的求和问题。
这里最容易出现问题的就是错位相减后对剩余项的处理。
12、不等式性质应用不当致误
在使用不等式的基本性质进行推理论证时一定要准确,特别是不等式两端同时乘以或同时除以一个数式、两个不等式相乘、一个不等式两端同时n次方时,一定要注意使其能够这样做的
条件,如果忽视了不等式性质成立的前提条件就会出现错误。
13、数列中的最值错误
数列问题中其通项公式、前n项和公式都是关于正整数n的函数,要善于从函数的观点认识和理解数列问题。
数列的通项an与前n项和Sn的关系是高考的命题重点,解题时要注意把n=1和n≥2分开讨论,再看能不能统一。
在关于正整数n的二次函数中其取最值的点要根据正整数距离二次函数的对称轴的远近而定。
14、不等式恒成立问题致误
解决不等式恒成立问题的常规求法是:借助相应函数的单调性求解,其中的主要方法有数形结合法、变量分离法、主元法。
通过最值产生结论。
应注意恒成立与存在性问题的区别,如对任意x∈[a,b]都有f(x)≤g(x)成立,即f(x)-g(x)≤0的恒成立问题,但对存在x∈[a,b],使f(x)≤g(x)成立,则为存在性问题,即f(x)min≤g(x)max,应特别注意两函数中的最大值与最小值的关系。
15、忽视三视图中的实、虚线致误
三视图是根据正投影原理进行绘制,严格按照“长对正,高平齐,宽相等”的规则去画,若相邻两物体的表面相交,表面的交线是它们的原分界线,且分界线和可视轮廓线都用实线画出,不可见的轮廓线用虚线画出,这一点很容易疏忽。
16、面积体积计算转化不灵活致误
课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。
为什么?还是没有彻底“记死”的缘故。
要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。
可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。
这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。
这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。
面积、体积的计算既需要学生有扎实的基础知识,又要用到一些重要的思想方法,是高考考查的重要题型。
因此要熟练掌握以下几种常用的思想方法。
(1)还台为锥的思想:这是处理台体时常用的思想方法。
(2)割补法:求不规则图形面积或几何体体积时常用。
(3)等积变换法:充分利用三棱锥的任意一个面都可作为底面的特点,灵活求解三棱锥的体
积。
(4)截面法:尤其是关于旋转体及与旋转体有关的组合问题,常画出轴截面进行分析求解。
17、忽视基本不等式应用条件致误
语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。
如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。
现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。
结果教师费劲,学生头疼。
分析完之后,学生收效甚微,没过几天便忘的一干二净。
造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。
常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。
久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和发展。
利用基本不等式a+b≥2ab以及变式ab≤a+b22等求函数的最值时,务必注意a,b为正数(或a,b非负),ab或a+b其中之一应是定值,特别要注意等号成立的条件。
对形如
y=ax+bx(a,b0)的函数,在应用基本不等式求函数最值时,一定要注意ax,bx的符号,必要时要进行分类讨论,另外要注意自变量x的取值范围,在此范围内等号能否取到。