超声波测距系统设计
基于单片机超声波测距系统的设计和实现

基于单片机超声波测距系统的设计和实现超声波测距系统是利用超声波传播速度较快的特性,通过发射超声波并接收其回波来测量距离的一种常见的测距方式。
在本文中,我们将介绍基于单片机的超声波测距系统的设计和实现。
一、系统设计原理超声波测距系统主要由超声波发射器、超声波接收器、单片机和显示器组成。
其工作原理如下:1.发送超声波信号:超声波发射器通过单片机控制,向外发射超声波信号。
超声波的发射频率通常在40kHz左右,适合在空气中传播。
2.接收回波信号:超声波接收器接收到回波信号后,将信号经过放大和滤波处理后送入单片机。
3.距离计算:单片机通过测量超声波发射和接收的时间差来计算距离。
以声速343m/s为例,超声波的往返时间与距离之间的关系为:距离=时间差×声速/2、通过单片机上的计时器和计数器来测量时间差。
4.数据显示:单片机将计算得到的距离数据通过显示器显示出来,实时展示被测物体与超声波传感器之间的距离。
二、系统设计步骤1.系统硬件设计:选择合适的超声波模块,其具有超声波发射器和接收器功能,并可通过接口与单片机连接。
设计好电源电路以及超声波传感器与单片机之间的连接方式。
2.系统软件设计:根据单片机的型号和编程语言,编写相应的程序。
包括超声波信号的发射和接收控制,计时和计数功能的编程,距离计算和数据显示的实现。
3.硬件连接和调试:将硬件连接好后,对系统进行调试。
包括超声波模块与单片机的连接是否正确,超声波信号的发射和接收是否正常,计时和计数功能是否准确等。
5.优化和改进:根据实际测试结果,对系统进行优化和改进。
如增加滤波和放大电路以提高信号质量,调整超声波模块的发射频率,改进显示方式等。
三、系统实现效果完成以上设计和实施后,我们可以得到一个基于单片机的超声波测距系统。
该系统使用简单,测距精度高,响应速度快,适用于各种距离测量的应用场景。
同时,该系统还可根据具体需求进行各种改进和扩展,如与其他传感器结合使用,增加报警功能等。
超声波测距系统

超声波测距系 统
-
引言
目录
系统设计
引言
超声波测距是一种非接触式的测 量方法,具有精度高、可靠性强、
对环境适应性强等优点
本设计以51单片机为核心,利用 超声波传感器进行距离测量,实 现成
本系统主要由51单片机、超声波传感器、显示模块和电源模块组成
电路连接
系统设计
将超声波传感器的Trig和 Echo分别连接到51单片机的 P1.0和P1.1口 将LCD显示屏的RS、RW和E分 别连接到51单片机的P0.0、 P0.1和P0.2口
电源模块通过杜邦线连接到 51单片机和超声波传感器: 为它们提供工作电压
系统设计
软件设计
主要步骤
初始化:包括初始化LCD显示屏和超声波传感器 发送超声波:通过51单片机的P1.0口发送一个10微秒的脉冲信号,触发超声波传感器 发送超声波
THANKS
系统设计
接收回声:超声波传感器接 收到回声后,通过P1.1口将 信号发送到51单片机
计算距离:51单片机接收到 回声信号后,根据超声波传 感器的工作原理,计算出距 离
显示结果:将计算出的距离 通过LCD显示屏显示出来
系统设计
主要代码
由于代码较长,这里只给出部分关键代码,具体可以参考以下示例代码
-
51单片机:作为系统的核心,负责处理和发送超声 波传感器的信号,并控制显示模块显示距离信息
超声波传感器:采用HC-SR04型号,该传感器具有测 量范围广、精度高等优点。其工作原理是利用超声 波的回声进行距离测量 显示模块:采用LCD显示屏,用于实时显示测量得到 的距离信息 电源模块:为整个系统提供稳定的工作电压
超声波测距系统的设计详解

超声波测距系统的设计详解超声波测距系统是一种基于超声波测量原理进行距离测量的系统。
它利用超声波在空气中的传播速度较快且能够穿透一定程度的障碍物的特点,通过向目标物体发射超声波并接收反射回来的波形信号,从而计算出目标与传感器之间的距离。
下面将详细介绍超声波测距系统的设计过程。
首先,超声波测距系统的设计需要明确测量的范围和精度要求。
根据需求确定测量距离的最大值和最小值,以及所需的测量精度。
这将有助于选择合适的超声波传感器和测量方法。
其次,选择合适的超声波传感器。
超声波传感器一般包括发射器和接收器两部分,发射器用于发射超声波,接收器用于接收反射回来的波形信号。
传感器的选择应考虑其工作频率、尺寸、功耗等因素。
一般来说,工作频率越高,测距的精度越高,但传感器的尺寸和功耗也会增加。
接下来是超声波信号的发射和接收电路的设计。
发射电路负责产生超声波信号,并将其发送到目标物体上。
接收电路负责接收反射回来的波形信号,并将其转换成可用的电信号。
发射电路常采用谐振频率发射,以提高发射效率和功耗控制。
接收电路则需要设计合适的放大和滤波电路,以增强接收到的信号并去除噪声。
然后是超声波信号的处理和计算。
接收到的波形信号需要进行模数转换和数字信号处理,以获取目标物体与传感器之间的距离。
常见的处理方法包括峰值检测、时差测量、相位比较等。
峰值检测法通过检测波形信号的峰值来判断目标距离;时差测量法通过测量发射和接收信号之间的时间差来计算距离;相位比较法通过比较两个信号的相位差来测量距离。
最后是系统的校准和调试。
校准是调整测距系统的参数,使其达到预定的测量精度。
常见的校准方法包括距离校准和零位校准。
调试是对整个系统进行功能和性能测试,确保其正常工作。
在调试过程中需要注意测距系统与其他系统的干扰和噪声问题,并进行相应的抑制和滤波处理。
总之,超声波测距系统的设计涉及到传感器选择、电路设计、信号处理和系统调试等多个方面。
合理的设计和调试能够保证系统的稳定性和可靠性,从而满足测量的要求。
基于STM32单片机的高精度超声波测距系统的设计

基于STM32单片机的高精度超声波测距系统的设计一、本文概述超声波测距技术因其非接触、高精度、实时性强等特点,在机器人导航、车辆避障、工业测量等领域得到了广泛应用。
STM32单片机作为一种高性能、低功耗的嵌入式系统核心,为超声波测距系统的设计提供了强大的硬件支持。
本文旨在设计一种基于STM32单片机的高精度超声波测距系统,以满足不同应用场景的需求。
二、超声波测距原理本部分将介绍超声波测距的基本原理,包括超声波的产生、传播、接收以及距离的计算方法。
同时,分析影响超声波测距精度的主要因素,为后续系统设计提供理论基础。
三、系统硬件设计3、1在设计基于STM32单片机的高精度超声波测距系统时,我们遵循了“精确测量、稳定传输、易于扩展”的总体设计思路。
我们选用了STM32系列单片机作为系统的核心控制器,利用其强大的处理能力和丰富的外设接口,实现了对超声波发射和接收的精确控制。
在具体设计中,我们采用了回波测距法,即发射超声波并检测其回波,通过测量发射与接收之间的时间差来计算距离。
这种方法对硬件的精度和稳定性要求很高,因此我们选用了高精度的超声波传感器和计时器,以确保测量结果的准确性。
我们还考虑到了系统的可扩展性。
通过STM32的串口通信功能,我们可以将测量数据上传至计算机或其他设备进行分析和处理,为后续的应用开发提供了便利。
我们还预留了多个IO接口,以便在需要时添加更多的传感器或功能模块。
本系统的设计思路是在保证精度的前提下,实现稳定、可靠的超声波测距功能,并兼顾系统的可扩展性和易用性。
31、1.1随着物联网、机器人技术和自动化控制的快速发展,精确的距离测量技术在各个领域的应用越来越广泛。
超声波测距技术作为一种非接触式的距离测量方式,因其具有测量精度高、稳定性好、成本相对较低等优点,在工业自动化、智能家居、机器人导航、安防监控等领域得到了广泛应用。
STM32单片机作为一款高性价比、低功耗、高性能的嵌入式微控制器,在智能设备开发中占据重要地位。
基于单片机的超声波测距系统的设计

基于单片机的超声波测距系统的设计
超声波测距系统是一种常见的测距技术,它利用超声波的特性来测量物体与传感器之间的距离。
基于单片机的超声波测距系统是一种常见的应用,它可以广泛应用于工业自动化、智能家居、机器人等领域。
基于单片机的超声波测距系统主要由超声波传感器、单片机、LCD 显示屏和电源等组成。
超声波传感器是测距系统的核心部件,它可以发射超声波信号并接收反射回来的信号。
单片机是控制系统的核心部件,它可以对传感器发射的信号进行处理,并计算出物体与传感器之间的距离。
LCD显示屏可以显示测量结果,方便用户进行观察和操作。
在设计基于单片机的超声波测距系统时,需要注意以下几点:
1.选择合适的超声波传感器。
传感器的频率和探测距离是选择传感器时需要考虑的重要因素。
2.选择合适的单片机。
单片机的处理速度和存储容量是选择单片机时需要考虑的重要因素。
3.编写合适的程序。
程序需要能够对传感器发射的信号进行处理,并计算出物体与传感器之间的距离。
同时,程序还需要能够将测量结果显示在LCD显示屏上。
4.进行系统测试。
在完成系统设计后,需要进行系统测试,确保系统能够正常工作,并且测量结果准确可靠。
基于单片机的超声波测距系统具有测量精度高、响应速度快、体积小等优点,可以广泛应用于各种领域。
在未来,随着技术的不断发展,基于单片机的超声波测距系统将会得到更广泛的应用。
基于单片机控制的超声波测距系统的设计

基于单片机控制的超声波测距系统的设计一、概述。
超声波测距技术是一种广泛应用的测距技术,它能够非常精确地测量物体到传感器的距离。
本文介绍的基于单片机控制的超声波测距系统主要由控制模块、信号处理模块和驱动模块三部分组成。
其中,控制模块主要实现超声波信号的发射与接收,信号处理模块主要实现对测量结果的处理和计算,驱动模块主要实现对LED灯的控制。
二、硬件设计。
1.超声波发射模块:采用 SR04 超声波发射传感器,并通过单片机的PWM 输出控制 SR04 的 trig 引脚实现超声波信号的发射。
2.超声波接收模块:采用SR04超声波接收传感器,通过单片机的外部中断实现对超声波信号的接收。
3.控制模块:采用STM32F103单片机,通过PWM输出控制超声波发射信号,并通过外部中断接收超声波接收信号。
4.信号处理模块:采用MAX232接口芯片,将单片机的串口输出转换成RS232信号,通过串口与上位机进行通信实现测量结果的处理和计算。
5.驱动模块:采用LED灯,通过单片机的GPIO输出控制LED灯的亮灭。
三、软件设计。
1.控制模块:编写程序实现超声波信号的发射与接收。
其中,超声波发射信号的周期为 10us,超声波接收信号的周期为 25ms。
超声波接收信号的处理过程如下:(1)当 trig 引脚置高时,等待 10us。
(2)当 trig 引脚置低时,等待 echo 引脚为高电平,即等待超声波信号的回波。
(3)当 echo 引脚为高电平时,开始计时,直到 echo 引脚为低电平时,停止计时。
(4)根据计时结果计算物体到传感器的距离,将结果通过串口输出。
2.信号处理模块:编写程序实现接收计算结果,并将结果通过串口与上位机进行通信。
具体步骤如下:(1)等待串口接收数据。
(2)当接收到数据时,将数据转换成浮点数格式。
(3)根据测量结果控制LED灯的亮灭。
以上就是基于单片机控制的超声波测距系统的设计。
该系统能够通过精确测量物体到传感器的距离并对测量结果进行处理和计算,能够广泛应用于各种实际场合。
超声波测距设计方案
超声波测距设计方案1. 概述超声波测距是一种利用超声波传感器对目标物体进行距离测量的技术。
它具有非接触、精度高、速度快等优点,广泛应用于工业自动化等领域。
本设计方案旨在实现一个基于Arduino的超声波测距系统,可以测量距离在2cm~400cm之间的目标物体,并将结果显示在液晶屏上,以方便用户观察和使用。
2. 系统组成本系统由硬件和软件两部分组成,硬件系统包括超声波传感器、Arduino主控板、液晶屏、电源等部分;软件系统包括Arduino的程序。
2.1 超声波传感器超声波传感器是本系统中最关键的部分,它通过发射超声波信号并接收回波信号,测量目标物体与传感器的距离。
常用的超声波传感器有HC-SR04、JSN-SR04T等型号,本设计方案使用HC-SR04超声波传感器。
2.2 Arduino主控板Arduino是一种开源的嵌入式系统,具有方便、易用、可扩展等特点,可以实现各种各样的控制任务。
本设计方案使用Arduino UNO主控板,它是一种基于ATmega328P芯片的开发板,具有丰富的接口和较高的性能和稳定性。
2.3 液晶屏液晶屏是显示距离测量结果的部分,本设计方案采用16*2字符型液晶屏,能够显示2行16个字符,显示结果清晰、直观。
2.4 电源本系统采用外接直流电源供电,电压为5V,可以通过USB接口或外部电源插头供电。
3. 系统原理本系统的测距原理基于超声波传感器发射超声波信号并接收回波信号的原理。
当超声波传感器发射超声波信号后,信号会以声速传播在空气中,当遇到目标物体后,部分波信号会被目标物体反射回来,形成回波信号,超声波传感器接收到回波信号后,再通过计算超声波信号的来回时间、声速等参数,便可以计算出目标物体与传感器的距离。
4. 系统设计超声波传感器通过接口连接到Arduino主控板,并需要外接电源,具体接线图如下所示:超声波传感器 VCC -> Arduino 5V液晶屏 RW -> Arduino GND整个系统的软件设计主要包括两部分,一部分是超声波测距的程序,另一部分是液晶屏显示的程序。
超声波测距系统的设计
超声波测距系统的设计引言:一、硬件设计:1.选择传感器:超声波传感器是测距系统的核心部件,通常采用脉冲法进行测量。
在选择传感器时,应考虑工作频率、测量范围、精度和稳定性等参数,并根据实际需求进行选择。
2.驱动电路设计:超声波传感器需要高频信号进行激励,设计驱动电路时需要根据传感器的工作要求来设计合适的电路,保证信号稳定且能够满足传感器的工作需求。
3.接收电路设计:超声波传感器产生的脉冲回波需要经过接收电路进行信号放大和滤波处理,设计接收电路时需要考虑信号放大的增益、滤波器的截止频率以及抗干扰能力等因素。
4.控制板设计:控制板是超声波测距系统中的核心控制器,负责控制测距过程、数据处理以及通信等功能。
在设计控制板时,应根据系统的要求选择合适的微控制器或单片机,并设计合理的电路布局和电源电路。
二、软件编程:1.驱动程序开发:根据传感器的规格书和数据手册,编写相应的驱动程序,实现对超声波传感器的激励和接收。
2.距离计算算法开发:通过测量超声波的往返时间来计算距离,根据声速和时间的关系进行距离计算,并根据实际情况对计算结果进行修正。
3.数据处理和显示:根据实际需求,对测量得到的距离进行处理,并将结果显示在合适的显示设备上,如LCD屏幕或计算机等。
4.数据通信:如果需要将测量结果传输至其他设备或系统,则需要编写相应的数据通信程序,实现数据的传输和接收。
三、系统测试与优化:1.测试传感器性能:测试测距系统的稳定性、精度和灵敏度等性能指标,根据测试结果对系统参数进行优化和调整。
2.系统校准:超声波测距系统可能受到环境温度、湿度和声速等因素的影响,需要进行校准以提高测量精度。
3.系统集成与实际应用:将超声波测距系统与实际应用场景进行集成,进行实际测试和验证。
总结:超声波测距系统的设计包括硬件设计和软件编程两个方面,其中硬件设计主要包括传感器选择、驱动电路设计和接收电路设计等;软件编程主要包括驱动程序开发、距离计算算法开发、数据处理和显示以及数据通信等。
超声波测距设计毕业设计
超声波测距设计毕业设计一、引言距离测量在许多领域都具有重要的应用,如工业自动化、机器人导航、汽车防撞等。
超声波测距作为一种非接触式的测量方法,具有测量精度高、响应速度快、成本低等优点,因此在实际工程中得到了广泛的应用。
本次毕业设计旨在设计一种基于超声波的测距系统,实现对目标物体距离的准确测量。
二、超声波测距原理超声波是一种频率高于 20kHz 的机械波,其在空气中的传播速度约为 340m/s。
超声波测距的原理是通过发射超声波脉冲,并测量其从发射到接收的时间间隔,然后根据声速和时间间隔计算出目标物体与传感器之间的距离。
假设发射超声波脉冲的时刻为 t1,接收到回波的时刻为 t2,声速为c,距离为 d,则距离 d 可以通过以下公式计算:d = c ×(t2 t1) / 2三、系统硬件设计(一)超声波发射模块超声波发射模块主要由超声波换能器和驱动电路组成。
超声波换能器将电信号转换为超声波信号发射出去,驱动电路则提供足够的功率和电压来驱动换能器工作。
(二)超声波接收模块超声波接收模块主要由超声波换能器、前置放大器、带通滤波器和比较器组成。
换能器将接收到的超声波信号转换为电信号,前置放大器对信号进行放大,带通滤波器去除噪声和干扰,比较器将信号整形为方波信号。
(三)控制与处理模块控制与处理模块采用单片机作为核心,负责控制超声波的发射和接收,测量时间间隔,并计算距离。
同时,单片机还可以将测量结果通过显示模块进行显示,或者通过通信模块与上位机进行通信。
(四)显示模块显示模块用于显示测量结果,可以采用液晶显示屏(LCD)或数码管。
(五)电源模块电源模块为整个系统提供稳定的电源,包括 5V 和 33V 等不同的电压等级。
四、系统软件设计(一)主程序流程系统上电后,首先进行初始化操作,包括单片机的初始化、定时器的初始化、端口的初始化等。
然后进入主循环,不断地发射超声波脉冲,并等待接收回波。
当接收到回波后,计算距离,并进行显示或通信。
基于51单片机的超声波测距系统的毕业设计
基于51单片机的超声波测距系统的毕业设计超声波测距系统是一种常见的非接触式测距技术,通过发送超声波信号并测量信号的回波时间来计算距离。
本文将介绍基于51单片机的超声波测距系统的毕业设计。
首先,我们需要明确设计的目标。
本设计旨在通过51单片机实现一个精确、稳定的超声波测距系统。
具体而言,我们需要实现以下功能:1.发送超声波信号:通过51单片机的IO口控制超声波发射器,发送一定频率和波形的超声波信号。
2.接收回波信号:通过51单片机的IO口连接超声波接收器,接收并放大返回的超声波信号。
3.信号处理:根据回波信号的时间延迟计算出距离,并在显示器上显示出来。
4.稳定性和精确性:设计系统时需考虑测量过程中误差的影响,并通过合适的算法和校准方法提高系统的稳定性和精确性。
接下来,我们需要选择合适的硬件和软件配合51单片机实现上述功能。
硬件方面:1.51单片机:选择一款性能稳定、易于编程的51单片机,如STC89C522.超声波模块:选择一款合适的超声波传感器模块,常见的有HC-SR04、JSN-SR04T等。
模块一般包括发射器和接收器,具有较好的测距性能。
3.显示设备:选择合适的显示设备,如7段LED数码管或LCD显示屏,用于显示测距结果。
软件方面:1.C语言编程:使用C语言编写51单片机的程序,实现超声波测距系统的各项功能。
2.串口通信:通过串口与上位机进行通信,可以对系统进行监控和远程控制。
3.算法设计:选择合适的算法计算超声波回波时间延迟,并根据时间延迟计算距离值。
在设计过程中,我们需要进行以下步骤:1.硬件连接:按照超声波模块的说明书,将模块的发射器和接收器通过杜邦线与51单片机的IO口连接。
2.软件编程:使用C语言编写51单片机的程序,实现超声波模块的控制、信号接收和处理、距离计算等功能。
3.系统测试:进行系统的功能测试和性能测试,验证系统的可靠性和准确性,同时调试系统中出现的问题。
4.系统优化:根据测试结果,对系统进行优化,提高系统的稳定性和精确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中北大学物联网工程专业无线传感器网络课程设计报告课题名称:超声波测距系统设计班级: 13270841 指导教师:马永开设时间: 2016 年 6 月目录一、课程设计目的 (1)二、课程设计题目 (1)三、课程设计内容、要求 (1)1、设计内容 (1)2、设计要求 (1)四、传感器工作原理 (1)1.超声波传感器 (1)2.温度传感器DS18B20 (3)五、系统框图 (3)六、单元电路设计原理 (4)1、超声波发射电路 (4)2、超声波检测接收电路 (4)3、单片机最小系统 (5)3.1、STC89C52芯片 (5)3.2 复位电路 (5)3.3 晶振电路 (6)4、显示部分 (7)5、温度检测电路 (7)七、软件设计与系统调试 (8)1、主程序流程图 (8)1.1发射程序与接收程序流程图 (9)1.2 中断子程序流程图 (10)1.3 距离计算与显示子程序 (11)2.系统调试 (12)八、设计中的问题及解决方法 (12)九、总结 (13)十、参考文献 (14)一、课程设计目的通过《无线传感器网络》课程设计,掌握传感器及检测系统设计的方法和设计原则及相应的硬件调试的方法。
进一步理解传感器及检测系统的设计和应用。
二、课程设计题目超声波测距系统设计三、课程设计内容、要求1、设计内容采用40KHz的超声波发射和接收传感器测量距离。
采用发射和接收平行放在一起,通过反射测量距离。
根据温度传感器DS18B20所采集的温度数据来修正测距系统中的声速,从而使超声波测得的距离更准确。
功能:1)所有测距和温度数据均通过液晶显示器LCD1602 显示出来,距离精确到毫米,温度精确到小数点后一位(单位:摄氏度)。
2)测量范围:30mm~2000mm。
3)误差<5mm。
4)其它。
2、设计要求1)掌握传感器的工作原理及相应的辅助电路设计方法。
2)独立设计原理图及相应的硬件电路。
3)设计说明书格式规范,层次合理,重点突出。
并附上详细的原理图四、传感器工作原理1. 超声波传感器本次设计超声波传感器采用电气方式中的压电式超声波传感器分机械方式和电气方式两类,它实际上是一种换能器,在发射端它把超声波换能器,它是利用压电晶体的谐振来工作的。
它有两个压电晶片和一个共振板。
当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,产生超声波。
反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,就成为超声波接收器。
超声波测距的方法有多种:如往返时间检测法、相位检测法、声波幅值检测法。
本设计采用往返时间检测法测距。
其原理是超声波传感器发射一定频率的超声波,借助空气媒质传播,到达测量目标或障碍物后反射回来,经反射后由超声波接收器接收脉冲,其所经历的时间即往返时间,往返时间与超声波传播的路程的远近有关。
测试传输时间可以得出距离。
图4-1 测距原理图假定s为被测物体到测距仪之间的距离,测得的时间为t/s,超声波传播速度为v/m·s-1表示,则有关系式s=vt/2。
在空气中,常温下超声波的传播速度是334米/秒,但其传播速度v易受空气中温度、湿度、压强等因素的影响,其中受温度的影响较大,如温度每升高1℃,声速增加约0.6米/秒。
声速与温度关系如表4-2所示。
因此在测距精度要求很高的情况下,应通过对温度补偿的方法对传播速度加以校正。
已知现场环境温度T 时,超声波传播速度V的计算公式可近似如下:V=331.5+0.607T这样,只要测得超声波发射和接收回波的时间差t以及现场环境温度T,就可以精确计算出发射点到障碍物之间的距离。
表4-2声速与温度关系表测量环境温度,从而提高测距精度。
空气中声速与温度的关系可表示为:声速确定后,只要测得超声波往返的时间,即可求得距离:L=1/2(331.4+0.6T)t。
2. 温度传感器DS18B20由于声音的速度在不同的温度下有所不同,因此为提高精度,应通过温度补偿对超声波的传播速度进行校正。
系统采用DS18B20传感器测量温度,DS18B20温度传感器具有不受外界干扰、精度高、测温范围宽等优点。
检测电路如图4-3所示,单片机P3.7口接DS18B20数据总线,控制DS18B20进行温度转换和传输数据,数据总线接10 kΩ的上拉电阻,作用是使总线控制器在温度转换期间无需一直保持高电平。
图4-3 温度检测电路五、系统框图六、单元电路设计原理1、超声波发射电路超声波发射电路原理图如图6-1所示。
发射电路主要由反相器74LS04和超声波发射换能器T构成,单片机P1.0端口输出的40kHz的方波信号一路经一级反向器后送到超声波换能器的一个电极,另一路经两级反向器后送到超声波换能器的另一个电极,用这种推换形式将方波信号加到超声波换能器的两端,可以提高超声波的发射强度。
输出端采两个反向器并联,用以提高驱动能力。
上位电阻R8、R9一方面可以提高反向器74LS04输出高电平的驱动能力,另一方面可以增加超声波换能器的阻尼效果,缩短其自由振荡时间。
图6-1 超声波发射电路原理图压电式超声波换能器是利用压电晶体的谐振来工作的。
超声波换能器内部有两个压电晶片和一个换能板。
当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片会发生共振,并带动共振板振动产生超声波,这时它就是一个超声波发生器;反之,如果两电极问未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收换能器。
超声波发射换能器与接收换能器在结构上稍有不同,使用时应分清器件上的标志。
2、超声波检测接收电路集成电路CX20106A是一款红外线检波接收的专用芯片,常用于电视机红外遥控接收器。
考虑到红外遥控常用的载波频率38 kHz与测距的超声波频率40 kHz 较为接近,可以利用它制作超声波检测接收电路(如图2-3)。
实验证明用CX20106A接收超声波(无信号时输出高电平),具有很好的灵敏度和较强的抗干扰能力。
适当更改电容C4的大小,可以改变接收电路的灵敏度和抗干扰能力。
图6-2 超声波接收电路原理图3、单片机最小系统3.1、STC89C52芯片本次设计我们所采用的是STC89C52单片机,是一种带8k字节闪烁可编程可擦除只读存储器的低电压、高性能COMOS8的微处理器,该器件有40引脚,速度较快,价格便宜,烧录方便,通过串口即可下载,还可以实现在线编程,采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
3.2 复位电路为确保微机系统中电路稳定可靠工作,复位电路是必不可少的一部分,复位电路的基本功能是:系统上电时提供复位信号,直至系统电源稳定后,撤销复位信号。
为可靠起见,电源稳定后还要经一定的延迟才撤销复位,以防电源开关或电源插头分-合过程中引起的抖动而影响复位。
当单片机的复位引脚出现2个机器周期以上的高电平时,单片机就执行复位操作。
如果RST持续为高电平,单片机就处于循环复位状态。
所以复位引脚的电容大一点没多大关系,顶多是复位时间长一点;但如果电容太小,高电平持续时间太短,则单片机无法正常复位,就不能工作,电容通常取10UF或22UF,铝电解电容即可。
单片机的复位电路在刚接通电时,刚开始电容是没有电的,电容内的电阻很低,通电后,5V的电源通过电阻给电解电容进行充电,电容两端的电会由0V慢慢的升到4V左右(此时间很短一般小于0.3秒),正因为这样,复位脚由低电位升到高电位,引起了内部电路的复位工作;当按下复位键时,电容两端放电,电容又回到0V了,于是又进行了一次复位工作。
电路图如图6-3。
图6-3 复位电路3.3 晶振电路它是单片机系统正常工作的保证,如果振荡器不起振,系统将会不能工作。
假如振荡器运行不规律,系统执行程序的时候就会出现时间上的误差,这在通信中会体现的很明显:电路将无法通信。
它是由一个晶振和两个瓷片电容组成的,晶振和瓷片电容是没有正负的,两个瓷片电容相连的那端一定要接地,如图6-2所示。
图6-4 晶振电路一般单片机的晶振工作于并联谐振状态,也可以理解为谐振电容的一部分。
它是根据晶振厂家提供的晶振要求负载电容选值的,换句话说,晶振的频率就是在它提供的负载电容下测得的,能最大限度的保证频率值的误差,也能保证温漂等误差。
一般处理器的一个机器周期由12个时钟周期所组成。
所以单片机用12M 晶振,运行速度为1M。
4、显示部分本设计显示部分采用字符型LCD1602液晶显示所测距离值。
LCD1602显示的容量为2行16个字。
液晶显示屏有微功耗、体积小、显示内容丰富、超薄轻巧、使用方便等诸多优点,与数码管相比,显得更专业、美观。
被广泛用于低功耗电子产品和智能仪表中。
5、温度检测电路DS18B20是美国DALLAS公司推出的单总线数字测温芯片。
它具有独特的单总线接口方式,仅需使用1个端口就能实现与单片机的双向通讯。
DS18B20采用3脚T0-92封装,形如三极管,同时也有8脚SOIC封装,还有6脚的TSOC封装。
测温范围为-55~+125℃,在-10~85℃范围内,精度为±0.5℃。
每一个DS18B20芯片的ROM中存放了一个64位ID号:前8位是产品类型编号,随后48位是该器件的自身序号,最后8位是前面56位的循环冗余校验码。
又因其可以采用寄生电源方式供电。
因此,一条总线上可以同时挂接多个DS18B20,实现多点测温系统。
温度传感器的DQ脚与单片机的P1.2管脚相连,用于显示当时的环境温度。
并把从外界检测到的温度返回到单片机中,并通过固化在程序中的温度速度表,查得最接近检测到的温度的速度值,代入距离计算公式,从而得到比较精确的距离,提高了超声波测距的精度。
七、软件设计与系统调试超声波测距系统的软件设计主要由主程序、超声波发射子程序、超声波接收中断程序、显示子程序、温度采集程序及距离计算子程序组成。
系统程序结构:(1)DS18B20温度传感器接口模块,分为初始化程序、写入命令以及读取子程序等部分;(2)基于LCD1602的显示模块,分为初始化子程序、写入子程序以及显示子程序;(3)温度补偿与距离计算模块、分为超声波发送控制程序、接收处理程序、温度补偿子程序等;(4)本次设计使用C语言编写程序,C语言相比汇编有许多的优势;编译器使用Keil Version4进行程序编译,Keil功能强大使用方便。
主程序,分为系统初始化、中断处理以及各个子程序的调度管理等部分。
如图7-1所示描述了各个模块的关系:图 7-1系统软件方框图1、主程序流程图本设计主程序的思想如下:(1)温度为三位显示,分辨率0.1摄氏度,距离为四位显示,单位为mm;(2)温度每隔900ms采样一次,DS18B20在12位精度下转换周期为750ms ,故900ms满足该速度要求;超声波每隔60ms发送一次。