2016届上海市徐汇区高三一模数学(理科)试题及答案

合集下载

2016年高考上海卷理数试题及答案

2016年高考上海卷理数试题及答案

2016年 普 通 高 等 学 校 招 生 全 国 统 一 考 试上海 数学试卷(理工农医类)一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1、设x R ∈,则不等式13<-x 的解集为______________________2、设iiZ 23+=,期中i 为虚数单位,则Im z =______________________ 3、已知平行直线012:,012:21=++=-+y x l y x l ,则21,l l 的距离_______________ 4、某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米)5、已知点(3,9)在函数xa x f +=1)(的图像上,则________)()(1=-x fx f 的反函数6、如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成角的大小为32arctan,则该正四棱柱的高等于____________ 7、方程3sin 1cos 2x x =+在区间[]π2,0上的解为___________8、在nx x ⎪⎭⎫ ⎝⎛-23的二项式中,所有项的二项式系数之和为256,则常数项等于_________9、已知ABC ∆的三边长分别为3,5,7,则该三角形的外接圆半径等于_________ 10、设.0,0>>b a 若关于,x y 的方程组11ax y x by +=⎧⎨+=⎩无解,则b a +的取值范围是____________11.无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意*∈N n ,{}3,2∈n S ,则k 的最大值为.12.在平面直角坐标系中,已知A (1,0),B (0,-1),P 是曲线21x y -=上一个动点,则BA BP ⋅的取值范围是.13.设[)π2,0,,∈∈c R b a ,若对任意实数x 都有()c bx a x +=⎪⎭⎫⎝⎛-sin 33sin 2π,则满足条件的有序实数组()c b a ,,的组数为.14.如图,在平面直角坐标系xOy 中,O 为正八边形821A A A 的中心,()0,11A .任取不同的两点j i A A ,,点P 满足0=++j i OA OA OP ,则点P 落在第一象限的概率是.二、选择题(5×4=20)15.设R a ∈,则“1>a ”是“12>a ”的( )(A )充分非必要条件 (B )必要非充分条件(C )充要条件 (D )既非充分也非必要条件 16.下列极坐标方程中,对应的曲线为右图的是( ) (A )θρcos 56+= (B )θρin s 56+= (C )θρcos 56-= (D )θρin s 56-=17.已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞→lim .下列条件中,使得()*∈<N n S S n 2恒成立的是( )(A )7.06.0,01<<>q a (B )6.07.0,01-<<-<q a (C )8.07.0,01<<>q a (D )7.08.0,01-<<-<q a18、设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均为增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是( ) A 、①和②均为真命题B 、①和②均为假命题C 、①为真命题,②为假命题D 、①为假命题,②为真命题三、解答题(74分)19.将边长为1的正方形11AAO O (及其内部)绕的1OO 旋转一周形成圆柱,如图, AC 长为23π, 11A B 长为3π,其中1B 与C 在平面11AAO O 的同侧。

上海市徐汇区高三数学一模试题 理(含解析)

上海市徐汇区高三数学一模试题 理(含解析)

上海市徐汇区2015届高考数学一模试卷(理科)一.填空题1.已知,则cos2θ=__________.2.若实数x,y满足xy=4,则x2+4y2的最小值为__________.3.设i是虚数单位,复数z满足(2+i)•z=5,则|z|=__________.4.函数f(x)=x2﹣2(x<0)的反函数f﹣1(x)=__________.5.若抛物线y2=2px的焦点与双曲线的右焦点重合,则该抛物线的准线方程为__________.6.如图,若正四棱柱ABCD﹣A1B1C1D1的底面边长为2,高为4,则异面直线BD1与AD所成角的大小是__________(结果用反三角函数值表示).7.设数列{a n}的前n项和为S n,若a1=1,S n﹣=0(n∈N*),则{a n}的通项公式为__________.8.若全集U=R,不等式的解集为A,则∁U A=__________.9.已知圆C:(x﹣1)2+(y﹣1)2=2,方向向量的直线l过点P(0,4),则圆C上的点到直线l的距离的最大值为__________.10.如图:在梯形ABCD中,AD∥BC且,AC与BD相交于O,设,,用,表示,则=__________.11.已知函数,将y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y=g(x)的图象,若y=g(x)的图象上最高点到点(0,3)的距离的最小值为1,则φ的值为__________.12.已知函数,其中n∈N*,当n=1,2,3,…时,f n(x)的零点依次记作x1,x2,x3,…,则=__________.13.在平面直角坐标系中,对于函数y=f(x)的图象上不重合的两点A,B,若A,B关于原点对称,则称点对(A,B)是函数y=f(x)的一组“奇点对”(规定(A,B)与(B,A)是相同的“奇点对”),函数的“奇点对”的组数是__________.14.设集合A={(x1,x2,x3,…,x10)|x i∈{﹣1,0,1},i=1,2,3,…,10},则集合A 中满足条件“1≤|x1|+|x2|+|x3|+…+|x10|≤9”的元素个数为__________.二.选择题15.“”是“实系数一元二次方程x2+x+a=0有虚数根”的( )A.充分非必要条件B.必要非充分条件C.充分必要条件D.既非充分又非必要条件;16.已知m和n是两条不同的直线,α和β是两个不重合的平面,则下列给出的条件中,一定能推出m⊥β的是( )A.α⊥β且m⊂αB.α⊥β且m∥αC.m∥n且n⊥βD.m⊥n且n∥β;17.某电商在“双十一”期间用电子支付系统进行商品买卖,全部商品共有n类(n∈N*),分别编号为1,2,…,n,买家共有m名(m∈N*,m<n),分别编号为1,2,…,m.若a ij=1≤i≤m,1≤j≤n,则同时购买第1类和第2类商品的人数是( )A.a11+a12+…+a1m+a21+a22+…+a2mB.a11+a21+…+a m1+a12+a22+…+a m2C.a11a12+a21a22+…+a m1a m2D.a11a21+a12a22+…+a1m a2m18.对于方程为的曲线C给出以下三个命题:(1)曲线C关于原点中心对称;(2)曲线C关于x轴对称,也关于y轴对称,且x轴和y轴是曲线C仅有的两条对称轴;(3)若分别在第一、第二、第三、第四象限的点M,N,P,Q,都在曲线C上,则四边形MNPQ 每一条边的边长都大于2;其中正确的命题是( )A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3);三.解答题19.已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)+f(﹣θ)=,θ∈(0,),求f(﹣θ).20.已知函数f(x)=2x+k•2﹣x(k∈R).(1)若函数f(x)为奇函数,求k的值;(2)若函数f(x)在(﹣∞,2]上为减函数,求k的取值范围.21.如图所示,某传动装置由两个陀螺T1,T2组成,陀螺之间没有滑动.每个陀螺都由具有公共轴的圆锥和圆柱两个部分构成,每个圆柱的底面半径和高都是相应圆锥底面半径的,且T1,T2的轴相互垂直,它们相接触的直线与T2的轴所成角θ=arctan.若陀螺T2中圆锥的底面半径为r(r>0).(1)求陀螺T2的体积;(2)当陀螺T2转动一圈时,陀螺T1中圆锥底面圆周上一点P转动到点P1,求P与P1之间的距离.22.已知椭圆γ:=1(常数a>1)的左顶点R,点A(a,1),B(﹣a,1),O为坐标原点;(1)若P是椭圆γ上任意一点,,求m2+n2的值;(2)设Q是椭圆γ上任意一点,S(3a,0),求的取值范围;(3)设M(x1,y1),N(x2,y2)是椭圆γ上的两个动点,满足k OM•k ON=k OA•k OB,试探究△OMN 的面积是否为定值,说明理由.23.已知有穷数列{a n}各项均不相等,将{a n}的项从大到小重新排序后相应的项数构成新数列{p n},称{p n}为{a n}的“序数列”,例如数列:a1,a2,a3满足a1>a3>a2,则其序数列{p n}为1,3,2;(1)写出公差为d(d≠0)的等差数列a1,a2,…,a n的序数列{p n};(2)若项数不少于5项的有穷数列{b n}、{c n}的通项公式分别是(n∈N*),(n∈N*),且{b n}的序数列与{c n}的序数列相同,求实数t的取值范围;(3)若有穷数列{d n}满足d1=1,(n∈N*),且{d2n﹣1}的序数列单调递减,{d2n}的序数列单调递增,求数列{d n}的通项公式.上海市徐汇区2015届高考数学一模试卷(理科)一.填空题1.已知,则cos2θ=.考点:二倍角的余弦.专题:三角函数的求值.分析:由二倍角的余弦公式展开后代入已知即可求值.解答:解:∵,∴cos2θ=1﹣2sin2θ=1﹣2×=,故答案为:.点评:本题主要考查了二倍角的余弦公式的应用,属于基础题.2.若实数x,y满足xy=4,则x2+4y2的最小值为16.考点:基本不等式.专题:不等式的解法及应用.分析:由已知可得y=,代入要求的式子,由基本不等式可得.解答:解:∵xy=4,∴y=∴x2+4y2=x2+≥2=16,当且仅当x2=,即x=±2时取等号,故答案为:16点评:本题考查基本不等式,属基础题.3.设i是虚数单位,复数z满足(2+i)•z=5,则|z|=.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:把已知的等式变形,然后利用复数代数形式的乘除运算化简,代入复数的模得答案.解答:解:由(2+i)•z=5,得,∴|z|=.故答案为:.点评:本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.4.函数f(x)=x2﹣2(x<0)的反函数f﹣1(x)=(x>﹣2).考点:反函数.专题:函数的性质及应用.分析:由y=x2﹣2(x<0)解得x=﹣,把x与y互换即可得出.解答:解:由y=x2﹣2(x<0)解得x=﹣,把x与y互换可得y=f﹣1(x)=﹣(x>﹣2).故答案为:(x>﹣2).点评:本题考查了反函数的求法,属于基础题.5.若抛物线y2=2px的焦点与双曲线的右焦点重合,则该抛物线的准线方程为x=﹣2.考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:求出双曲线的右焦点为F(2,0),该点也是抛物线的焦点,可得=2,即可得到结果.解答:解:∵双曲线的标准形式为:,∴c=2,双曲线的右焦点为F(2,0),∵抛物线y2=2px(p>0)的焦点与双曲线的右焦点重合,∴=2,可得p=4.故答案为:x=﹣2点评:本题给出抛物线与双曲线右焦点重合,求抛物线的焦参数的值,着重考查了双曲线的标准方程和抛物线简单几何性质等知识点,属于基础题.6.如图,若正四棱柱ABCD﹣A1B1C1D1的底面边长为2,高为4,则异面直线BD1与AD所成角的大小是arctan(结果用反三角函数值表示).考点:异面直线及其所成的角.专题:计算题.分析:先通过平移将两条异面直线平移到同一个起点,得到的锐角或直角就是异面直线所成的角,在直角三角形中求出正切值,再用反三角函数值表示出这个角即可.解答:解:先画出图形将AD平移到BC,则∠D1BC为异面直线BD1与AD所成角,BC=2,D1C=,tan∠D1BC=,∴∠D1BC=arctan,故答案为arctan.点评:本题主要考查了异面直线及其所成的角,以及解三角形的应用,属于基础题.7.设数列{a n}的前n项和为S n,若a1=1,S n﹣=0(n∈N*),则{a n}的通项公式为a n=.考点:数列的求和.专题:等差数列与等比数列.分析:当n≥2时,a n=S n﹣S n﹣1,利用等比数列的通项公式即可得出.解答:解:当n≥2时,a n=S n﹣S n﹣1=a n,化为a n+1=3a n.a1﹣a2=0,解得a2=2.∴当n≥2时,数列{a n}为等比数列,∴.∴{a n}的通项公式为a n=.故答案为:a n=.点评:本题考查了递推式的应用、等比数列的通项公式,属于基础题.8.若全集U=R,不等式的解集为A,则∁U A=[﹣1,0].考点:其他不等式的解法;补集及其运算.专题:不等式的解法及应用.分析:由题意可得(x+1)•﹣(﹣1)>1,即>﹣1,求得A,可得∁U A.解答:解:由不等式,可得(x+1)•﹣(﹣1)>1,即 1+>0,即>﹣1,∴x>0,或 x<﹣1,故A=(0,+∞)∪(﹣∞,﹣1),∴∁U A=[﹣1,0],故答案为:[﹣1,0].点评:本题主要考查行列式的运算,解分式不等式,集合的补集,体现了转化的数学思想,属于基础题.9.已知圆C:(x﹣1)2+(y﹣1)2=2,方向向量的直线l过点P(0,4),则圆C上的点到直线l的距离的最大值为.考点:直线与圆的位置关系.专题:计算题;直线与圆.分析:确定直线l的方程,求出圆心C到直线的距离,再加上半径,即为C上各点到l的距离的最大值.解答:解:由题意,方向向量的直线l过点P(0,4),方程为x﹣y+4=0 圆心C到直线的距离为d==2∵圆C:(x﹣1)2+(y﹣1)2=2的半径为∴C上各点到l的距离的最大值为2+=.故答案为:.点评:本题考查直线与圆的位置关系,考查学生的计算能力,属于基础题.10.如图:在梯形ABCD中,AD∥BC且,AC与BD相交于O,设,,用,表示,则=.考点:向量加减混合运算及其几何意义.专题:平面向量及应用.分析:因为在梯形ABCD中,AD∥BC且,AC与BD相交于O,设,,过D作DE∥AB,得到DE是△BDC的中线,利用中线的性质可得.解答:解:因为在梯形ABCD中,AD∥BC且,AC与BD相交于O,设,,过D作DE∥AB,则E是BC的中点,,所以﹣2,所以=.故答案为:.点评:本题考查了向量的三角形法则、共线的性质以及三角形中线的向量表示,注意运算.11.已知函数,将y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y=g(x)的图象,若y=g(x)的图象上最高点到点(0,3)的距离的最小值为1,则φ的值为.考点:函数y=Asin(ωx+φ)的图象变换;正弦函数的图象.专题:三角函数的图像与性质.分析:由条件根据函数y=Asin(ωx+φ)的图象变换规律可得g(x)=2sin(2x+2φ+),设g(x)的对称轴x=x0,由条件求得x0=0,可得g(0)=2,即2sin(2φ+)=2,从而求得φ 的值.解答:解:把函数的图象向左平移φ(0<φ<π)个单位后得到函数y=g(x)=2sin[2(x+φ)+]=2sin(2x+2φ+)的图象,再根据y=g(x)的图象上各最高点到点(0,3)的距离的最小值为1,设g(x)的对称轴x=x0,则最高点的坐标为(x0,2),它与点(0,3)的距离的最小值为1,即=1,求得x0=0,可得g(0)=2,即2sin(2φ+)=2,∴φ=,故答案为:.点评:本题主要考查向量的数量积的坐标运算,三角恒等变换,图象的平移变换,三角函数的单调性及相关的运算问题,属于中档题.12.已知函数,其中n∈N*,当n=1,2,3,…时,f n(x)的零点依次记作x1,x2,x3,…,则=﹣3.考点:极限及其运算.专题:导数的综合应用.分析:利用等比数列的前n项和公式可得:函数f n(x)=+,令f n (x)=0,解得x n=﹣1.再利用极限的运算法则即可得出.解答:解:函数=+=+,令f n(x)=0,解得x n=﹣1.∴=﹣2×1﹣1=﹣3.故答案为:﹣3.点评:本题考查了等比数列的前n项和公式、数列极限的运算法则,属于基础题.13.在平面直角坐标系中,对于函数y=f(x)的图象上不重合的两点A,B,若A,B关于原点对称,则称点对(A,B)是函数y=f(x)的一组“奇点对”(规定(A,B)与(B,A)是相同的“奇点对”),函数的“奇点对”的组数是3.考点:分段函数的应用.专题:函数的性质及应用.分析:根据“奇点对”的定义可知,只需要利用图象,作出函数f(x)=﹣x+4,x>0关于原点对称的图象,利用对称图象在x<0上两个图象的交点个数,即为“奇点对”的个数.解答:解:由题意知函数f(x)=sin x,x<0关于原点对称的图象为﹣y=﹣sin x,即y=sin x,x>0在x>0上作出两个函数的图象如图,由图象可知两个函数在x>0上的交点个数有3个,∴函数f(x)的“奇点对”有3组,故答案为:3.点评:本题主要考查新定义题目,读懂题意,利用数形结合的思想是解决本题的关键.14.设集合A={(x1,x2,x3,…,x10)|x i∈{﹣1,0,1},i=1,2,3,…,10},则集合A 中满足条件“1≤|x1|+|x2|+|x3|+…+|x10|≤9”的元素个数为310﹣210﹣1.考点:集合的表示法;元素与集合关系的判断.专题:计算题;集合;排列组合.分析:由排列组合的知识知,集合A中共有310个元素,其中|x1|+|x2|+|x3|+…+|x10|=0的只有一个元素,|x1|+|x2|+|x3|+…+|x10|=10的有210个元素;从而求得.解答:解:集合A中共有310个元素;其中|x1|+|x2|+|x3|+…+|x10|=0的只有一个元素,|x1|+|x2|+|x3|+…+|x10|=10的有210个元素;故满足条件“1≤|x1|+|x2|+|x3|+…+|x10|≤9”的元素个数为310﹣210﹣1.故答案为:310﹣210﹣1.点评:本题考查了排列组合的应用及集合中元素的特征应用,属于中档题.二.选择题15.“”是“实系数一元二次方程x2+x+a=0有虚数根”的( )A.充分非必要条件B.必要非充分条件C.充分必要条件D.既非充分又非必要条件;考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑;坐标系和参数方程.分析:根据充分条件和必要条件的定义进行判断即可.解答:解:若实系数一元二次方程x2+x+a=0有虚数根,则判别式△=1﹣4a<0,解得a>,则“”是“实系数一元二次方程x2+x+a=0有虚数根”的必要不充分条件,故选:B.点评:本题主要考查充分条件和必要条件的判断,根据一元二次方程根与判别式△之间的关系是解决本题的关键.16.已知m和n是两条不同的直线,α和β是两个不重合的平面,则下列给出的条件中,一定能推出m⊥β的是( )A.α⊥β且m⊂αB.α⊥β且m∥αC.m∥n且n⊥βD.m⊥n且n∥β;考点:直线与平面垂直的判定.专题:阅读型;空间位置关系与距离.分析:根据A,B,C,D所给的条件,分别进行判断,能够得到正确结果.解答:解:α⊥β,且m⊂α⇒m⊂β,或m∥β,或m与β相交,故A不成立;α⊥β,且m∥α⇒m⊂β,或m∥β,或m与β相交,故B不成立;m∥n,且n⊥β⇒m⊥β,故C成立;由m⊥n,且n∥β,知m⊥β不成立,故D不正确.故选:C.点评:本题考查直线与平面的位置关系的判断,解题时要认真审题,仔细解答,属于基础题.17.某电商在“双十一”期间用电子支付系统进行商品买卖,全部商品共有n类(n∈N*),分别编号为1,2,…,n,买家共有m名(m∈N*,m<n),分别编号为1,2,…,m.若a ij=1≤i≤m,1≤j≤n,则同时购买第1类和第2类商品的人数是( )A.a11+a12+…+a1m+a21+a22+…+a2mB.a11+a21+…+a m1+a12+a22+…+a m2C.a11a12+a21a22+…+a m1a m2D.a11a21+a12a22+…+a1m a2m考点:进行简单的合情推理.专题:推理和证明.分析:由已知中a ij=1≤i≤m,1≤j≤n,可知:a i1a i2表示第i名买家同时购买第1类和第2类商品,进而得到答案.解答:解:∵a ij=1≤i≤m,1≤j≤n,∴a i1a i2表示第i名买家同时购买第1类和第2类商品,∴同时购买第1类和第2类商品的人数是a11a12+a21a22+…+a m1a m2故选:C点评:本题考查的知识点是进行简单的合情推理,其中正确理解a ij=1≤i≤m,1≤j≤n的含义是解答的关键.18.对于方程为的曲线C给出以下三个命题:(1)曲线C关于原点中心对称;(2)曲线C关于x轴对称,也关于y轴对称,且x轴和y轴是曲线C仅有的两条对称轴;(3)若分别在第一、第二、第三、第四象限的点M,N,P,Q,都在曲线C上,则四边形MNPQ 每一条边的边长都大于2;其中正确的命题是( )A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3);考点:命题的真假判断与应用;曲线与方程.专题:作图题;简易逻辑.分析:分x>0,y>0,x<0,y>0,x<0,y<0,x>0,y<0四类讨论,作出的图象,再分别对选项(1)(2)(3)判断即可.解答:解:∵,∴当x>0,y>0时,⇒+=1,解得y==1+;同理可得,当x<0,y>0时,⇒﹣+=1,整理得:y=1﹣;当x<0,y<0时,⇒﹣﹣=1,整理得:y=﹣1+;x>0,y<0时,⇒﹣=1,整理得:y=﹣1﹣;作出图象如下:由图可知,曲线C关于原点成中心对称,故(1)正确;曲线C关于x轴对称,也关于y轴对称,也关于直线y=x与y=﹣x对称,故(2)错误;由于在第一、第二、第三、第四象限的点M,N,P,Q,都在曲线C上,由图可知,四边形MNPQ每一条边的边长都大于2,故(3)正确;综上所述,(1)(3)正确.故选:B.点评:本题考查命题的真假判断与应用,着重考查曲线与方程的理解与应用,考查分类讨论思想、等价转化思想与数形结合思想的综合运用,属于难题.三.解答题19.已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)+f(﹣θ)=,θ∈(0,),求f(﹣θ).考点:由y=Asin(ωx+φ)的部分图象确定其解析式;两角和与差的正弦函数.专题:三角函数的图像与性质.分析:(1)由函数f(x)的解析式以及f()=,求得A的值.(2)由(1)可得 f(x)=sin(x+),根据f(θ)+f(﹣θ)=,求得cosθ 的值,再由θ∈(0,),求得sinθ 的值,从而求得f(﹣θ)的值.解答:解:(1)∵函数f(x)=Asin(x+),x∈R,且f()=.∴Asin(+)=Asin=A•=,∴A=.(2)由(1)可得 f(x)=sin(x+),∴f(θ)+f(﹣θ)=sin(θ+)+sin(﹣θ+)=2sin cosθ=cosθ=,∴cosθ=,再由θ∈(0,),可得sinθ=.∴f(﹣θ)=sin(﹣θ+)=sin(π﹣θ)=sinθ=.点评:本题主要考查三角函数的恒等变换,同角三角函数的基本关系,属于中档题.20.已知函数f(x)=2x+k•2﹣x(k∈R).(1)若函数f(x)为奇函数,求k的值;(2)若函数f(x)在(﹣∞,2]上为减函数,求k的取值范围.考点:函数奇偶性的性质;函数单调性的性质.专题:函数的性质及应用.分析:(1)根据奇函数的概念,f(x)+f(﹣x)=0,解答即可;(2)先讨论K的取值范围,再求取值范围解答:解:(1)f(x)+f(﹣x)=(k+1)(2x+2﹣x)=0对一切的x∈R成立,所以k=﹣1.(2)若k≤0,则函数f(x)在(﹣∞,2]单调递增(舍),当k>0时,令t=2x∈(0,4],则函数在(0,4]上单调递减,所以,即k≥16.点评:本题主要考查奇函数的性质,单调性的定义.21.如图所示,某传动装置由两个陀螺T1,T2组成,陀螺之间没有滑动.每个陀螺都由具有公共轴的圆锥和圆柱两个部分构成,每个圆柱的底面半径和高都是相应圆锥底面半径的,且T1,T2的轴相互垂直,它们相接触的直线与T2的轴所成角θ=arctan.若陀螺T2中圆锥的底面半径为r(r>0).(1)求陀螺T2的体积;(2)当陀螺T2转动一圈时,陀螺T1中圆锥底面圆周上一点P转动到点P1,求P与P1之间的距离.考点:旋转体(圆柱、圆锥、圆台);棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:(1)设陀螺T2圆锥的高为h,可得,进而可得陀螺T2圆柱的底面半径和高为,进而求出陀螺T2的体积;(2)设陀螺T1圆锥底面圆心为O,可得,进而利用弧长公式,求出圆心角,进而可得P与P1之间的距离.解答:解:(1)设陀螺T2圆锥的高为h,则,即’得陀螺T2圆柱的底面半径和高为,(2)设陀螺T1圆锥底面圆心为O,则,得在△POP1中,点评:本题考查的知识点是旋转体的体积公式,弧长公式,是三角函数与空间几何的综合应用,难度中档.22.已知椭圆γ:=1(常数a>1)的左顶点R,点A(a,1),B(﹣a,1),O为坐标原点;(1)若P是椭圆γ上任意一点,,求m2+n2的值;(2)设Q是椭圆γ上任意一点,S(3a,0),求的取值范围;(3)设M(x1,y1),N(x2,y2)是椭圆γ上的两个动点,满足k OM•k ON=k OA•k OB,试探究△OMN 的面积是否为定值,说明理由.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(1)根据A与B坐标化简已知等式,确定出P坐标,由P在椭圆上列出关系式,求出所求式子的值即可;(2)设Q(x,y),利用平面向量数量积运算法则表示出•,配方后求出•的最大值与最小值,即可确定出•的范围;(3)根据题意,利用斜率公式得到=﹣,两边平方,整理得到x12+x22=a2,表示出三角形OMN的面积,整理后把x12+x22=a2代入得到结果为定值.解答:解:(1)∵点A(a,1),B(﹣a,1),O为坐标原点,∴=m+n=(ma﹣na,m+n),即P(ma﹣na,m+n),把P坐标代入椭圆方程得:(m﹣n)2+(m+n)2=1,即m2+n2=;(2)设Q(x,y),则•=(3a﹣x,﹣y)•(﹣a﹣x,﹣y)=(x﹣3a)(x+a)+y2=(x﹣3a)(x+a)+1﹣=x2﹣2ax+1﹣3a2=(x﹣)2﹣(﹣a≤x≤a),由a>1,得>a,∴当x=﹣a时,•的最大值为0;当x=a时,•的最小值为﹣4a2,则•的范围为[﹣4a2,0];(3)设M(x1,y1),N(x2,y2)是椭圆γ上的两个动点,满足k OM•k ON=k OA•k OB,由条件得:=﹣,平方得:x12x22=a4y12y22=(a2﹣x12)(a2﹣x22),即x12+x22=a2,∴S△OMN=|x1y2﹣x2y1|====,则△OMN的面积为定值.点评:此题考查了椭圆的简单性质,二次函数的性质,斜率公式,以及平面向量的数量积运算,熟练掌握运算法则是解本题的关键.23.已知有穷数列{a n}各项均不相等,将{a n}的项从大到小重新排序后相应的项数构成新数列{p n},称{p n}为{a n}的“序数列”,例如数列:a1,a2,a3满足a1>a3>a2,则其序数列{p n}为1,3,2;(1)写出公差为d(d≠0)的等差数列a1,a2,…,a n的序数列{p n};(2)若项数不少于5项的有穷数列{b n}、{c n}的通项公式分别是(n∈N*),(n∈N*),且{b n}的序数列与{c n}的序数列相同,求实数t的取值范围;(3)若有穷数列{d n}满足d1=1,(n∈N*),且{d2n﹣1}的序数列单调递减,{d2n}的序数列单调递增,求数列{d n}的通项公式.考点:等差数列的性质;等比数列的性质.专题:等差数列与等比数列.分析:(1)由新定义当d<0时,序数列为1,2,3,…,n;当d>0时,序数列为n,n﹣1,n﹣2,…,3,2,1;(2)由题意可得b2>b3>b1>b4>…>b n,可得序数列为2,3,1,4,…,n,进而可得2<<,解不等式可得;(3)由{d2n﹣1}的序数列单调递减可得d2n﹣d2n﹣1==,同理可得d2n+1﹣d2n=﹣=,进而可得d n+1﹣d n=,可得d n=d1+(d2﹣d1)+(d3﹣d2)+…+(d n﹣d n﹣1)=1+﹣+…+=1+•=+•,既得答案.解答:解:(1)由题意,当d<0时,序数列为1,2,3,…,n;当d>0时,序数列为n,n﹣1,n﹣2,…,3,2,1;(2)∵,∴b n+1﹣b n=,当n=1时,易得b2>b1,当n≥2时,易得b n+1<b n,又∵b1=,b3=3•()3,b4=4•()4,b4<b1<b3,即b2>b3>b1>b4>…>b n,故数列{b n}的序数列为2,3,1,4,…,n,∴对于数列{c n}有2<<,解得4<t<5;(3)∵{d2n﹣1}的序数列单调递减,∴数列{d2n﹣1}单调递增,∴d2n+1﹣d2n﹣1>0,∴(d2n+1﹣d2n)+(d2n﹣d2n﹣1)>0,而,∴|d2n+1﹣d2n|<|d2n﹣d2n﹣1|,∴d2n﹣d2n﹣1>0,∴d2n﹣d2n﹣1==,①∵{d2n}的序数列单调递增,∴数列{d2n}单调递减,同理可得d2n+1﹣d2n<0,∴d2n+1﹣d2n=﹣=,②由①②可得d n+1﹣d n=,∴d n=d1+(d2﹣d1)+(d3﹣d2)+…+(d n﹣d n﹣1)=1+﹣+…+=1+•=+•即数列{d n}的通项公式为d n=+•点评:本题考查等差数列和等比数列的性质,涉及新定义和不等式的性质,属中档题.。

高三数学理科答案2016年1月

高三数学理科答案2016年1月

2015学年第一学期徐汇区学习能力诊断卷 数学学科(理科)参考答案及评分标准2016.1一. 填空题:(本题满分56分,每小题4分) 1.x y 82= 2.2x = 3.12 4.12- 5.()4x y x R -=-∈ 6.04a << 7.16 8.0 9.28 10.23π 11.9 12.1413.2- 14二.选择题:(本题满分20分,每小题5分)15.A 16.D 17.A 18.C 三. 解答题:(本大题共5题,满分74分) 19.(本题满分12分)解:因为,SA AB SA AC ⊥⊥,AB AC A ⋂=,所以SA ⊥平面ABC ,所以SA BC ⊥.又AC BC ⊥.所以BC ⊥平面SAC .故SC BC ⊥.--------6分在ABC ∆中,090,2,ACB AC BC ∠===所以AB =.----8分又在SAB ∆中,,SA AB AB SB ⊥==所以SA =.---10分又因为SA ⊥平面ABC ,所以112323S ABC V -⎛=⨯⨯⨯=⎝.----------12分 20.(本题满分14分;第(1)小题6分,第(2)小题8分)解:(1)设213x u -⎛⎫= ⎪⎝⎭,则上式化为291010u u -+≤,119u ≤≤,即211193x -⎛⎫≤≤ ⎪⎝⎭,24x ≤≤---------------------------------------------------------------------6分(2)因为()()222()log log 1log 222x f x x x =⋅=-- 2222231log 3log 2log 24x x x ⎛⎫=-+=-- ⎪⎝⎭,---------------------------10分当23log 2x =,即x =min 14y =---------------------------------------------------12分 当2log 1x =或2log 2x =,即2x =或4x =时,max 0y =.---------------------------14分SABC21.(本题满分16分;第(1)小题6分,第(2)小题8分) 解:(1)由已知得1521515tan cos y x x=⨯+-, 即2sin 1515cos x y x -=+⨯(其中04x π≤≤)-----------------------------------------------6分(2)记2sin cos xp x -=,则sin cos 2x p x +=1≤,解得p ≥p ≤分由于0y >,所以,当6x π=,即点O 在CD 中垂线上离点P 距离为(15 6.34-≈km 处,y 取得最小值1540.98+≈(km ).-----------------14分22.(本题满分16分;第(1)小题3分,第(2)①小题6分,第(2)②小题7分) 解:(1)1232,3, 6.d d d ===---------------------------------------------------------------3分 (2)①当1n =时,11(1)1,a a λλ-=-+所以11a =---------------------------------4分 当2n ≥时,21(1),33n n S a n λλ-=-++1121(1),33n n S a n λλ---=-+- 两式相减得12,3n n a a λ-=+所以12223(1)33(1)n n n b a a λλλ-=+=++-- 112,3(1)n n a b λλλ--⎡⎤=+=⎢⎥-⎣⎦又1123103(1)3(1)b a λλλ-=+=≠-- 所以,数列{}n b 是以313(1)λλ--为首项、λ为公比的等比数列。

2016年上海市徐汇区高考一模数学试卷(理科)【解析版】

2016年上海市徐汇区高考一模数学试卷(理科)【解析版】

2016年上海市徐汇区高考数学一模试卷(理科)一.填空题:(本题满分56分,每小题4分)1.(4分)设抛物线的顶点在原点,准线方程为x=﹣2,则抛物线的标准方程是.2.(4分)方程的解是.3.(4分)设,则数列{a n}的各项和为.4.(4分)函数y=cos2x+sin x cos x的最小值为.5.(4分)若函数f(x)的图象与对数函数y=log4x的图象关于直线x+y=0对称,则f(x)的解析式为f(x)=.6.(4分)函数f(x)=|4x﹣x2|﹣a有四个零点,则a的取值范围是.7.(4分)设x、y∈R+且=1,则x+y的最小值为.8.(4分)若三条直线ax+y+3=0,x+y+2=0和2x﹣y+1=0相交于一点,则行列式的值为.9.(4分)(x3+2x+1)(3x2+4)展开后各项系数的和等于.10.(4分)已知四面体ABCD的外接球球心O在棱CD上,,CD=2,则A、B两点在四面体ABCD的外接球上的球面距离是.11.(4分)已知函数f(x)=x2﹣1的定义域为D,值域为{﹣1,0,1},试确定这样的集合D最多有个.12.(4分)正四面体的四个面上分别写有数字0,1,2,3把两个这样的四面体抛在桌面上,则露在外面的6个数字之和恰好是9的概率为.13.(4分)设x1,x2是实系数一元二次方程ax2+bx+c=0的两个根,若x1是虚数,是实数,则S=1+=.14.(4分)已知O是锐角△ABC的外心,.若,则实数m=.二.选择题:(本题满分20分,每小题5分)15.(5分)已知向量与不平行,且,则下列结论中正确的是()A.向量与垂直B.向量与垂直C.向量与垂直D.向量与平行16.(5分)若a,b为实数,则“0<ab<1”是“b<”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件17.(5分)(文)设x、y均是实数,i是虚数单位,复数(x﹣2y)+(5﹣2x﹣y)i的实部大于0,虚部不小于0,则复数z=x+yi在复平面上的点集用阴影表示为图中的()A.B.C.D.18.(5分)设函数y=f(x)的定义域为D,若对于任意x1、x2∈D,当x1+x2=2a时,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究函数f(x)=x+sinπx﹣3的某一个对称中心,并利用对称中心的上述定义,可得到的值为()A.﹣4031B.4031C.﹣8062D.8062三.解答题:(本大题共5题,满分74分)19.(12分)三棱锥S﹣ABC中,SA⊥AB,SA⊥AC,AC⊥BC且AC=2,BC=,SB=.(1)证明:SC⊥BC;(2)求三棱锥的体积V S.﹣ABC20.(14分)已知实数x满足()2x﹣4﹣()x﹣()x﹣2+≤0且f(x)=log2(1)求实数x的取值范围;(2)求f(x)的最大值和最小值,并求此时x的值.21.(14分)节能环保日益受到人们的重视,水污染治理也已成为“十三五”规划的重要议题.某地有三家工厂,分别位于矩形ABCD的两个顶点A、B及CD的中点P处,AB=30km,BC=15km,为了处理三家工厂的污水,现要在该矩形区域上(含边界),且与A、B等距离的一点O处,建造一个污水处理厂,并铺设三条排污管道AO、BO、PO.设∠BAO=x(弧度),排污管道的总长度为ykm.(1)将y表示为x的函数;(2)试确定O点的位置,使铺设的排污管道的总长度最短,并求总长度的最短公里数(精确到0.01km).22.(16分)给定数列{a n},记该数列前i项a1,a2,…,a i中的最大项为A i,即A i=max{a1,a2,…,a i};该数列后n﹣i项a i+1,a i+2,…,a n中的最小项为B i,即B i=min{a i+1,a i+2,…,a n};d i=A i﹣B i(i=1,2,3,…,n﹣1)(1)对于数列:3,4,7,1,求出相应的d1,d2,d3;(2)若S n是数列{a n}的前n项和,且对任意n∈N*,有,其中λ为实数,λ>0且.①设,证明数列{b n}是等比数列;②若数列{a n}对应的d i满足d i+1>d i对任意的正整数i=1,2,3,…,n﹣2恒成立,求实数λ的取值范围.23.(18分)已知直线l1、l2与曲线W:mx2+ny2=1(m>0,n>0)分别相交于点A、B和C、D,我们将四边形ABCD称为曲线W的内接四边形.(1)若直线l1:y=x+a和l2:y=x+b将单位圆W:x2+y2=1分成长度相等的四段弧,求a2+b2的值;(2)若直线与圆W:x2+y2=4分别交于点A、B和C、D,求证:四边形ABCD为正方形;(3)求证:椭圆的内接正方形有且只有一个,并求该内接正方形的面积.2016年上海市徐汇区高考数学一模试卷(理科)参考答案与试题解析一.填空题:(本题满分56分,每小题4分)1.(4分)设抛物线的顶点在原点,准线方程为x=﹣2,则抛物线的标准方程是y2=8x.【解答】解:由题意可知:=2,∴p=4且抛物线的标准方程的焦点在x轴的正半轴上故可设抛物线的标准方程为:y2=2px将p代入可得y2=8x.故答案为:y2=8x.2.(4分)方程的解是x=2.【解答】解:由方程可得3x﹣5=4,即3x=32,解得x=2,故答案为x=2.3.(4分)设,则数列{a n}的各项和为.【解答】解:∵=,∴=,则数列{a n}是以为首项以为公比的等比数列∴=所以数列的各项和S==故答案为4.(4分)函数y=cos2x+sin x cos x的最小值为﹣.【解答】解:函数y=cos2x+sin x cos x=+sin2x=+sin(2x+),故当2x+=2kπ﹣,k∈z时,函数y取得最小值为﹣1=﹣,故答案为:﹣.5.(4分)若函数f(x)的图象与对数函数y=log4x的图象关于直线x+y=0对称,则f(x)的解析式为f(x)=y=﹣4﹣x.【解答】解:设函数f(x)的图象上一点(x,y),则点(x,y)关于x+y=0的对称点(x',y')在对数函数y=log4x的图象由题意知,解得x'=﹣y,y'=﹣x又∵点(x',y')在对数函数y=log4x的图象∴﹣x=log4(﹣y)∴﹣y=4﹣x∴y=﹣4﹣x故答案为:y=﹣4﹣x6.(4分)函数f(x)=|4x﹣x2|﹣a有四个零点,则a的取值范围是(0,4).【解答】解:∵函数f(x)=|4x﹣x2|﹣a有四个零点,故直线y=a和函数y=|4x ﹣x2|的图象有4个交点,如图所示:结合图象可得0<a<4,故答案为(0,4).7.(4分)设x、y∈R+且=1,则x+y的最小值为16.【解答】解:∵=1,x、y∈R+,∴x+y=(x+y)•()==10+≥10+2=16(当且仅当,x=4,y=12时取“=”).故答案为:16.8.(4分)若三条直线ax+y+3=0,x+y+2=0和2x﹣y+1=0相交于一点,则行列式的值为0.【解答】解:解方程组得交点坐标为(﹣1,﹣1),代入ax+y+3=0,得a=2.行列式=2+4﹣3﹣6+4﹣1=0.故答案为:0.9.(4分)(x3+2x+1)(3x2+4)展开后各项系数的和等于28.【解答】解:(x3+2x+1)(3x2+4)展开后含有字母x,令x=1,则展开式中各项系数的和为:(13+2×1+1)(3×12+4)=28.故答案为:28.10.(4分)已知四面体ABCD的外接球球心O在棱CD上,,CD=2,则A、B两点在四面体ABCD的外接球上的球面距离是.【解答】解:球心到四个顶点距离相等,故球心O在CD中点,则OA=OB=OC=OD=1,再由AB=,在△A0B中,利用余弦定理cos∠AOB==﹣,则∠AOB=,则弧AB=•1=.故答案为:.11.(4分)已知函数f(x)=x2﹣1的定义域为D,值域为{﹣1,0,1},试确定这样的集合D最多有9个.【解答】解:∵f(x)=x2﹣1∴f(0)=﹣1,f(±1)=0,f(±)=1因此,定义域D有:{0,1,},{0,﹣1,﹣},{0,﹣1,},{0,1,﹣},{0,﹣1,1,},{0,﹣1,1,﹣},{0,1,,﹣},{0,﹣1,,﹣},{0,﹣1,1,,﹣}共9种情况故答案为:912.(4分)正四面体的四个面上分别写有数字0,1,2,3把两个这样的四面体抛在桌面上,则露在外面的6个数字之和恰好是9的概率为.【解答】解:正四面体的四个面上分别写有数字0,1,2,3把两个这样的四面体抛在桌面上,露在外面的6个数字之和包含的基本事件总数n=4×4=16,设两个正四面体中压在桌面的数字分别为m,n,则露在外面的6个数字之和恰好是9的基本情况有:(0,3),(3,0),(1,2),(2,1),共包含4个基本事件,∴露在外面的6个数字之和恰好是9的概率p=.故答案为:.13.(4分)设x1,x2是实系数一元二次方程ax2+bx+c=0的两个根,若x1是虚数,是实数,则S=1+=﹣2.【解答】解:设x1=s+ti(s,t∈R,t≠0).则x2=s﹣ti.则x1+x2=2s,x1x2=s2+t2.∵==+i是实数,∴3s2t﹣t3=0,∴3s2=t2.∴x1+x2=2s,x1x2=s2+t2.∴4s2==+2x1x2=x1x2,∴+1=0,取=ω,则ω2+ω+1=0,∴ω3=1.则S=1+=1+ω+ω2+ω4+ω8+ω16+ω32=0+ω+ω2+ω+ω2=﹣2.故答案为:﹣2.14.(4分)已知O是锐角△ABC的外心,.若,则实数m=.【解答】解:设外接圆的半径为R,∵,∴(﹣)+(﹣)=2m,∵∠AOB=2∠C,∠AOC=2∠B,∴(﹣)•+(﹣)•=2m•,即•R2•(cos2C﹣1)+•R2•(cos2B﹣1)=﹣2mR2,即﹣2sin C cos B+(﹣2sin B cos C)=﹣2m,故sin C cos B+sin B cos C=m,故sin(B+C)=m,故m=sin A=,故答案为:.二.选择题:(本题满分20分,每小题5分)15.(5分)已知向量与不平行,且,则下列结论中正确的是()A.向量与垂直B.向量与垂直C.向量与垂直D.向量与平行【解答】解:设的夹角为θ,则0<θ<π,∵()•()==0,∴()⊥(),故A正确;D错误.∵()•=﹣=﹣cosθ≠0,∴与不垂直;故B错误;∵==+cosθ≠0,∴与不垂直,故C错误;故选:A.16.(5分)若a,b为实数,则“0<ab<1”是“b<”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:若“0<ab<1”当a,b均小于0时,即“0<ab<1”⇒“”为假命题若“”当a<0时,ab>1即“”⇒“0<ab<1”为假命题综上“0<ab<1”是“”的既不充分也不必要条件故选:D.17.(5分)(文)设x、y均是实数,i是虚数单位,复数(x﹣2y)+(5﹣2x﹣y)i的实部大于0,虚部不小于0,则复数z=x+yi在复平面上的点集用阴影表示为图中的()A.B.C.D.【解答】解:∵复数(x﹣2y)+(5﹣2x﹣y)i的实部大于0,虚部不小于0,∴,由线性规划的知识可得:可行域为直线x=2y的右下方和直线的左下方,因此为A.故选:A.18.(5分)设函数y=f(x)的定义域为D,若对于任意x1、x2∈D,当x1+x2=2a时,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究函数f(x)=x+sinπx﹣3的某一个对称中心,并利用对称中心的上述定义,可得到的值为()A.﹣4031B.4031C.﹣8062D.8062【解答】解:∵f(x)=x+sinπx﹣3,∴当x=1时,f(1)=1+sinπ﹣3=﹣2,∴根据对称中心的定义,可得当x1+x2=2时,恒有f(x1)+f(x2)=﹣4,∴=2015[f()+f()]+f()=2015×(﹣4)﹣2=﹣8062.故选:C.三.解答题:(本大题共5题,满分74分)19.(12分)三棱锥S﹣ABC中,SA⊥AB,SA⊥AC,AC⊥BC且AC=2,BC=,SB=.(1)证明:SC⊥BC;(2)求三棱锥的体积V S.﹣ABC【解答】解:(1)∵SA⊥ABSA⊥ACAB∩AC=A∴SA⊥平面ABC,∴AC为SC在平面ABC内的射影,又∵BC⊥AC,由三垂线定理得:SC⊥BC(2)在△ABC中,AC⊥BC,AC=2,BC=,∴AB==,∵SA⊥AB,∴△SAB为Rt△,SB=,∴SA==2,∵SA⊥平面ABC,∴SA为棱锥的高,=××AC×BC×SA=×2××=.∴V S﹣ABC20.(14分)已知实数x满足()2x﹣4﹣()x﹣()x﹣2+≤0且f(x)=log2(1)求实数x的取值范围;(2)求f(x)的最大值和最小值,并求此时x的值.【解答】解:(1)∵()2x﹣4﹣()x﹣()x﹣2+≤0,∴81()2x﹣10()x+≤0,∴≤9()x≤1,∴0≤x﹣2≤2,故实数x的取值范围为[2,4];(2)f(x)=log2=(log2x﹣1)(log2x﹣2)=(log2x﹣)2﹣,∵x∈[2,4],∴log2x∈[1,2],∴﹣≤(log2x﹣)2﹣≤0,∴当x=2时,f(x)有最小值﹣,当x=2或4时,f(x)有最大值0.21.(14分)节能环保日益受到人们的重视,水污染治理也已成为“十三五”规划的重要议题.某地有三家工厂,分别位于矩形ABCD的两个顶点A、B及CD的中点P处,AB=30km,BC=15km,为了处理三家工厂的污水,现要在该矩形区域上(含边界),且与A、B等距离的一点O处,建造一个污水处理厂,并铺设三条排污管道AO、BO、PO.设∠BAO=x(弧度),排污管道的总长度为ykm.(1)将y表示为x的函数;(2)试确定O点的位置,使铺设的排污管道的总长度最短,并求总长度的最短公里数(精确到0.01km).【解答】解:(1)由已知得,即(其中)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)记,则sin x+p cos x=2,则有,解得或﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)由于y>0,所以,当,即点O在CD中垂线上离点P距离为km处,y取得最小值(km).﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)22.(16分)给定数列{a n},记该数列前i项a1,a2,…,a i中的最大项为A i,即A i=max{a1,a2,…,a i};该数列后n﹣i项a i+1,a i+2,…,a n中的最小项为B i,即B i=min{a i+1,a i+2,…,a n};d i=A i﹣B i(i=1,2,3,…,n﹣1)(1)对于数列:3,4,7,1,求出相应的d1,d2,d3;(2)若S n是数列{a n}的前n项和,且对任意n∈N*,有,其中λ为实数,λ>0且.①设,证明数列{b n}是等比数列;②若数列{a n}对应的d i满足d i+1>d i对任意的正整数i=1,2,3,…,n﹣2恒成立,求实数λ的取值范围.【解答】解:(1)∵给定数列{a n},A i=max{a1,a2,…,a i},B i=min{a i+1,a i+2,…,a n},d i=A i﹣B i(i=1,2,3,…,n﹣1)对于数列:3,4,7,1,A1=3,B1=1,d1=3﹣1=2,A2=4,B2=1,d2=4﹣1=3,A3=7,B3=1,d3=7﹣1=6,∴d1=2,d2=3,d3=6.(3分)证明:(2)①当n=1时,(1﹣λ)a1=﹣λa1+1,∴a1=1,(4分)当n≥2时,,,两式相减得,∴=,又,∴数列{b n}是以为首项、λ为公比的等比数列.(9分)解:②由①知:;又d i=max{a1,a2,…,a i}﹣min{a i+1,a i+2,…,a n},d i+1=max{a1,a2,…,a i+1}﹣min{a i+2,a i+3,…,a n}由于min{a i+1,a i+2,…,a n}≤min{a i+2,a i+3,…,a n},∴由d i+1>d i推得max{a1,a2,…,a i}<max{a1,a2,…,a i+1}.∴max{a1,a2,…,a i+1}=a i+1对任意的正整数i=1,2,3,…,n﹣2恒成立.(13分)∵d i=a i﹣a i+1,d i+1=a i+1﹣a i+2,∴.(14分)由d i﹣d i+1<0,得,但λ>0且λ≠1,∴,解得,∴.(16分)23.(18分)已知直线l1、l2与曲线W:mx2+ny2=1(m>0,n>0)分别相交于点A、B和C、D,我们将四边形ABCD称为曲线W的内接四边形.(1)若直线l1:y=x+a和l2:y=x+b将单位圆W:x2+y2=1分成长度相等的四段弧,求a2+b2的值;(2)若直线与圆W:x2+y2=4分别交于点A、B和C、D,求证:四边形ABCD为正方形;(3)求证:椭圆的内接正方形有且只有一个,并求该内接正方形的面积.【解答】解:(1)由于直线l1:y=x+a和l2:y=x+b将单位圆W:x2+y2=(1分)成长度相等的四段弧,所以,在等腰直角△OAB中,圆心O(0,0)到直线l1:y=x+a的距离为,同理|b|=1,∴a2+b2=2﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(2)由题知,直线l1,l2关于原点对称,因为圆W:x2+y2=4的圆心为原点O,所以,故四边形ABCD为平行四边形.易知,O点在对角线AC,BD上.联立解得,由得=,所以,于是,因为,所以四边形ABCD为正方形.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)(3)证明:假设椭圆存在内接正方形,其四个顶点为A,B,C,D.当直线AB的斜率不存在时,设直线AB、CD的方程为x=m,x=n,因为A,B,C,D在椭圆上,所以,由四边形ABCD为正方形,易知,,直线AB、CD的方程为,正方形ABCD的面积.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)当直线AB的斜率存在时,设直线AB、CD的方程分别为l AB:y=kx+m,l CD:y =kx+n(k≠0,m≠0),显然m≠n.设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),联立得(1+2k2)x2+4kmx+2m2﹣2=0,所以代人,得,同理可得,因为ABCD为正方形,所以|AB|2=|CD|2解得m2=n2因为m≠n,所以m=﹣n,因此,直线AB与直线CD关于原点O对称,所以原点O为正方形的中心(由m=﹣n知,四边形ABCD为平行四边形)由ABCD为正方形知,即代人得,解得(注:此时四边形ABCD为菱形)由ABCD为正方形知|AB|=|AD|,因为直线AB与直线CD的距离为,故但,由得4k4+5k2+1=4k4+4k2+1,∴k2=0即k=0,与k≠0矛盾.所以|AD|2≠|AB|2,这与|AD|=|AB|矛盾.即当直线AB的斜率k≠0存在时,椭圆内不存在正方形.综上所述,椭圆的内接正方形有且只有一个,且其面积为.﹣﹣(18分)。

高三数学月考试题及答案-上海市徐汇区七校2016届高三上学期12月联合调研考试(理)

高三数学月考试题及答案-上海市徐汇区七校2016届高三上学期12月联合调研考试(理)

七校2016届高三上学期12月联合调研考试数学试卷(理)一. 填空题 (本大题满分56分)本大题共有14题,只要求直接填写结果,每题填对得4分,否则一律得零分.1.函数)()(1≥1-=2x x x f 的反函数是._____________)(=1-x f2、已知a b a ,,1=2=和b 的夹角为3π,则.___________=⋅b a 3、幂函数)(x f y =的图象过点),(214,则._________)(=41f 4、方程)(log )(log x x -5=3-42的解为 .5、若直线1l 的一个法向量),(11=n ,若直线2l 的一个方向向量),(2-1=d ,则1l 与2l 的夹角θ= .(用反三角函数表示).6、直线0=2-3+y x l :交圆2=+22y x 于A 、B 两点,则._______=AB7、已知(),,πα0∈且71=4+)tan(πα,则=αcos . 8、无穷等比数列{}n a 的前n 项和为n S ,若3=6=63S S ,,则._______lim =∞→n n S 9、已知1--=x kx x f )(有两个不同的零点,则实数k 的取值范围是 . 10、已知c b a 、、是ABC ∆中C B ∠∠∠、、A 的对边, 若 60=7=A a ,,ABC ∆的面积为310,则ABC ∆的周长为 .11、奇函数)(x f 的定义域为R ,若)(2+x f 为偶函数,且1=1)(f ,则.__________)()(=101+100f f 12、已知等比数列{}n a 的前n 项和为n S ,若324S S S ,,成等差数列,且18-=++432a a a ,若2016≥n S ,则n 的取值范围为 .13、设,R m ∈过定点A 的动直线0=+my x 和过定点B 的动直线0=3+--m y mx 交于点P ,则PB PA ⋅的最大值是 .14、设[]x 表示不超过x 的最大整数,如[][]2-=21-3=.,π.给出下列命题: ①对任意的实数x ,都有[]x x x ≤<1-; ②对任意的实数y x ,,都有[][][]y x y x +≥+;③[][][][][]4940=2015+2014++3+2+1lg lg lg lg lg ;④若函数[][]x x x f =)(,当[))(,*N n n x ∈0∈时,令)(x f 的值域为A ,记集合A 中元素个数为n a ,则na n 49+的最小值为219.其中所有真命题的序号为 .二.选择题 (本大题满分20分)本大题共有4题,每题都给出四个结论,其中有且只有一个结论是正确的,选对得 5分,否则一律得零分.15、数列{}n a 的前n 项和为2=n S n ,则8a 的值为 ( ) A 、15 B 、16 C 、49 D 、6416、3=a 是直线0=3+2+a y ax 和7-=1-+3a y a x )(平行且不重合的 ( ) A 、充分非必要条件 B 、必要非充分条件 C 、充要条件 D 、既不充分又不必要条件 17、将x x f 2=si n )(的图象右移)(2<<0πϕϕ个单位后得到)(x g 的图象.若满足2=-21)()(x g x f 的21x x ,,有21-x x 的最小值为3π,则ϕ的值为 ( ) A 、12πB 、6π C 、4π D 、3π 18、已知函数1++=x x e me xf )(,若对任意R x x x ∈321、、,总有)()()(32x f x f x f 、、1为某一个三角形的边长,则实数m 的取值范围是 ( )A 、⎥⎦⎤⎢⎣⎡121,B 、[]10,C 、[]21, D 、⎥⎦⎤⎢⎣⎡221,三.解答题 (本大题满分74分)本大题共有5题,解答下列各题必须写出必要的步骤. 19.(本题共2小题,满分12 分。

上海市徐汇区2015 -2016学年度第一学期期末试卷高三理科数学分析

上海市徐汇区2015 -2016学年度第一学期期末试卷高三理科数学分析

上海市徐汇区2015 -2016学年度第一学期期末试卷高三理科数学分析一、综述、易错点和难点分析这套试卷无论是试题结构或试题形式,还是解决方法上都是延续以往的特点。

首先是依托教材,部分题型较新,保持了能力立意;二是二期课改的教材的新增内容也占一定比例,紧扣“标准”;三是比较注重“双基”的考查。

主要体现在:1.突出基本知识,基本技能的考查;2. 对于指点交叉考查的比较多;3. 注重对知识的灵活应用能力;4. 常考的知识点并没有什么变化;5. 对于新增部分的知识点考查比较多。

注重基础,考查课本中的基本知识和基本技能。

教材的新增内容占相当一部分比例,并且与其它知识点相结合。

考查学生逻辑思维能力,培养学生利用数学思想和方法解决问题的能力。

填空题、选择题考查了抛物线、函数、等比数列、三角函数、不等式、行列式、立体几何等知识点,大部分属于常规题型,是学生在平时训练中常见的类型.同时,在函数、行列式等题目上进行了一些微创新,这些题目的设计回归教材和中学教学实际.知识点考查全面,覆盖了考纲中要求的所有知识点。

教材的新增内容占相当比例,但难度有所增加,并且与其它知识点相结合。

突出能力考查,重视思想方法。

试卷总体上体现了能力立意。

一是试卷前面比较注重双基考查,布局上基础知识考查居多题目比较简单顺手。

后面对于数学思维的考查要求比较高,部分题目还体现发散和探索的要求。

这些年高考数学题型和数量已成定势,一般来说,能力立意保持依旧。

能力立意一直是上海高考数学卷的特色之一。

这套试题依然设计试题考查自主学习和探究问题的能力。

比如,填空题中关于矩阵对角线元素之和的题目,要求考生具有一定的观察、分析能力以及归纳发现能力;14题在分类讨论、思维的严密性等方面具有一定要求。

这种题目考的就是学生是不是具有细心与耐心的品质,做出这种题目要么就是有超人一等能直接洞察题目本质的能力,要么就是勤勤恳恳一个一个给他举出来。

在提供问题解决路径的同时也适度降低了试题的难度。

上海市徐汇区高三上学期学习能力诊断(一模)数学试题含答案.doc

上海市徐汇区高三上学期学习能力诊断(一模)数学试题含答案.doc

2016-2017学年第一学期徐汇区学习能力诊断卷高三年级数学学科2016. 12一. 填空题(本大题满分54分)本大题共有12题,其中第1题至第6题每小题4分,第7 题至笫12题每小题5分,考生应在答题纸相应编号的空格内直接填写结果,每个空格填対得 4分(或5分),否则一律得0分.2.已知抛物线C 的顶点在平面直角坐标系原点,焦点在轴上,若C 经过点M (l,3),则其焦点 到准线的距离为 ______________ .4.若复数满足:二內+ i (是虚数单位),贝ijz 7 ,5•在(x + —)6的二项展开式中第四项的系数是 _________ •(结果用数值表示)x6. ________________ 在长方体ABCD — ABCQ 屮,若AB = BC = 1,AA ]=42,则异而直线与CC ;所成 角的大小为 .7.若函数/(x ) = \2 \ _________________________________ 的值域为(-00,1],则实数加的取值范围是 ______________________________________________ . -x 2 + m. x> 0&如图: 在 MBC 中, 若 AB = AC = 3,cos ZBAC = -.DC = 2BD , 则 2AD BC= ______________ ・9.定义在R 上的偶函数y = f (x ),当兀二0时,/(x ) = lg (x 2-3x+3),则于(兀)在R 上的 零点个数为 __________ 个.10.将辆不同的小汽车和辆不同的卡车驶入如图所示的10个车位中的某个内,其中辆卡车必须 停在A 与B 的位置,那么不同的停车位置安排共有 _____________ 种?(结果用数值表示) 1. lim MT8 2H -5 n + l3•若线性方程组的增广矩阵为| J解为胃彳 [y=[第8题图 第10題團£11•已知数列{匕}是首项为,公差为2加的等差数列,前项和为S”.设n- 2n若数列{仇}是递减数列,则实数"2的取值范围是___________ ・12.若使集合A = {x| (fct-P -6)(x-4) > 0,%e z]中的元素个数最少,则实数的取值范围是二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得0分.13. a x = k7V + -伙wZ)” 是“tanx = l” 成立的( )4(A)充分非必要条件(B)必要非充分条件(C)充要条件(D)既非充分也非必要条件14.若1-5/办(是虚数单位)是关于的实系数方程X+bx + c = 0的一个复数根,则( )(A) /? = 2,c = 3 (B) b = 2.c = -\(C) b = -2,c = -1 (D) b = -2,c = 315.已知函数/&)为/?上的单调函数,广©)是它的反函数,点A(-1,3)和点3(1,1)均在函数/&)的图像上,则不等式|广吃)|v 1的解集为( )(A) (-1,1) (B) (1,3) (C) (0,log23) (D) (l,log23)2 2 2 216.如图,两个椭圆二+丄=1,丄+丄二1内部重叠区域的边界记为曲线C, P是曲线C25 9 25 9上的任意一点,给出下列三个判断:①P 到片(—4,0)、笃(4,0)、厶(0,—4)、E2(0,4)0点的距离之和为定值;②曲线C关于直线y =兀、y =—兀均对-称;③曲线C所围区域面积必小于36.上述判断中正确命题的个数为( )(A)个(B)个(C)个(D) 3个三.解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.如图,已知PA丄平面ABC , AC丄AB, AP=BC = 2, ZCBA = 30° , D 是AB 的中点. (1)求PD与平面P4C所成角的大小(结果用反三角函数值表示);(2)求\PDB绕直线PA旋转一周所构成的旋转体的体积(结果保留龙).18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 宀、A/3 COS2 x -sinx己知函数/(x) =COSX 17T(1)当xw 0,—时,求/(x)的值域;(2)已知MBC的内角的对边分别为a,b,c,若/(△) = J3,Q =4』+C =5, 求AABC的面积.19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.某创业团队拟生产A、B两种产品,根据市场预测,A产品的利润与投资额成正比(如图1), B产品的利润与投资额的算术平方根成正比(如图2).(注:利润与投资额的单位均为万元)(1)分别将A、B两种产品的利润/(力、g(x)表示为投资额的函数;(2)该团队已筹集到10万元资金,并打算全部投入A、B两种产品的生产,问:当B产品的投资额为多少万元时,生产A、B两种产殆能获得最大利润,最大利润为多少?20•(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6 分,第3小题满分6分.兀2如图:双曲线「:一—尸=1的左、右焦点分别为片,耳,过笃作直线交y轴于点Q・(1)当直线平行于「的一条渐近线时,求点耳到直线的距离;(2)当直线的斜率为时,在「的石支占是否存在点P,满足F\PF\Q = 0 ?若存在,求出P点的坐标;若不存在,说明理由;(3)若直线与「交于不同两点A、B,且「上存在一点M,满足鬲+丽+ 4丽=0(其中O为坐标原点),求直线的方程.21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6 分,第3小题满分8分.正数数列{色}、[b n ]满足:a x >b^且对一切k>2,keN*f 兔是%[与乞一的等差中项,Q 是%1与俵.]的等比中项.(1) 若a 2 = 2,/?2 = 1,求。

2016年高考上海理科数学试题与答案(word解析版)

2016年高考上海理科数学试题与答案(word解析版)
(6)【2016年上海,理6,4分】如图,在正四棱柱ABCDA1B1C1D1中,底面ABCD的边长为3,BD1
与底面所成角的大小为
2
arctan,则该正四棱柱的高等于.
3
【答案】22
DD2DD2
【解析】由题意得11
tanDBDDD22
11
BD3323

【点评】本题考查了正四棱柱的性质,正四棱柱的高的计算,考查了线面角的定义,关键是找到直线与平面所成
32
x
x
n
(8)【2016年上海,理8,4分】在的二项式中,所有项的二项式系数之和为256,则常数项等于.
【答案】112
n,由题意得2256
n
【解析】由二项式定理得:二项式所有项的二项系数之和为2
,所以n8,二项式的通项

84
2
r
r38rrrr33
TC(x)()(2)Cx
r188
x
,求常数项则令
84
【点评】本题考查数列与集合的关系,考查分类讨论思想方法,注意运用归纳思想,属于中档题.
(12)【2016年上海,理12,4分】在平面直角坐标系中,已知A1,0,B0,1,P是曲线
2
y1x上一个
动点,则BPBA的取值范围是.
【答案】0,12
2
【解析】由题意得知
y1x表示以原点为圆心,半径为1的上半圆.设Pcos,sin,0,,BA1,1,
fxhx、gxhx均为增函数,则fx、gx、hx中至少有一个增函数;②若fxgx、
fxhx、gxhx均是以T为周期的函数,则fx、gx、hx均是以T为周期的函数,下列判
断正确的是()
(A)①和②均为真命题(B)①和②均为假命题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015学年第一学期徐汇区学习能力诊断卷数学学科(理科)参考答案及评分标准2016.1 一.填空题:(本题满分56分,每小题4分)1.x y 82= 2.2x = 3.12 4.12- 5.()4x y x R -=-∈ 6.04a << 7.16 8.0 9.28 10.23π 11.9 12.1413.2- 145二.选择题:(本题满分20分,每小题5分)15.A 16.D 17.A 18.C 三. 解答题:(本大题共5题,满分74分) 19.(本题满分12分)解:因为,SA AB SA AC ⊥⊥,AB AC A ⋂=,所以SA ⊥平面ABC ,所以SA BC ⊥.又AC BC ⊥.所以BC ⊥平面SAC .故SC BC ⊥.--------6分在ABC ∆中,090,2,13ACB AC BC ∠===所以17AB =分又在SAB ∆中,,17,29SA AB AB SB ⊥==,所以23SA =.---10分又因为SA ⊥平面ABC ,所以1123921323323S ABC V -⎛=⨯⨯⨯=⎝.----------12分 20.(本题满分14分;第(1)小题6分,第(2)小题8分)解:(1)设213x u -⎛⎫= ⎪⎝⎭,则上式化为291010u u -+≤,119u ≤≤,即211193x -⎛⎫≤≤ ⎪⎝⎭,24x ≤≤---------------------------------------------------------------------6分(2)因为()()2222()log log 1log 222x xf x x x =⋅=-- 2222231log 3log 2log 24x x x ⎛⎫=-+=-- ⎪⎝⎭,---------------------------10分当23log 2x =,即22x =min 14y =---------------------------------------------------12分 当2log 1x =或2log 2x =,即2x =或4x =时,max 0y =.---------------------------14分 21.(本题满分16分;第(1)小题6分,第(2)小题8分) 解:(1)由已知得1521515tan cos y x x=⨯+-, 即2sin 1515cos x y x -=+⨯(其中04x π≤≤)-----------------------------------------------6分(2)记2sin cos xp x -=,则sin cos 2x p x +=2211p≤+, SABC解得3p ≥或3p ≤分由于0y >,所以,当6x π=,即点O 在CD 中垂线上离点P 距离为15315⎛ ⎝⎭km 处, y 取得最小值1515340.98+≈(km ).-------------------------------------------------14分22.(本题满分16分;第(1)小题3分,第(2)①小题6分,第(2)②小题7分) 解:(1)1232,3, 6.d d d ===---------------------------------------------------------------3分 (2)①当1n =时,11(1)1,a a λλ-=-+所以11a =---------------------------------4分 当2n ≥时,21(1),33n n S a n λλ-=-++1121(1),33n n S a n λλ---=-+- 两式相减得12,3n n a a λ-=+所以12223(1)33(1)n n n b a a λλλ-=+=++-- 112,3(1)n n a b λλλ--⎡⎤=+=⎢⎥-⎣⎦又1123103(1)3(1)b a λλλ-=+=≠-- 所以,数列{}n b 是以313(1)λλ--为首项、λ为公比的等比数列.--------------------------9分②由①知:13123(1)3(1)n n a λλλλ--=--- ;又{}{}1212max ,,,min ,,,i i i i n d a a a a a a ++=-,{}{}112123max ,,,min ,,,i i i i n d a a a a a a ++++=- 由于{}{}1223min ,,,min ,,,,i i n i i n a a a a a a ++++≤所以由1i i d d +>推得{}{}12121max ,,,max ,,,.i i a a a a a a +<所以{}1211max ,,,i i a a a a ++=对任意的正整数1,2,3,,2i n =-恒成立.-----------13分因为1112,,i i i i i i d a a d a a ++++=-=-所以121212131312(12)(1).3(1)3(1)i i i i i i i d d a a a λλλλλλλλλ--+++---=+-=+-=---------14分由10i i d d +-<,得1231(1)03(1)i λλλλ---<-,但0λ>且1λ≠,所以3103(1)λλ-<-解得113λ<<,所以1(,1)3λ∈--------------------16分23.(本题满分18分,第(1)小题4分,第(2)小题5分,第(3)小题9分)解:(1)由于直线1:l y x a =+和2:l y x b =+将单位圆22:1W x y +=分成长度相等的四段弧,所以2AB CD ==OAB ∆中,圆心()0,0O 到直线1:l y x a =+的距离为2122a d a ===,同理1b =,∴222a b +=------------------------------------4分 (2)由题知,直线12,l l 关于原点对称,因为圆22:4W x y +=的圆心为原点O ,所以AB DC =,故四边形ABCD 为平行四边形.易知,O 点在对角线,AC BD 上.联立224210x y y x +=⎧⎪⎨=-⎪⎩解得2541060x x -+=,由121241065x x x x +==得 (12121212210210OA OB x x y y x x x x ⋅=+=+)121241052101062101005x x x x =-++=-+=,所以OA OB ⊥, 于是AC BD ⊥,因为4AC BD ==,所以四边形ABCD 为正方形.----------------9分(3) 证明:假设椭圆22:12x W y +=存在内接正方形,其四个顶点为,,,A B C D . 当直线AB 的斜率不存在时,设直线AB 、CD 的方程为,x m x n ==,因为,,,A B C D 在椭圆上,所以2222,1,1,,1,,12222m m n n A m B m C n D n ⎛⎛⎛⎛---- ⎝⎝⎝⎝,由四边形ABCD 为正方形,易知,6633m n ==-AB 、CD 的方程为6633x x ==-,正方形ABCD 的面积26268333S =⋅=.---------------------12分 当直线AB 的斜率存在时,设直线AB 、CD 的方程分别为():,:0,0AB CD l y kx m l y kx n k m =+=+≠≠,显然m n ≠.设()()()()11223344,,,,,,,A x y B x y C x y D x y ,联立2212x y y kx m⎧+=⎪⎨⎪=+⎩得()222124220k x kmx m +++-=,所以2121222422,1212km m x x x x k k -+=-=++代人()()222121214AB kx x x x ⎡⎤=++-⎣⎦,得()()222222218112k m AB k k -+=+⋅+,同理可得()()222222218112k n CD k k -+=+⋅+,因为ABCD 为正方形,所以22AB CD =解得22m n =因为m n ≠,所以m n =-,因此,直线AB 和直线CD 关于原点O 对称,所以原点O 为正方形的中心(由m n =-知AB DC =,四边形ABCD 为平行四边形) 由ABCD 为正方形知OA OB ⊥, 即()()221212121210OA OB x x y y kx xkm x x m ⋅=+=++++=代人得222322012m k k--=+,解得()22213k m +=(注:此时四边形ABCD 为菱形) 由ABCD 为正方形知AB AD =,因为直线AB 和直线CD 的距离为21m nAD m n k-==-+,故()22222214483113k m AD k k +⋅===++ 但()()()()()22222222221142188131212k k k m AB kk k ++-+=+⋅=⋅++,由()()()2222114112k k k ++=+得 424224514410k k k k k ++=++∴=即0k =,和0k ≠矛盾.所以22AD AB ≠,这和AD AB =矛盾.即当直线AB 的斜率0k ≠存在时,椭圆内不存在正方形.综上所述,椭圆22:12x W y +=的内接正方形有且只有一个,且其面积为83S =.--18分。

相关文档
最新文档