11.振动 大学物理习题答案

合集下载

《大学物理》期末考试复习题(振动与波)

《大学物理》期末考试复习题(振动与波)


(A) 2 ;
答案:(D)
(B)
m1 m2
2

(C)
m2 m1
2

(D) 2
m2 . m1
一物体作简谐振动,振动方程为
x
A cos(t
1 4
) 。在
t = T/4(T
为周期)时刻,物体的
加速度为 ( )
(A)
2 2
A 2

(B)
2 2
A 2 ;
(C)
3 2
A 2

(D)
3 2
A 2

一弹簧振子,当把它水平放置时,它作简谐振动。若把它竖直放置或放在光滑斜面上,试判
一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的 1/4 时,其动能为振 动总能量的
(A) 7/16 ; (B) 9/16 ; (C) 11/16 ; (D) 15/16 。 []
答案:(D)
第十章 波动
10-1 机械波的几个概念
10-2 平面简谐波的波函数
如图所示,有一平面简谐波沿 x 轴负方向传播,
断下列情况正确的是
(A)竖直放置作简谐振动,在光滑斜面上不作简谐振动;
(B)竖直放置不作简谐振动,在光滑斜面上作简谐振动;
(C)两种情况都作简谐振动;
(D)两种情况都不作简谐振动。
[]
竖直放置 放在光滑斜面上
答案:(C)
同一弹簧振子悬挂相同的质量,分别按如图(a)、(b)、(c)所示的三种方式放置,摩擦力都
(A) 曲线 3,1,2 分别表示 x,v,a 曲线; (B) 曲线 2,1,3 分别表示 x,v,a 曲线; (C) 曲线 1,2,3 分别表示 x,v,a 曲线; (D) 曲线 2,3,1 分别表示 x,v,a 曲线.

大学物理习题答案第十一章

大学物理习题答案第十一章

[习题解答]11-7 在磁感应强度大小为B = 0.50 T 的匀强磁场中,有一长度为l = 1.5 m 的导体棒垂直于磁场方向放置,如图11-11所示。

如果让此导体棒以既垂直于自身的长度又垂直于磁场的速度v 向右运动,则在导体棒中将产生动生电动势。

若棒的运动速率v = 4.0 m ⋅s -1 ,试求:(1)导体棒内的非静电性电场K ;(2)导体棒内的静电场E ;(3)导体棒内的动生电动势ε的大小和方向;(4)导体棒两端的电势差。

解(1)根据动生电动势的表达式,由于()的方向沿棒向上,所以上式的积分可取沿棒向上的方向,也就是d l 的方向取沿棒向上的方向。

于是可得.另外,动生电动势可以用非静电性电场表示为.以上两式联立可解得导体棒内的非静电性电场,为,方向沿棒由下向上。

图11-11(2)在不形成电流的情况下,导体棒内的静电场与非静电性电场相平衡,即,所以,E 的方向沿棒由上向下,大小为.(3)上面已经得到,方向沿棒由下向上。

(4)上述导体棒就相当一个外电路不通的电源,所以导体棒两端的电势差就等于棒的动生电动势,即,棒的上端为正,下端为负。

11-8 如图11-12所表示,处于匀强磁场中的导体回路ABCD ,其边AB 可以滑动。

若磁感应强度的大小为B = 0.5 T ,电阻为R = 0.2 Ω,AB 边长为 l = 0.5 m ,AB 边向右平移的速率为v = 4 m ⋅s -1 ,求:(1)作用于AB 边上的外力;(2)外力所消耗的功率;(3)感应电流消耗在电阻R 上的功率。

解(1)当将AB 向右拉动时,AB 中会有电流通过,流向为从B 到A 。

AB 中一旦出现电流,就将受到安培力F 的作用,安培力的方向为由右向左。

所以,要使AB 向右移动,必须对AB施加由左向右图11-12的力的作用,这就是外力F外。

在被拉动时,AB中产生的动生电动势为,电流为.AB所受安培力的大小为,安培力的方向为由右向左。

外力的大小为,外力的方向为由左向右。

大学物理习题(下)答案解析

大学物理习题(下)答案解析

一、 选择题1. 对一个作简谐振动的物体,下面哪种说法是正确的? [ C ](A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(D) 物体处在负方向的端点时,速度最大,加速度为零。

2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为43π,则t=0时,质点的位置在: [ D ](A) 过1x A 2=处,向负方向运动; (B) 过1x A 2=处,向正方向运动;(C) 过1x A 2=-处,向负方向运动;(D) 过1x A 2=-处,向正方向运动。

3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ B ]4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: [ B ](A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:25. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: [ C ](A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动; (B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; (D) 两种情况都不能作简谐振动。

6. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为: [ C ](4)题(5)题2153(A),or ;A;(B),;A;332663223(C),or ;A;(D),;A4433ππ±±π±±±π±ππ±±π±±±π±7. 一质点沿x 轴作简谐振动,振动方程为 10.04cos(2)3x t ππ=+(SI ),从t = 0时刻起,到质点位置在x = -0.02 m 处,且向x 轴正方向运动的最短时间间隔为 [ D ](A)s 81; (B) s 61; (C) s 41; (D) s 218. 图中所画的是两个简谐振动的振动曲线,这两个简谐振动叠加后合成的余弦振动的初相为[ C ](A) π23; (B) π; (C) π21 ; (D) 0二、 填空题9. 一简谐振动用余弦函数表示,振动曲线如图所示,则此简谐振动的三个特征量为: A=10cm , /6rad /s =ωπ,/3=φπ10. 用40N 的力拉一轻弹簧,可使其伸长20 cm 。

大学物理-机械振动习题-含答案

大学物理-机械振动习题-含答案

大学物理-机械振动习题-含答案一、选择题1. 质点作简谐振动,距平衡位置 2。

0cm 时, ,则该质点从一端运动到 C )C:2.2s --- 加速度 a=4.0cm /s 另一端的时间为( A:1.2s B: 2.4sD:4.4sX ,22.2s.2上 2 42 •—个弹簧振子振幅为2 10 2m 当t 0时振子在x 1.0 10 2m 处,且向 正方向运动,则振子的振动方 程是:[A ]A : 1.2题图22 10 cos( t )m ;3’6)m; 3)m;2 10 2 cos( t2 10 2 cos( tD :2x 2 10 cos( t —)m;解:由旋转矢量可 以得出振动的出现初相为:?3 •用余弦函数描述一简谐振动,若其速度与时间 -1v (m.s )1.3题图t (s )—►o 1 —v 2 m vm如图示,则振动的初相位为: (v —t )关系曲线[A ]A: e ; B : 3 ; C : 2 ;D : 2- ;E :「3丁6解:振动速度为:V V max Si n( t 0)t 0时,sin 01,所以。

-或。

2 6由知1.3图,t 0时,速度的大小是在增加,由旋转矢量图知,旋转矢量在 第一象限内,对应质点的运动是由正最大 位移向平衡位置运动,速度是逐渐增加的, 旋转矢量在第二象限内,对应质点的运动 是由平衡位置向负最大位移运动,速度是 逐渐减小的,所以只有。

-是符合条件的。

64 •某人欲测钟摆摆长,将钟摆摆锤上移 1毫 米,测得此钟每分快0。

1秒,则此钟摆的 ) B:30cm C:45cm丄理丁 160mm 30cm2 dT 2 ( 0.1):、填空题1 •有一放置在水平 面上的弹簧振子。

振幅A = 2.0 X 0_2m 周期摆长为( A:15cm D:60cm 解:单摆周期 有: 他2 . g,两侧分别对「和l 求导,j*T = 0.50s ,根据所给初始条件,作出简谐振动的矢量图,并写出振动方程式或初位相。

大学物理复习题(附答案)

大学物理复习题(附答案)

第9章振动学基础复习题T 1.已知质点的振动方程为 x A cos( t ),当时间t —时(T 为周期),质点的振动速4度为:(A ) v A sin (B ) v A sin (C ) v A cos (D ) v A cos2 •两个分振动的位相差为 2n 时,合振动的振幅是: A.A 1+A 2;B.| A 1-A 2IC.在.A I +A 2 和 | A I -A 2|之间D.无法确定3•一个做简谐运动的物体,在水平方向运动,振幅为8cm ,周期为0.50s 。

t =0时,物体位于离平衡位置4cm 处向正方向运动,则简谐运动方程为 _______________ . 4.一质点沿x 轴作简谐振动,振动方程为x 4 10 2 cos(2 t ) m 。

从t = 0时刻起,3到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为 _____________ .5•一个简谐振动在t=0时位于离平衡位置 6cm 处,速度v=0 ,振动的周期为2s ,则简谐振 动的振动方程为 ________________________ . 6.—质点作谐振动,周期为 T ,当它由平衡位置向 x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为 ____________ . 7.—个质量为0.20kg 的物体作简谐振动,其振动方程为x 0.6cos(5t -)m ,当振动动2能和势能相等时振动物体的位置在A •0.3 m B • 0.35 m C .0.42 mD . 010•一个作简谐振动的物体的振动方程为s 12cos(t 3)cm ,当此物体由s 12cm 处 回到平衡位置所需要的最短时间为 ________________________________________ 。

11. 一个质点在一个使它返回平衡位置的力的作用下,它是否一定作简谐运动? 12. 简谐振动的周期由什么确定?与初始条件有关吗?14. 两个同方向同频率的简谐振动合成后合振动的振幅由哪些因素决定? 15. 两个同方向不同频率的简谐振动合成后合振动是否为简谐振动?&某质点参与x 1 4cos(3 t ) cm 和x 24振动,其合振动的振幅为 ________________ 3cos(3 t -)cm 两个同方向振动的简谐49.某质点参与x 110 cos( 2 t ) cm 和x 12运动,其合振动的振幅为 ______________ ; 4cos(2t2)cm 两个同方向振动的简谐教材习题P/223: 9-1 , 9-2, 9-3, 9-4 9-10, 9-12, 9-18第9章振动学基础复习题答案3. x 8cos(4 t ) m .3 "4.5. ___ x 6cos t cm 。

大学物理简谐振动知识点及试题带答案

大学物理简谐振动知识点及试题带答案

简谐振动一、基本要求1、掌握简谐振动的定义,描述简谐振动的各物理量及其相互关系,会根据定义来判断一各物体的运动是不是简谐振动。

2、掌握简谐振动的旋转矢量表示法。

3、掌握简谐振动的基本特征,能根据一定的初始条件写出简谐振动的运动方程。

4、掌握同方向频率的两个简谐振动的合成,了解相互垂直同频率的简谐振动的合成。

二、主要内容1、简谐振动的表达式(运动方程) cos()x A t ωϕ=+三个特征量:振幅A ,决定与振动的能量;角频率ω,决定于振动系统的固有属性; 初相位ϕ,决定于振动系统初始时刻的状态。

简谐运动可以用旋转矢量来表示。

2、振动的相位:()t ωϕ+两个振动的相差:同相2k ϕπ∆=,反相(21)k ϕπ∆=+3、简谐振动的运动微粉方程:2220d x x dtω+=4、简谐振动的实例弹簧振子:220,2d x k x T dt m π+==单摆小角度振动:220,2d g T dt l θθ+==LC振荡:2210,2d q q T dt LCπ+== 5、简谐振动的能量:222111()222k P dx E E E m kx kA dt =+=+= 6、两个简谐振动的能量(1)同方向同频率的简谐振动的合成合振动是简谐振动,合振动的振幅和初相位由下式决定A =11221122sin sin tan cos cos A A A A ϕϕϕϕϕ+=+(2)相互垂直的两个同频率的简谐振动的合成合运动的轨迹一般为椭圆,其具体形状决定于两个分振动的相差和振幅。

当2k ϕπ∆=或(21)k π+时,合运动的轨迹为直线,这时质点在做简谐振动。

三、习题与解答1、两个质点各自作简谐振动,它们的振幅相同、周期相同。

第一个质点的振动方程为)cos(1ϕω+=t A x 。

某时刻当第一个质点正在平衡位置向负方向运动时,第二个质点正在最大位移处。

则第二个质点的振动方程为:( B )(A ))2cos(2πϕω++=t A x (B ))2cos(2πϕω-+=t A x(C ))23cos(2πϕω-+=t A x (D ))cos(2πϕω++=t A x 2、一物体做简谐振动,振幅为A ,在起始时刻质点的位移为2A-且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为:( D )3、一质点作简谐振动,振动方程)cos(ϕω+=t A x ,当时间 t =T/4 时,质点的速度为:( C )(A ) ϕωsin A - (B) ϕωsin A (C )ϕωcos A - (D )ϕωcos A4、一质点作谐振动,周期为T ,当它由平衡位置向 x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为( A )(A )T /6(B )T /12 (C)T /4 (D )T /85、有两个沿x 轴做简谐运动的质点,其频率、振幅皆相同,当第一个质点自平衡位置向负方向运动时,第二个质点在处(A 为振幅)也向负方向运动,则两者的相位差(12ϕϕ-)为:( C )2Ax -=(A )2π (B )32π (C )6π (D )65π6、质量为10×10-3 kg 的小球与轻弹簧组成的系统,按20.1cos(8)3x t ππ=+(SI)的规律做谐振动,求:(1)振动的周期、振幅、初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等? (3)t 2=5 s 与t 1=1 s 两个时刻的位相差. 解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A 又 πω8.0==A v m 1s m -⋅ 51.2=1s m -⋅2.632==A a m ω2s m -⋅(2) N 63.0==ma F mJ 1016.32122-⨯==m mv E J 1058.1212-⨯===E E E k p当p k E E =时,有p E E 2=, 即)21(212122kA kx ⋅= ∴ m 20222±=±=A x (3) ππωφ32)15(8)(12=-=-=∆t t7、一个沿x 轴做简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表出.如果t =0时质点的状态分别是:(1)x 0=-A ;(2)过平衡位置向正向运动;(3)过2Ax =处向负向运动; (4)过x =处向正向运动.试求出相应的初位相,并写出振动方程.解:因为 ⎩⎨⎧-==000sin cos ϕωϕA v A x将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有)2cos(1πππϕ+==t T A x)232cos(232πππϕ+==t T A x)32cos(33πππϕ+==t T A x)452cos(454πππϕ+==t T A x8、一质量为10×10-3 kg 的物体做谐振动,振幅为24 cm ,周期为4.0 s ,当t =0时位移为+24 cm.求:(1)t =0.5 s 时,物体所在的位置及此时所受力的大小和方向; (2)由起始位置运动到x =12 cm 处所需的最短时间; (3)在x =12 cm 处物体的总能量. 解:由题已知 s 0.4,m 10242=⨯=-T A ∴ 1s rad 5.02-⋅==ππωT又,0=t 时,0,00=∴+=ϕA x 故振动方程为m )5.0cos(10242t x π-⨯=(1)将s 5.0=t 代入得0.17m m )5.0cos(102425.0=⨯=-t x πN102.417.0)2(10103232--⨯-=⨯⨯⨯-=-=-=πωxm ma F方向指向坐标原点,即沿x 轴负向. (2)由题知,0=t 时,00=ϕ,t t =时 3,0,20πϕ=<+=t v A x 故且 ∴ s 322/3==∆=ππωϕt (3)由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为J101.7)24.0()2(10102121214223222--⨯=⨯⨯⨯===πωA m kA E9、有一轻弹簧,下面悬挂质量为1.0 g 的物体时,伸长为4.9 cm.用这个弹簧和一个质量为8.0 g 的小球构成弹簧振子,将小球由平衡位置向下拉开1.0 cm 后,给予向上的初速度v 0=5.0 cm·s -1,求振动周期和振动表达式. 解:由题知12311m N 2.0109.48.9100.1---⋅=⨯⨯⨯==x g m k 而0=t 时,-12020s m 100.5m,100.1⋅⨯=⨯-=--v x ( 设向上为正)又 s 26.12,51082.03===⨯==-ωπωT m k 即 m102)5100.5()100.1()(22222220---⨯=⨯+⨯=+=∴ωv x A45,15100.1100.5tan 022000πφωϕ==⨯⨯⨯=-=--即x v ∴ m )455cos(1022π+⨯=-t x10、图为两个谐振动的x -t 曲线,试分别写出其谐振动方程.题10图解:由题10图(a),∵0=t 时,s 2,cm 10,,23,0,0000===∴>=T A v x 又πφ 即 1s rad 2-⋅==ππωT故 m )23cos(1.0ππ+=t x a 由题10图(b)∵0=t 时,35,0,2000πϕ=∴>=v A x 01=t 时,35,0,2000πϕ=∴>=v A x又 ππωϕ253511=+⨯=∴ πω65=故 m t x b )3565cos(1.0ππ+=11、有两个同方向、同频率的简谐振动,其合成振动的振幅为0.20 m ,位相与第一振动的位相差为6π,已知第一振动的振幅为0.173 m ,求第二个振动的振幅以及第一、第二两振动的位相差.解:由题意可做出旋转矢量图如下. 由图知01.02/32.0173.02)2.0()173.0(30cos 222122122=⨯⨯⨯-+=︒-+=A A A A A ∴ m 1.02=A 设角θ为O AA 1,则θcos 22122212A A A A A -+=即 01.0173.02)02.0()1.0()173.0(2cos 2222122221=⨯⨯-+=-+=A A A A A θ 即2πθ=,这说明,1A 与2A 间夹角为2π,即二振动的位相差为2π.12、试用最简单的方法求出下列两组谐振动合成后所得合振动的振幅:(1)125cos(3),375cos(3);3x t cm x t cm ππ⎧=+⎪⎪⎨⎪=+⎪⎩(2)125cos(3),345cos(3).3x t cm x t cm ππ⎧=+⎪⎪⎨⎪=+⎪⎩解: (1)∵ ,233712πππϕϕϕ=-=-=∆ ∴合振幅 cm 1021=+=A A A (2)∵ ,334πππϕ=-=∆∴合振幅 0=A13、一质点同时参与两个在同一直线上的简谐振动,振动方程为120.4cos(2),650.3cos(2).6x t m x t m ππ⎧=+⎪⎪⎨⎪=-⎪⎩试分别用旋转矢量法和振动合成法求合振动的振幅和初相,并写出谐振动方程. 解:∵ πππϕ=--=∆)65(6 ∴ m 1.021=-=A A A 合3365cos 3.06cos 4.065sin3.06sin4.0cos cos sin sin tan 22122211=+-⨯=++=ππππϕϕϕϕφA A A A ∴ 6πϕ=其振动方程为m )62cos(1.0π+=t x14、若简谐运动方程为0.10cos(200.25)()x t m ππ=+,求:(1)振幅、频率、角频率、周期和初相;(2)2t s =时的位移、速度和加速度。

大学物理第九章振动学基础习题答案

大学物理第九章振动学基础习题答案

第九章 振动学习题9-1 一小球与轻弹簧组成的振动系统,按(m) 3ππ8cos 05.0⎪⎭⎫ ⎝⎛+=t x ,的规律做自由振动,试求(1)振动的角频率、周期、振幅、初相、速度最大值和加速度最大值;(2)t=1s ,2s ,10s 等时刻的相位;(3)分别画出位移、速度和加速度随时间变化的关系曲线。

解:(1)ω=8πs -1,T=2π/ω=0.25s ,A=0.05m ,ϕ0=π/3,m A ω=v ,2m a A ω=(2)π=8π3t φ+ (3)略9-2 一远洋货轮质量为m ,浮在水面时其水平截面积为S 。

设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力。

(1)证明货轮在水中做振幅较小的竖直自由运动是谐振动;(2)求振动周期。

解:(1)船处于静止状态时gSh mg ρ=,船振动的一瞬间()F gS h y mg ρ=-++ 得F gSy ρ=-,令k gS ρ=,即F ky =-,货轮竖直自由运动是谐振动。

(2)ω==,2π2T ω==9-3 设地球是一个密度为ρ的均匀球体。

现假定沿直径凿通一条隧道,一质点在隧道内做无摩擦运动。

(1)证明此质点的运动是谐振动;(2)计算其振动周期。

解:以球心为原点建立坐标轴Ox 。

质点距球心x 时所受力为324433x mF G G mx x πρπρ=-=-令43k G m πρ=,则有F kx =-,即质点做谐振动。

(2)ω==2πT ω== 9-4 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T s 。

当t =0时,(1)物体在正方向端点;(2)物体在平衡位置,向负方向运动;(3)物体在x ×10-2m 处,向负方向运动;(4)物体在x =-×10-2 m 处,向正方向运动。

求以上各种情况的振动方程。

解:ω=2π/T=4πs -1(1)ϕ0=0,0.02cos4(m)x t π=(2)ϕ0=π/2,0.02cos 4(m)2x t ππ⎛⎫=+ ⎪⎝⎭(3)ϕ0=π/3,0.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭(4)ϕ0=4π/3,40.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭9-5 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ×10-2 m 。

大学物理活页答案(振动和波)

大学物理活页答案(振动和波)

大学物理活页答案(振动和波部分)第一节 简谐振动1. D2.D3.B4.B5.B6.A7. X=0.02cos (52π−π2) 8. 2:1 9. 0.05m -37° 10. π or 3π 11. 012.解: 周期 3/2/2=ω=πT s , 振幅 A = 0.1 m , 初相 φ= 2π/3, v max = A = 0.3π m/s ,a max = 2A = 0.9π2 m/s 2 .13.提示:旋转矢量法(1)x =0.1cos (πt −π2)(2)x =0.1cos (πt +π3) (3)x =0.1cos (πt +π)14. (1)x =0.08cos (π2t +π3)t=1 x=-0.069m F=-kx=−m ω2x =2.7×10−4(2)π3=π2t t=0.67s第二节 振动能量和振动的合成1. D2.D3.D4.B5.B6. )(212121k k m k k +=νπ 提示:弹簧串联公式等效于电阻并联 7. 0.02m 8. π 0 提示:两个旋转矢量反向9. 402hz10. A=0.1m 位相等于113° 提示:两个旋转矢量垂直。

11. mv 0=(m +M)v ′ 12kA 2=1(m+M)v ′22 A=0.025m ω=√k m+M =40 x=0.025cos (40t −π/2)12. x=0.02cos (4t +π/3)x (m) ω π/3 π/3 t = 0 0.04 0.08 -0.04 -0.08 O A A机械波第一节 简谐波1. B2. A3.D4.C5.A (注意图缺:振幅A=0.01m )6.B7. 503.2 8. a 向下 b 向上 c 向上 d 向下 (追赶前方质元)9. π 10. 4π 或011.解:(1) )1024cos(1.0x t y π-π=)201(4cos 1.0x t -π= (SI) (2) t 1 = T /4 = (1 /8) s ,x 1 = λ /4 = (10 /4) m 处质点的位移)80/4/(4cos 1.01λ-π=T y m 1.0)818/1(4cos 1.0=-π= (3) 振速 )20/(4sin 4.0x t ty -ππ-=∂∂=v . )4/1(212==T t s ,在 x 1 = λ /4 = (10 /4) m 处质点的振速 26.1)21sin(4.02-=π-ππ-=v m/s 12.λ=0.4m u =0.05 k =ωu =2πλ=5π ω=π4 ϕ0=π2−2πT ∙T 2=−π2 y (x,t )=0.06cos (π4t −5πx −π2) y (0.2,t )=0.06cos (π4t −3π2)13. 210)cos sin 3(21-⨯-=t t y P ωω 210)]cos()21cos(3(21-⨯π++π-=t t ωω )3/4cos(1012π+⨯=-t ω (SI). 波的表达式为:]2/234cos[1012λλω-π-π+⨯=-x t y )312cos(1012π+π-⨯=-λωx t (SI) 第二节 波的干涉 驻波 电磁波1.D2.C3. D4.B5.B6.A7.C8. y =−2Acos (ωt ) ðy ðt =2Aωsin (ωt)9. 2A (提示:两振动同相)10. 0.5m 11. Acos2π(t T −x λ) A12. > 70.8hz 13. 7.96×10-2 W/m 214.解:(1) 反射点是固定端,所以反射有相位突变π,且反射波振幅为A ,因此反 射波的表达式为 ])//(2cos[2π+-π=T t x A y λ(2) 驻波的表达式是 21y y y += )21/2cos()21/2cos(2π-ππ+π=T t x A λ (3) 波腹位置: π=π+πn x 21/2λ, λ)21(21-=n x , n = 1, 2, 3, 4,… 波节位置: π+π=π+π2121/2n x λ λn x 21= , n = 1, 2, 3, 4,…15.解:(1) 与波动的标准表达式 )/(2cos λνx t A y -π= 对比可得: ν = 4 Hz , λ = 1.50 m , 波速 u = λν = 6.00 m/s(2) 节点位置 )21(3/4π+π±=πn x )21(3+±=n x m , n = 0,1,2,3, …(3) 波腹位置 π±=πn x 3/44/3n x ±= m , n = 0,1,2,3, …。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由上述方程可解得:
( 2)
k 2 m J / R2 , T 2 k m J / R2 mg k mg , 。 x cos( t ) k k m J / R2
( 3) t 0 , v 0 0 , A x 0
11-4 一质量为 m 的小球在一个光滑的半径为 R 的球形碗底作微小振动, 如图 11-4 所示。 设 t=0 时, =0, 小球的速度为 v0,并向右运动。求在振幅很小的情况下,小球的运动方程。 解:在切向应用牛顿定律
- -
11-6 质量为 0.01kg 的物体,以振幅 1.010 2m 作简谐运动,其最大加速度为 4.0m·s 2。求: (1)振动的周 期; (2)物体通过平衡位置时的总能量和动能; (3)当物体的位移大小为振幅的一半时,动能和势能 各占总能量的多少? 解: (1) a m A ,
2 2 , , x 0.12 cos( t ) 3 T 2 3 dx dv ( 2) v 0.12 sin( t ) , a 0.12 2 cos( t ) dt 3 dt 3
t 0.5 s , x 0.1039 m , v 0.1885 m/s , a 1.03 m/s 2
大学物理练习册—振动
11-1 一物体作简谐运动的曲线如图 11-1 所示,试求其运动方程。 解:设振动方程为 x A cos( t ) , A 4 10 由旋转矢量法知 ,
2
x /cm 4 O
2 2
m
3 4
/4 , 0.5 2
0.5
t /s
mg 。 k
m 图 11-3
分别取重物、滑轮和弹簧为研究对象,则有
mg T1 m
d2 x d2 x / dt 2 , ( T T ) R J , , T2 k ( x x 0 ) 1 2 R dt2 d2 x k x 0 所以物体作简谐振动。 2 dt m J / R2
3 x 4 10 2 cos( t ) 2 4
图 11-1
11-2 一质量为 0.02kg 的弹簧振子沿 x 轴作谐振动,振幅为 0.12m,周期为 2s。当 t=0 时,振子位于 0.06m 处,并向 x 轴正方向运动,试求: (1)试用旋转矢量法确定初位相并写出运动方程; (2)t=0.5s 时的位置, 速度和加速度; (3)从 x=-0.06m 处向 x 轴负方向运动再回到平衡位置所需时间。 解: (1)由旋转矢量法知
A12 A22 2 A1 A2 cos( 2 1 )
2
大学物理练习册—振动
0.05 2 0.06 2 2 0.05 0.06 cos(
0.05 sin
3 ) 0.078 m 4 4
3 0.06 sin A sin 1 A2 sin 2 4 4 11.00 , 84.8 1.48 rad tan 1 3 A1 cos 1 A2 cos 2 0.05 cos 0.06 cos 4 4 3 (2) 3 1 2k , 3 2k , k 0,1,2 ; 4 5 3 2 (2k 1) , 3 2k , k 0,1,2 。 4
2 F Fx i Fy j m 2 ( xi yj ) m 2 r 0.4 2 r 0.44r 3
4
( 3) t
/ 3 / 2 5 / 6 5 s 6
11-3 如图 11-3 所示,水平轻质弹簧一端固定,另一端所系轻绳绕过一滑轮垂挂一质量为 m 的物体。若弹 簧劲度系数为 k,滑轮半径为 R,转动量为 J。 (1)证明物体作简谐振动; (2)求振动周期; (3)设 t =0 时弹簧无伸缩,物体由静止下落,写出物体的运动方程。 解: (1)取系统的静平衡位置为坐标原点,向下为正。 弹簧的初始变形量 x 0
2 A 2 A12 A2 2 A1 A2 cos( 2 1 )
cos( 2 1 )
2 A 2 ( A12 A2 ) 0.2 2 (0.173 2 0.12 ) 0 , 2 1 。 2 2 A1 A2 2 0.173 0.1
图 11-4

v0 gR
cos(
g t ) R 2
11-5 一弹簧振子作简谐振动, 振幅 A=0.20m, 如果弹簧的劲度系数 k=2.0N/m, 所系的物体质量 m=0.50kg, 求: (1)当动能和势能相等时,物体的位移是多少?(2)设 t=0 时,物体在正最大位移处,则在一 个周期内达到动能和势能相等处所需的时间是多少? 解: ( 1) E P
2
am 4.0 2 2 20 1 /s , T 0.314 s 2 A 20 1 10
1 1 1 2 mv m m( A ) 2 0.01 (1.0 10 2 20) 2 2.0 10 4 J 2 2 2 1 2 1 A 2 1 1 2 1 3 (3) E P kx k ( ) kA E , E k E 2 2 2 4 2 4 4
11-8 有两个同方向同频率的简谐运动,其合成振动的振幅为 0.20m,合振动的相位与第一个振动的相位差 为π/6,第一个振动的振幅为 0.173m,求第二个振动的振幅及两振动的相位差。
2 解: A2 A12 A 2 2 A1 A cos
0.173 2 0.2 2 2 0.173 0.2 cos 30 0.01 , A2 0.1 m 6
A 0.2 1 2 1 1 1 0.14 m kx E kA 2 , x 2 A 2 , x 2 2 4 2 2 2
k m 2.0 2 1/ s 。 t 0.5
( 2)
1
3 5 7 ,t1 0.39 s ; 2 ,t 2 1.18 s ; 3 ,t 3 1.96 s ; 4 ,t 4 2.75 s ; 4 4 4 4
将 A1 0.08 , A2 0.06 , 1
, 2 代入上式,则 6 3
x2 y2 1 正椭圆 0.08 2 0.06 2
(2) Fx ma x mA1 2 cos( t
) m 2 x , F y m 2 y 6
A1 A2 , tan 1 1 , x A12 A2 cos( t tan 1 1 ) A2 A2 2
11-10 质量为 0.4kg 的质点同时参与相互垂直的两个谐振动:
x1 0.08 cos( t ) , x 2 0.06 cos( t ) 3 6 3 3
求: (1)质点的轨迹方程; (2)质点在任一位置所受的力。 解: (1)设 x A1 cos( t 1 ) , y A2 cos( t 2 ) ,消去 t 得
3
大学物理练习册—振动
x2 y2 2 xy 2 cos( 2 1 ) sin 2 ( 2 1 ) 2 A A A1 A2 1 2
11-9 图 11-9 表示两个同方向、同频率的简谐振动曲线,其频率为 ,分别求出(a)和(b)情形时: (1) 合振动振幅; (2)合振动的振动方程。 x x A2 A2 x2(t) A1 x1(t) A1 O x2(t) ( a) 图 11-9 解:(a) 2 1 , A | A2 A1 | , x | A2 A1 | cos( t (b) 2 1 O t x1(t) ( b) t
(2)在平衡位置 E E k 11-7 两个同方向的简谐振动,其运动方程分别为
3 1 x1 0.05 cos(10t ) , x 2 0.06 cos(10t ) 4 4
(1)求它们合成振动的振幅和初相位; ( 2) 若另有一振动 x3 0.07 cos(10t 3 ) , 则3 为多少时, x1+x3 的振幅最大?又3 为多少时, x2+x3 的振幅最小? 解: ( 1) A
1
大学物理练习册—振动
mg sin mat mR
d2 d2 g , , 0 sin dt2 dt2 R
t 0 , 0 ,且向右运动
O
R
设运动方程为 m cos( t ) ,
2 0 (v / R ) 2 v 2 。 m 0 2 0 0 0 2 g/R gR
相关文档
最新文档