汽车加速性能和加速时间计算
汽车理论-名词解释

第一章汽车的动力性1.汽车动力性指标:最高车速、加速时间、最大爬坡度2.加速时间表示加速能力:原地起步加速时间和超车加速时间3.驱动力:地面驱动轮的反作用力F t=T t/r=T tq i g i oηT/r4.驱动轮的转矩: T t= T tq i g i oηT5.发动机转矩特性:节气门全开,发动机外特性曲线;节气门部分开启,部分负荷特性。
6.功率:Pe=T tq n/95507.使用外特性曲线:带上全部设备时的发动机特性曲线8.传动系功率损失:机械和液力损失9.自由半径:车轮处于无载时的半径10.静力半径Rs:汽车静止时,车轮中心至轮胎与道路接触面间的距离11.滚动半径rr:车轮几何中心到速度瞬心的距离。
12.驱动力图:根据下列两个公式:Ua=0.377nr/i g i o F t=T t/r=T tq i g i oηT/r以及发动机外特性曲线,做出的F t - u a关系图,即驱动力图13.滚动阻力Ff产生的原因:轮胎(主要)、路面变形产生迟滞损失14.轮胎的迟滞损失:轮胎在加载变形时所消耗的能量在卸载恢复时不能完全收回,一部分能量消耗在轮胎部摩擦损失上,产生热量,这种损失称为轮胎的迟滞损失。
15.滚动阻力系数f:车轮在一定条件下滚动时所需之推力与车轮负荷之比,即单位车重所需的推力,Ft=Wf16.影响滚动阻力的因素:车速、轮胎结构、气压、路面条件、驱动力、转向17.地面切向反作用力Fx:是真正作用在驱动轮上的驱动汽车行驶的力,它的数值为驱动力减去驱动轮上的滚动阻力。
18.临界车速:超过后产生驻波现象,轮胎温度快速增加,大量发热导致轮胎破损或爆胎。
19.驻波现象:在高速行驶时,轮胎离开地面后因变形所产生的扭曲并不立即恢复,其残余变形形成了一种波20子午线轮胎比斜交轮胎的滚动阻力小20%~30%;21.气压:越高,轮胎变形及由其产生的迟滞损失就越小,滚动阻力也越小。
22.驱动力:Ft增大,胎面滑移增加,F f增大。
汽车的动力学参数

汽车的动力学参数汽车的动力学参数是指影响汽车性能和行驶特性的各项参数。
这些参数涉及到汽车的加速、制动、转向、悬挂、操控等方面,对于汽车的安全性、舒适性和驾驶体验都有着重要的影响。
1. 动力参数汽车的动力参数主要包括最大功率、最大扭矩和最高转速等。
最大功率是发动机在一定转速下能够输出的最大功率,它直接决定了汽车的加速性能。
最大扭矩是发动机在一定转速下输出的最大转矩,它影响着汽车的爬坡能力和牵引力。
最高转速是发动机能够达到的最大转速,它限制了发动机的输出能力。
2. 加速参数汽车的加速参数主要包括0-100公里/小时的加速时间和百米加速时间等。
0-100公里/小时的加速时间是衡量汽车加速性能的重要指标,它直接反映了汽车的动力水平。
百米加速时间则更加直观地反映了汽车的起步能力。
3. 制动参数汽车的制动参数主要包括100-0公里/小时的制动距离和制动效果等。
100-0公里/小时的制动距离是汽车在高速行驶状态下从100公里/小时减速到停车所需要的距离,它直接影响到行车安全。
制动效果则是指汽车在制动时所产生的制动力,它决定了汽车的制动能力。
4. 转向参数汽车的转向参数主要包括转向半径和转向灵活性等。
转向半径是指汽车在转弯时所需的最小转弯半径,它决定了汽车的转弯性能和操控性。
转向灵活性则是指汽车在转向时的灵活性和响应速度,它影响着汽车的操控感受。
5. 悬挂参数汽车的悬挂参数主要包括悬挂刚度和悬挂行程等。
悬挂刚度是指汽车悬挂系统的刚度水平,它决定了汽车的悬挂舒适性和操控稳定性。
悬挂行程则是指汽车悬挂系统的行程长度,它影响着汽车通过不平路面时的通过性和舒适性。
以上这些动力学参数都直接影响着汽车的性能和行驶特性。
不同的汽车在这些参数上的表现会有所不同,因此选择一辆适合自己的汽车时需要考虑这些参数。
对于追求驾驶乐趣的人来说,动力参数和悬挂参数可能更加重要;而对于追求经济性和舒适性的人来说,加速参数和制动参数可能更加重要。
汽车的动力性设计计算公式

(1)汽车动力性设计计算公式3.1动力性计算公式3.1.1变速器各档的速度特性:h 疋n eU a i=O.377 上-I gi ×∣O其中: r k 为车轮滚动半径,m;由经验公式:r k =0.0254 - b(1- ■ )(m)[2d----轮辋直径,in b----轮胎断面宽度,inn e 为发动机转速,r/min ; i °为后桥主减速速比;I gi 为变速箱各档速比,i(i =1,2...p),P 为档位数,(以下同)3.1.2各档牵引力(N ) (2)其中:T tq (U a )为对应不同转速(或车速)下发动机输出使用扭矩,N?m ; t 为传动效率。
汽车的空气阻力:其中:C d 为空气阻力系数,A 为汽车迎风面积,m 2汽车的滚动阻力:F f =G a f其中:G a = mg 为满载或空载汽车总重(N), f 为滚动阻尼系数 汽车的行驶阻力之和F r :F r=F f F W ( N )……⑸注:可画出驱动力与行驶阻尼平衡图(km/h )汽车的牵引力: 错误!未指定书签F ti (U a )=T tq (U a ) i gi ∣OFWC d A U 221.153.1.3 各档功率计算 汽车的发动机功率:T tq (U a M n ePei (Ua"th( kW )......⑹其中:P ei (U a )为第i(i =1,2...p)档对应不同转速(或车速)下发动机的功率 汽车的阻力功率:3.1.4 各档动力因子计算D i (Uar F ti (:)-F W (8)Ga各档额定车速按下式计算r k n ecu ac ∙i =0.377—( km/h ) (9)ig i i其中:n ec 为发动机的最高转速;D i (U a )为第i(i =1,2...p)档对应不同转速(或车速)下的动力因子。
对各档在[0, U acj ]内寻找U a 使得D i (U a )达到最大,即为各档的最大动力因子 Dg x注:可画出各档动力因子随车速变化的曲线3.1.5 最咼车速计算当汽车的驱动力与行驶阻力平衡时,车速达到最高。
车辆系统动力学第二次作业

第二次作业柏满飞1. 设计要求1.1 汽车参数1.2 性能要求2. 牵引电动机量值的设计2.1参考一些相关资料,可以取如下电动机参数:2.2电机额定功率值汽车轮胎半径:0.2794r m = 则齿轮传动的传动比:,max max=3.2930m g n ri V π=则车辆转动惯量系数:2121 1.07g i δδδ=++=,式中10.04δ=,20.0025δ=则电机的额定功率值:()2222177.45235t fb r f a D f f aMP VV Mgf V C A V kW t δρ=+++= 取整可以选额定功率值:80t P kW =2.3电机外特性曲线由以上参数得该电机的外特性曲线如图2.1所示。
图 2.1 电机外特性曲线3. 加速性能的检验基于牵引电机的转矩-转速特性、齿轮传动比以及车辆的参数,可以计算车辆的加速性能即加速时间和距离与车速之间的对应关系。
计算0100/km h -加速时间:100210.2112a p g r a D f M t dV sT i MGf C A V rδηρ==--⎰满足性能要求。
4. 爬坡能力的检验应用电机的转矩-转速特性、齿轮传动比,以及车辆的参数,并由行驶过程中汽车驱动力和阻力关系式:p g t T i F rη=()21cos sin 2r r a D f F Mg f C A V ααρ=++由此可计算得出牵引力和阻力与车速之间的关系,如图4.1所示。
从而可计算出车辆的爬坡能力。
图 4.1 不同坡度下牵引力与车速之间的关系图 4.2 爬坡能力与车速之间的关系根据图4.1和4.2,车辆在100/km h的速度行驶时可以有15%左右的爬坡能力,低速时有43%左右的爬坡能力,符合设计要求。
5. 发动机/发电机量值的设计这里发动机额定功率的设计要求能够承载车辆在平坦路面上,以高速公路的最高速度130/km h行驶的需要。
km h的恒定行驶速度下,考虑传动装置(效率为90%)、电动机(效率为图5.1表明在130/90%)以及发电机(效率为85%),所需发动机的功率为32.5kW。
加速度和速度的计算

加速度和速度的计算引言:在物理学中,加速度和速度是两个非常重要的概念。
加速度描述了物体在单位时间内速度变化的快慢,而速度则是物体在某一时刻的位移变化情况。
本文将深入探讨加速度和速度的计算方法以及它们在实际应用中的重要性。
一、加速度的计算加速度(a)表示物体单位时间内速度的变化量。
我们可以通过以下公式来计算加速度:a = (v2 - v1) / t其中,v1和v2分别代表物体在时刻t1和t2的速度,t表示时间差。
举例来说,如果一个物体在t1时刻的速度是2m/s,在t2时刻的速度是6m/s,那么我们可以通过上述公式计算出加速度:a = (6 - 2) / t在实际应用中,加速度的计算可以帮助我们了解物体运动的特性。
例如,当我们知道一个物体的加速度是正值时,我们可以判断该物体正处于加速状态;反之,如果加速度为负值,则可以判断物体正处于减速状态。
二、速度的计算速度(v)是描述物体在某一时刻的位移变化情况。
在一维运动中,我们可以通过以下公式来计算速度:v = (s2 - s1) / t其中,s1和s2分别代表物体在时刻t1和t2的位移。
举例来说,如果一个物体在t1时刻的位移是2m,在t2时刻的位移是6m,那么我们可以通过上述公式计算出速度:v = (6 - 2) / t速度的计算在实际应用中非常常见。
例如,当我们需要计算汽车的速度时,可以通过测量汽车在单位时间内的位移来计算速度。
另外,速度的计算还可以帮助我们确定距离和时间之间的关系,从而更好地预测物体的到达时间和安排行程。
三、加速度和速度计算的实际应用1. 交通工具设计在交通工具的设计过程中,加速度和速度的计算是必不可少的。
通过计算加速度,我们可以确定车辆的加速性能,从而选择合适的发动机和传动系统。
而对于速度的计算,则可以帮助我们优化车辆的操控性能,提高行驶安全性。
2. 运动员训练对于运动员来说,了解加速度和速度的变化情况非常重要。
例如,通过计算运动员在短跑比赛中的加速度,我们可以判断出他们的起跑能力和爆发力。
汽车加速性能实验报告

汽车加速性能实验报告实验目的:探究不同车型的加速性能并比较其差异。
实验步骤:1. 选择3种不同品牌的汽车作为实验对象,分别为A、B和C品牌。
2. 在同一测试道路上进行加速性能测试。
3. 按照以下步骤进行测试:a. 准备测试道路并确保其平坦度。
b. 将每辆汽车的发动机预热至正常工作温度。
c. 每辆汽车保持停车状态,测试员设置计时器并准备记录数据。
d. 每辆汽车从停车状态开始加速,加速至60英里/小时,然后立即刹车至停车状态。
e. 每辆汽车重复3次测试,并记录每次测试的时间。
f. 将测试数据输入电脑并进行计算。
实验数据记录:- A品牌汽车:- 第一次测试时间:12.8秒- 第二次测试时间:12.5秒- 第三次测试时间:13.1秒- B品牌汽车:- 第一次测试时间:11.2秒- 第二次测试时间:11.4秒- 第三次测试时间:11.8秒- C品牌汽车:- 第一次测试时间:14.2秒- 第二次测试时间:14.4秒- 第三次测试时间:14.1秒实验结果分析:根据实验数据可以得出以下结论:1. B品牌汽车的加速性能最佳,其平均加速时间为11.5秒。
2. A品牌汽车的加速性能次之,其平均加速时间为12.8秒。
3. C品牌汽车的加速性能最差,其平均加速时间为14.2秒。
4. 尽管A品牌汽车的加速性能稍弱于B品牌汽车,但其在加速过程中的稳定性较好,测试结果的标准差较小。
实验结论:根据实验结果,可以得出以下结论:1. 不同品牌的汽车在加速性能上存在差异。
B品牌汽车的加速性能最佳,C品牌汽车的加速性能最差。
2. A品牌汽车在加速过程中表现出较好的稳定性。
3. 加速性能在某种程度上可以反映汽车在市区行驶时的灵活性和应对突发状况的能力。
总结:本次实验通过对3种不同品牌汽车的加速性能进行测试和比较,得出了加速性能与品牌之间的关系。
实验结果表明,B品牌汽车的加速性能最佳,C品牌汽车的加速性能最差。
尽管A品牌汽车的加速性能稍弱于B品牌汽车,但其在加速过程中的稳定性较好。
(整理)汽车理论总结吐血推荐

第一章:汽车的动力性1.汽车的动力性的定义和评价指标。
(1)定义:汽车在良好的路面上直线行驶时由汽车受到的纵向外力决定的、所能达到的平均行驶速度。
(2)评价指标:最高车速、加速时间和最大爬坡度。
○1最高车速µamax :是指在水平良好的路面(混凝土或沥青)上汽车能达到的最高行驶车速。
○2汽车的加速时间t :表示汽车的加速能力。
常用原地起步加速时间与超车加速时间来表明汽车的加速能力原地起步加速时间指汽车由Ⅰ挡或Ⅱ挡起步,并以最大的加速强度逐步换至最高挡后到某一预定的距离或车速所需的时间。
超车加速时间指用最高档或次高挡由某一较低车速全力加速至某一高速所需的时间。
○3汽车的最大爬坡度ⅰmax :是指Ⅰ挡最大爬坡度。
汽车的上坡能力实用满载(或某一载质量)时汽车在良好路面上的最大爬坡度ⅰmax 表示的。
2.写出汽车的行驶平衡方程式(两种方式)。
解释每个力的含义和计算公式。
(1)F t =F f +F w +F i +F jF t :驱动力;ri i T t T 0g tq F η⋅⋅⋅=F f :滚动阻力; αcos fG F f ⋅= F w :空气阻力;15.212aD u A C F w ⋅⋅=F i :坡度阻力 ;F i =G ·sin α F j :加速阻力dtdu mδ=j F (2)3.利用汽车驱动力----行驶阻力平衡图评价汽车的动力性。
dt du m G u A C f G r i i T δααη++⋅⋅+⋅=⋅⋅⋅sin 15.21cos 2aD T 0g tq (1)最大车速时,即曲线交点对应的速度值。
Ft= Ff+Fw ,Fi=0 ,Fj=0(2)加速能力 Fj= Ft- Ff -Fw ,Fi=0,即剩余驱动力。
(3)爬坡能力:是指汽车在良好路面上克服滚动阻力和空气阻力后的余力全部用来克服坡度阻力时所能爬上的坡度。
一般情况下,直接挡(最高挡)的最大爬坡度略大一些好。
汽车动力性实验报告

汽车动力性实验报告汽车动力性实验报告一、引言汽车作为现代社会交通工具的重要组成部分,其动力性能对于用户的驾驶体验至关重要。
为了评估汽车的动力性能,本实验对某款汽车进行了一系列的动力性测试,并对测试结果进行了分析和总结。
二、实验目的本实验的主要目的是评估汽车的加速性能、制动性能和燃油经济性,并通过数据分析和对比,为用户提供对汽车性能的参考。
三、实验装置和方法1. 实验装置本实验使用了一辆标准配置的汽车,以及相应的测试设备,包括加速计、刹车测试仪和燃油消耗测试仪。
2. 实验方法(1)加速性能测试:在平坦的道路上,从静止状态开始,记录汽车加速到60公里/小时所需的时间。
重复测试多次,取平均值作为最终结果。
(2)制动性能测试:在平坦的道路上,从60公里/小时的速度开始,记录汽车制动到静止状态所需的时间和距离。
同样,重复测试多次,取平均值作为最终结果。
(3)燃油经济性测试:在一定的行驶距离内,记录汽车消耗的燃油量,并计算百公里油耗。
重复测试多次,取平均值作为最终结果。
四、实验结果与分析1. 加速性能经过多次测试,该汽车的平均加速时间为8.5秒,符合中档家用轿车的标准。
通过与同级别其他汽车的对比发现,该车的加速性能处于中等水平。
2. 制动性能经过多次测试,该汽车的平均制动时间为4.2秒,平均制动距离为40米。
与同级别其他汽车相比,该车的制动性能较好,制动距离较短。
3. 燃油经济性经过多次测试,该汽车的平均百公里油耗为7.5升。
与同级别其他汽车相比,该车的燃油经济性较好,属于省油型车型。
五、实验结论通过对该款汽车的动力性能测试,得出以下结论:1. 该车的加速性能处于中等水平,适合家用和日常通勤。
2. 该车的制动性能较好,制动距离较短,提高了驾驶安全性。
3. 该车的燃油经济性较好,属于省油型车型,具有较低的运营成本。
六、改进建议基于实验结果和分析,我们提出以下改进建议:1. 进一步优化发动机和传动系统,提升汽车的加速性能,以满足用户对于快速响应的需求。