高斯混合模型实现——【机器学习与算法分析 精品资源池】
机器学习中的高斯混合模型算法详解

机器学习中的高斯混合模型算法详解机器学习中有许多强大的算法,其中之一就是高斯混合模型(Gaussian Mixture Model,简称GMM)。
GMM是一种统计模型,在很多实际应用场景中被广泛使用,如数据聚类、异常检测、图像分割等。
本文将详细介绍高斯混合模型算法的原理与应用。
高斯混合模型是一种概率模型,假设数据是由多个高斯分布混合而成的。
它的基本思想是通过一组高斯分布对数据进行建模,每个高斯分布代表一种潜在的模式或簇。
GMM的目标是通过最大化似然函数来估计模型参数,从而得到最优的拟合结果。
对于一个包含N个样本的数据集,GMM的参数包括每个高斯分布的均值、协方差矩阵以及对应的权重。
假设数据的维度为D,高斯分布的个数为K,则均值参数为K个D维向量,协方差矩阵参数为K个D×D维矩阵,权重参数为K个标量。
GMM的算法步骤如下:1. 初始化参数:随机选择K个高斯分布的均值、协方差矩阵和权重,作为模型的初始参数。
2. E步:计算每个样本点属于每个高斯分布的后验概率,即每个样本属于每个高斯分布的概率。
3. M步:根据样本点的后验概率,重新估计每个高斯分布的参数,即更新均值、协方差矩阵和权重。
4. 重复执行E步和M步,直到模型的参数收敛,或达到预定的迭代次数。
GMM的收敛判定可以通过似然函数的对数差值来判断,当差值小于某个阈值时,认为模型已经收敛。
GMM具有很多优点,使其在实际应用中备受青睐。
首先,GMM是一种非常灵活的模型,可以拟合各种形状的分布。
其次,GMM可以通过调整高斯分布的参数个数,适应不同数据集中的簇的数量。
此外,GMM还可以用于异常检测,因为异常点在模型中的概率较低。
在实际应用中,高斯混合模型有多种扩展和变体。
例如,可以通过加入约束条件来限制高斯分布的形状,如协方差矩阵的结构。
还可以引入混合成分之间的相关性,从而利用上下文信息提高模型性能。
此外,还可以使用贝叶斯方法对模型进行扩展,允许动态地调整模型的复杂度。
高斯混合模型算法

高斯混合模型算法在GMM中,假设数据的潜在分布是由多个高斯分布组成的,每个高斯分布代表了一个聚类或者类别。
GMM通过将这些高斯分布的混合系数、均值和协方差矩阵进行估计来拟合数据分布。
GMM的数学表达如下:P(x) = ∑(i=1 to k) Πi * N(x, μi, Σi)其中,P(x)表示数据分布的概率,Πi表示第i个高斯分布的混合系数,N(x,μi,Σi)表示第i个高斯分布的概率密度函数,μi和Σi分别表示第i个高斯分布的均值和协方差矩阵。
GMM算法的步骤如下:1.初始化:选择合适的聚类数k,随机初始化各个高斯分布的混合系数Πi、均值μi和协方差矩阵Σi。
2. E步(Expectation Step):计算每个数据点属于每个聚类的概率。
使用当前的参数估计值计算每个数据点x属于每个聚类i的后验概率γi:γi = Πi * N(x, μi, Σi) / (∑(j=1 to k) Πj * N(x, μj, Σj))3. M步(Maximization Step):根据E步计算得到的后验概率更新模型参数。
计算每个高斯分布的新混合系数、均值和协方差矩阵:Πi = (∑(n=1 to N) γi) / Nμi = (∑(n=1 to N) γi * x) / (∑(n=1 to N) γi)Σi = (∑(n=1 to N) γi * (x - μi)^T * (x - μi)) / (∑(n=1 to N) γi)其中,N表示数据点的数量。
4.对数似然比较:计算新参数的对数似然值。
若对数似然值相对于上一次迭代的值的提升不大,则停止迭代;否则返回第2步。
GMM算法的优点在于:-GMM可以用于对任意分布的数据进行建模,因为它通过多个高斯分布的组合来表示分布的形状。
-GMM可以获得每个数据点属于每个聚类的概率,而不仅仅是一个硬性分类结果。
-GMM对异常值和噪声具有一定的鲁棒性。
然而,GMM也有一些缺点:-GMM的参数估计是通过迭代求解的,因此对初始参数的选择十分敏感。
高斯混合模型详解

高斯混合模型详解高斯混合模型(Gaussian Mixture Model,GMM)是一种概率模型,将数据集看作是由多个高斯分布组成的混合体。
每个高斯分布表示一个聚类,通过使用多个高斯分布的线性组合来描述数据的分布。
GMM的基本思想是假设数据是由K个高斯分布组成的混合体,每个高斯分布都有自己的均值和方差。
同时,每个数据点都有一个相应的隐含变量,表示该数据点属于哪个高斯分布。
GMM的参数包括每个高斯分布的均值、方差和混合系数,以及隐含变量的分布。
参数的估计可以通过最大似然估计来完成。
GMM的工作流程如下:1. 初始化模型参数,包括每个高斯分布的均值、方差和混合系数,以及隐含变量的分布。
2. 通过观测数据和当前参数估计每个数据点属于每个高斯分布的概率。
3. 根据估计的数据点属于每个高斯分布的概率,更新模型参数。
4. 重复步骤2和3,直到模型参数收敛或达到指定的迭代次数。
GMM的优点包括:1. 可以灵活地拟合各种形状的数据分布,因为每个高斯分布可以模拟不同的数据簇。
2. 由于采用了概率模型,可以通过计算后验概率来获得样本属于每个簇的概率,从而更好地理解数据。
3. GMM的参数估计可以通过EM算法来实现,相对简单而且具有良好的收敛性。
GMM的应用领域包括聚类分析、异常检测、图像分割等。
在聚类分析中,GMM可以用于识别数据中的聚类,并对数据点进行分类。
在异常检测中,GMM可以通过比较数据点的后验概率来检测异常值。
在图像分割中,GMM可以用于将图像分割为不同的区域,每个区域对应一个高斯分布。
总之,高斯混合模型是一种强大且灵活的概率模型,适用于各种数据分布的建模和分析。
它通过使用多个高斯分布的混合来描述数据的分布,能够更好地捕捉数据的复杂性和多样性。
机器学习算法总结(六)——EM算法与高斯混合模型

机器学习算法总结(六)——EM算法与⾼斯混合模型 极⼤似然估计是利⽤已知的样本结果,去反推最有可能(最⼤概率)导致这样结果的参数值,也就是在给定的观测变量下去估计参数值。
然⽽现实中可能存在这样的问题,除了观测变量之外,还存在着未知的隐变量,因为变量未知,因此⽆法直接通过最⼤似然估计直接求参数值。
EM算法是⼀种迭代算法,⽤于含有隐变量的概率模型的极⼤似然估计,或者说是极⼤后验概率估计。
1、经典的三硬币模型 引⼊⼀个例⼦来说明隐变量存在的问题。
假设有3枚硬币,分别记作A,B,C。
这些硬币正⾯出现的概率分别是π,p,q。
我们的实验过程如下,先投掷硬币A,根据其结果选出硬币B和硬币C,正⾯选B,反⾯选C;然后投掷选出的硬币,此时出现正⾯记作1,出现反⾯记作0。
在这个例⼦中我们观察到的变量只是B或者C的结果,⽽对A的结果并不知道,在这⾥A的结果也就是我们的隐变量。
A的结果对最终的结果是有影响的,因此在估计参数时必须将A的结果考虑进去。
1、EM算法 我们将观测变量表⽰为Y = (Y1,Y2,....,Y n),隐变量表⽰为Z = (Z1,Z2,....,Z n),则观测数据的似然函数可以表⽰为 在这⾥P(Y|θ) 是P(Y, Z|θ) 的边缘概率,通过转换后可以表⽰成右边的形式,我们将其转换成对数形式,这样便于求联合概率 然⽽对于这样的式⼦直接根据极⼤化求θ的值是很困难的,因为这⾥还存在隐变量Z,在这⾥引⼊EM算法,通过迭代求解,假设在第i 次迭代后θ的估计值为θ(i)。
我们希望新估计值能是L(θ)增加,通过迭代逐步的达到最⼤值。
为此我们考虑第i+1步迭代后两者的差: 利⽤Jensen不等式将上述式⼦展开并得到其下界(对数函数是凹函数): 令 则有 在这⾥B(θ, θ(i)) 是L(θ) 的⼀个下界,⽽且由的表达式可知 因此任何能使得B(θ, θ(i)) 增⼤的θ,也能使得L(θ) 增⼤。
因此求θ值使得B(θ, θ(i)) 增⼤就可以转变成求θ使得L(θ) 增⼤,即求 将上述式⼦展开可得(在这⾥去掉常数项,因为常数项不会影响最终的结果) 因此问题就演变成了求Q函数的极⼤化。
高斯混合模型

EM演算法
• 取得第i個混和的事後機率值
p(i | xt , )
wibi (xt )
M k 1
wk
bk
(
xt )
第1個特徵參數 第2個特徵參數 第3個特徵參數 第4個特徵參數
w1b1 w2b2 w3b3
EM演算法
• 對各參數進行重新估算
wi
1 T
T t 1
p
(i
|
xt
1 T
T t 1
xt
• 進行分裂:
m m (1 ) m m (1 )
• 將分裂後的平均向量進行分類,並計算出新群集的平均向 量
LBG演算法
• 計算平均向量與特徵參數的距離總和,使得總體距離和獲 得最小,也就是當更新率小於δ時即停止 (D D')
高斯混合模型
• 用一個高斯混合模型來表示一位語者
高斯混合模型
• 高斯混合密度為M個高斯密度的權重加總,其公式為:
p(x| )
M
wibi (x)
i 1
其中 x 為特徵向量,bi (x) 為高斯機率密度值, wi 為混合權重值
M
• 混合權重必須符合 wi 1 之條件 i 1
1k S
Sˆ
arg max 1k S
T
log
t 1
p( xt
| k )
D
其中,D’為前一回合的總距離值
• 重複之前的步驟,直到分裂到所設定的數目
EM演算法
估算初始參數值
• 假設有12個特徵參數(音框),分群後的其中一பைடு நூலகம்A群聚由 特徵參數1 、 4、7和8四個特徵參數所組成,如下:
高斯混合模型的应用

高斯混合模型的应用高斯混合模型是一个广泛应用于机器学习和数据挖掘领域的模型。
它由多个高斯分布组成,可以用于对数据进行聚类、密度估计和异常检测等任务。
本文将介绍高斯混合模型的原理和应用,并探讨它的一些优缺点。
一、原理高斯混合模型(Gaussian Mixture Model,GMM)用于对数据集进行建模。
它将数据看做是多个高斯分布的加权和,每个高斯分布代表着一种模式。
具体而言,假设我们有n个样本,每个样本由m个属性组成。
那么,我们可以将这n个样本看做是从k个高斯分布中抽取的,k为模型的参数。
对每一个高斯分布,我们需要估计其均值、协方差矩阵和权重。
具体而言,设第i个高斯分布的均值为μi,协方差矩阵为Σi,权重为wi,则有以下公式:其中,π表示概率密度函数,N表示高斯分布,k表示高斯分布的个数。
对于给定的值x,GMM可以计算其来自于每一个高斯分布的概率,并将这些概率相加得到最终的概率。
具体而言,设x 属于第i个高斯分布的概率为pi,则有以下公式:GMM的训练过程通常采用最大似然估计的方法。
给定观测数据集,我们需要估计每个高斯分布的参数,使得数据生成概率最大。
具体而言,设数据集为D={x1,x2,...,xn},似然函数为L(θ|D),其中θ表示所有高斯分布的参数。
则最大似然估计可以写为以下公式:其中,θi表示第i个高斯分布的参数,n表示样本数量。
二、应用GMM有着广泛的应用场景,下面将分别介绍其在聚类、密度估计和异常检测中的应用。
1.聚类GMM可以用于对数据集进行聚类。
具体而言,GMM将每个样本看做由多个高斯分布中的某一个生成的,根据每个样本来自于每个高斯分布的概率来确定其所属的类别。
由于GMM可以处理异性方差的数据,因此可以得到比K-means更准确的聚类结果。
2.密度估计GMM可以用于密度估计。
由于它将数据看做是多个高斯分布的加权和,因此可以对密度进行建模,并计算在某个点处的密度值。
具体而言,对于给定的值x,GMM可以计算其来自于每一个高斯分布的概率,并将这些概率相加得到最终的概率。
混合高斯模型算法原理

混合高斯模型算法原理混合高斯模型是一种经典的背景建模算法,用于背景相对稳定情况下的运动目标检测。
它由单高斯模型发展而来,对于多模态的背景有一定的鲁棒性,如:树叶晃动、水纹波动等。
在介绍混合高斯模型前,首先介绍单高斯模型。
1. 单高斯背景模型:单高斯模型将图像中每一个像素点的颜色值看成是一个随机过程,并假设该点的像素值出现的概率服从高斯分布。
该算法的基本原理就是对每一个像素位置建立一个高斯模型,模型中保存该处像素的均值和方差。
如,可设),(y x 处像素的均值为),(y x u ,方差为),(2y x σ,标准差为),(y x σ。
由于随着视频图像序列的输入,模型参数不断更新,所以不同时刻模型参数有不同的值,故可将模型参数表示为三个变量t y x ,,的函数:均值),,(t y x u 、方差),,(2t y x σ、标准差),,(t y x σ。
用单高斯模型进行运动检测的基本过程包括:模型的初始化、更新参数并检测两个步骤。
1)模型初始化模型的初始化即对每个像素位置上对应的高斯模型参数进行初始化,初始化采用如下公式完成:⎪⎩⎪⎨⎧===init std y x init std y x y x I y x u _)0,,(_)0,,()0,,()0,,(22σσ (1)其中,)0,,(y x I 表示视频图像序列中的第一张图像),(y x 位置处的像素值,init std _为一个自己设的常数,如可设20_=init std 。
2)更新参数并检测每读入一张新的图片,判断新图片中对应点像素是否在高斯模型描述的范围中,如是,则判断该点处为背景,否则,判断该点处为前景。
假设前景检测的结果图为output ,其中在t 时刻),(y x 位置处的像素值表示为),,(t y x output ,),,(t y x output 的计算公式如下:⎩⎨⎧-⨯<--=otherwise t y x t y x u t y x I t y x output ,1)1,,()1,,(),,(,0),,(σλ (2)其中,λ是自己设的一个常数,如可设5.2=λ。
高斯混合模型算法

下面介绍一下几种典型的机器算法首先第一种是高斯混合模型算法:高斯模型有单高斯模型(SGM)和混合高斯模型(GMM)两种。
(1)单高斯模型:为简单起见,阈值t的选取一般靠经验值来设定。
通常意义下,我们一般取t=0.7-0.75之间。
二维情况如下所示:(2)混合高斯模型:对于(b)图所示的情况,很明显,单高斯模型是无法解决的。
为了解决这个问题,人们提出了高斯混合模型(GMM),顾名思义,就是数据可以看作是从数个高斯分布中生成出来的。
虽然我们可以用不同的分布来随意地构造XX Mixture Model ,但是GMM是最为流行。
另外,Mixture Model 本身其实也是可以变得任意复杂的,通过增加Model 的个数,我们可以任意地逼近任何连续的概率密分布。
每个GMM 由K 个Gaussian 分布组成,每个Gaussian 称为一个“Component”,这些Component 线性加成在一起就组成了GMM 的概率密度函数:(1)其中,πk表示选中这个component部分的概率,我们也称其为加权系数。
根据上面的式子,如果我们要从GMM 的分布中随机地取一个点的话,实际上可以分为两步:(1)首先随机地在这K 个Component 之中选一个,每个Component 被选中的概率实际上就是它的系数πk,选中了Component 之后,再单独地考虑从这个Component 的分布中选取一个点就可以了──这里已经回到了普通的Gaussian 分布,转化为了已知的问题。
假设现在有N 个数据点,我们认为这些数据点由某个GMM模型产生,现在我们要需要确定πk,μk,σk 这些参数。
很自然的,我们想到利用最大似然估计来确定这些参数,GMM的似然函数如下:(2)在最大似然估计里面,由于我们的目的是把乘积的形式分解为求和的形式,即在等式的左右两边加上一个log函数,但是由上文博客里的(2)式可以看出,转化为log后,还有log(a+b)的形式,因此,要进一步求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验算法高斯混合模型实验
【实验名称】
高斯混合模型实验
【实验要求】
掌握高斯混合模型应用过程,根据模型要求进行数据预处理,建模,评价与应用;
【背景描述】
高斯混合模型(Gaussian Mixed Model)指的是多个高斯分布函数的线性组合,理论上GMM 可以拟合出任意类型的分布,通常用于解决同一集合下的数据包含多个不同的分布的情况。
属于无监督机器学习,用于对结构化数据进行聚类。
【知识准备】
了解高斯混合模型的使用场景,数据标准。
了解Python/Spark数据处理一般方法。
了解spark 模型调用,训练以及应用方法
【实验设备】
Windows或Linux操作系统的计算机。
部署Spark,Python,本实验提供centos6.8环境。
【实验说明】
采用UCI机器学习库中的wine数据集作为算法数据,除去原来的类别号,把数据看做没有类别的样本,训练混合高斯模型,对样本进行聚类。
【实验环境】
Spark 2.3.1,Pyrhon3.X,实验在命令行pyspark中进行,或者把代码写在py脚本,由于本次为实验,以学习模型为主,所以在命令行中逐步执行代码,以便更加清晰地了解整个建模流程。
【实验步骤】
第一步:启动pyspark:
1
命令行中键入pyspark --master local[4],本地模式启动spark与python:
第二步:导入用到的包,并读取数据:
(1).导入所需的包
from pyspark import SparkContext, SQLContext, SparkConf
from math import sqrt
from pyspark.sql.functions import monotonically_increasing_id
(2).读取数据源
df_wine = sc.textFile(u"file:/opt/algorithm/gaussianMixture/wine.txt").map( lambda x: str(x).split(",")).map(lambda x: [float(z) for z in x])
(3).数据转换为Data
df_wine_rdd = sqlContext.createDataFrame(df_wine)
(4).数据展示
df_wine_rdd.show()
1
第三步:数据预处理
(1).去掉类别标号那一类,本例在假设不知道类别的情况下聚类
df_wine_rdd = df_wine_rdd.drop("_1")
(2).构建向量
import pyspark.ml.feature as ml_feature
cols = df_wine_rdd.columns
vectorAssembler = ml_feature.VectorAssembler().setInputCols(cols).setOutputCol("cols") wine_Vc = vectorAssembler.transform(df_wine_rdd)
(3).对数据进行标准化
standardScaler=ml_feature.StandardScaler().setInputCol("cols").setOutputCol("cols_st").set WithMean(True).setWithStd(True).fit(wine_Vc)
wine_Vc_St = standardScaler.transform(wine_Vc)
(4).转换rdd
wine_Vc_St_rdd = wine_Vc_St.rdd.map(lambda x: tuple(x.cols_st))
1。