虚位移原理虚功原理
分析力学第二章虚功原理及应用

取 s=3N-k 个独立的广义坐标
来表示出任意质点位矢,即
r ri
r ri
(q1
,
q2
,L
, qs )
(i 1, 2, L , N)
变分得:
rri
s 1
rri q
q
W
N i 1
r Fi
rri
N i 1
r Fi
s
1
rri q
q
s
= =1
N i 1
r Fi
r ri
yC =-|OC|sin=-
R2
-
a2 4
sin
δyC
=-
R2- a2 cosδ=0
4
Q δ 0, cos 0 , 3 .
22
例4. 均匀杆OA,重P1 ,长为l1,能在竖直平面内绕固定光滑铰链O转动,此 杆的A端用光滑铰链连接另一重为P2 ,长为l2的均匀杆AB。在AB杆的B端加一
水平力。求平衡时此两杆与水平线所成的角度及。
因此必有某一虚位移与实位移重和,即
。因此
但在理想约束下,
; 于是有
显然,此结论与原假设相矛盾,这说明如果满足
质点系不能从静止进入运动;即质点系处于原来平衡状态。
2. 虚位移原理的各种形式
(1). 矢量形式
N
r Fi
r ri
0
i 1
(2). 广义坐标形式
假设N个质点组成的质点系,受到k个不可解、理想、稳定的约束,则可
x B
(xA +xB )2 +(yA +yB )2 =4R 2 -a2
y
x
C
y
C
= =
1 2 1 2
虚功原理和位移计算

位移是描述物体位置 变化的量,是运动学 的基本概念之一。
位移是矢量,具有大 小和方向两个物理量 ,可以用矢量表示。
位移的大小表示物体 在某一方向上移动的 距离,方向则表示移 动的方向。
位移计算的应用场景
工程设计
在机械、建筑、航空航天等工程领域中,需要进行结构分析和优 化设计,位移计算是其中的重要环节。
02
位移计算是确定物体位置和运动轨迹的过程,它涉及到对实际
位移的测量和计算。
虚功原理和位移计算在理论和实践上都有广泛的应用,它们在
03
某些情况下是相互关联的。
虚功原理在位移计算中的应用
在某些情况下,位移计算可以通 过虚功原理进行简化。
例如,当分析一个系统在平衡状 态下的位移时,可以使用虚功原
理来找到作用在系统上的力。
现潜在的安全隐患,并采取相应的措施进行维修和加固。
实例二:建筑结构稳定性分析
要点一
总结词
要点二
详细描述
建筑结构稳定性分析是虚功原理和位移计算的重要应用之 一,通过分析建筑结构的位移变化,可以评估建筑物的稳 定性和安全性。
在建筑结构稳定性分析中,虚功原理和位移计算被广泛应 用于评估建筑物在不同载荷下的稳定性。通过在建筑物上 设置传感器和测量设备,可以实时监测建筑物的位移变化 ,并将数据传输到计算机进行分析。这些数据可以帮助工 程师评估建筑物的稳定性和安全性,及时发现潜在的安全 隐患,并采取相应的措施进行加固和维护。
通过将虚功原理应用于位移计算 ,可以确定系统在平衡状态下可
能的位移。
位移计算在虚功原理中的应用
01
位移计算的结果可以用来验证虚功原理的正确性。
02
通过测量和计算实际位移,可以验证虚功原理是否 成立。
5-3虚位移原理

出现任何约束反力。
虚位移原理给出了区别质系的真实平衡位置与约
束所容许的可能平衡位置的准则或判据 。
虚位移原理可求解质系的各类平衡问题:
系统在给定位置平衡时主动力之间的关系
求系统在已知主动力作用下的平衡位置 求系统在已知主动力作用下平衡时的约束反力
解题步骤
1. 确定研究对象:整体 2. 约束分析:是否理想约束? 3. 受力分析:
作用三个力 Pi ,求平衡时 Pi 与 Si (i 1,2,3) 的关系 (设液体为不可压缩的)。
P1
P2
S2
S3
S1
Байду номын сангаас
P3
无穷多个质点组成的非刚体的平衡
解
塞i 的虚位移为 δri ,方向如图。 液体不可压缩
δr3
S δr 0
i 1 i i
3
P1
P2
1 ( S1δr1 S 2δr2 ) S3
(P 1 P 2 )δr 2 W P 1 (tan tan ) δr 3y 0
P 1 P 2
W P 1 (tan tan )
P1
δr1
1
3
δr2
2
P2
W δr3
例4
在压缩机的手轮上作用一力矩 M。手轮轴的两端各 有螺距同为 h、但螺纹方向相反的螺母 A 和 B,这两 个螺母分别与长为 a 的杆相铰接,四杆形成菱形框, 如图所示。 此菱形框的点 D固定 不动,而点C连接在 压缩机的水平压板上。 求当菱形框的顶角等 于2 时,压缩机对被 压物体的压力。
例5
已知:a, P, M; 求:约束反力NB
a
a
M A
虚力原理和虚位移原理

虚力原理和虚位移原理1.什么是虚力原理和虚位移原理虚力原理和虚位移原理是物理学中的两个重要原理,它们都是在分析物体运动和力学问题时被广泛应用的基本原则。
虚力原理指的是,在物体所处的系统中,某些力可以通过引入一些虚拟的力来使计算更加简单,而这些虚拟力不会对物体的实际运动产生任何影响。
虚位移原理则是指,在系统中某些点的位移可以通过引入一些虚拟的位移来计算,而这些虚拟位移不会对物体实际的位移产生任何影响。
2.虚力原理的应用虚力原理的一个重要应用就是在动力学中计算离心力和科里奥利力。
离心力的计算需要引入一个虚拟的离心力,这样就可以将受力分析转化为一类简单的静力学问题。
科里奥利力则是指在旋转运动中由于地球自转而产生的一种力,它可以通过虚力原理来进行计算。
此外,虚力原理还在弹性力学中被广泛应用。
对于某些复杂的结构,在计算内应力时可以通过虚力原理将求解过程简化,从而更加精确地得出物体的内应力分布。
3.虚位移原理的应用虚位移原理的一个经典应用是在静力学中计算刚体的平衡条件。
在分析平衡问题时,虚位移原理可以将各个受力点的位移分开考虑,从而可以计算出物体所受的各个力的大小和方向。
虚位移原理还可以在弹性力学中用来计算结构的变形。
结构的变形可以看作是每个点的位移,通过引入虚位移可以计算出结构的弹性形变,并据此得出结构的刚度和弹性模量。
4.总结总的来说,虚力原理和虚位移原理是物理学中非常重要的原理,它们可以为物理学相关问题的分析、计算提供一种全新的思路和方法,让物理学家更加准确地预测物体的运动和行为。
因此,深入研究并掌握这两个原理在物理学研究中的应用十分重要,不仅可以在学术领域中取得进步,还可以在实践中获得更多的应用和价值。
第十四章虚位移原理.ppt

非定常约束:约束方程中显含时间
y
x
v
y
vt
x
x y cot vt
固执约束:双面约束
非固执约束:单面约束
A
x
l
刚性杆
y
B
x2 y2 l2
A
x
l
绳子
y
B
x2 y2 l2
2、虚位移
(1)定义 在给定瞬时,质点或质点系在约束所允许的情况下, 可能发生的任何无限小的位移称为质点或质点系的虚位移。
纯滚动约束 δWN FR δrA FR 0 0
不可伸长柔索或轻质杆约束
A
δWN FNA δrA FNB δrB
FNA δrA FNA δrB 0
§14-2 虚位移原理
虚位移原理也称为虚功原理,指的是:
对于具有理想约束的质点系,其平衡的充要条件是:作用 于质系的主动力在质点系任一虚位移上所作虚功的和等于零。
满足此式,不论刚体、变形体还是质点系必定平衡。它 是质点系平衡的最普遍方程。所以,也称为静力学普遍方程。
应用虚位移原理的优越性:
1.应用范围广。既适用不变质点系,也适用可变质点系(包 括变形体)。在静力学里,建立的平衡条件,对于刚体的平 衡是必要和充分的,但对于变形体来说,就不一定总是充分 的。但变形体只要满足虚位移原理就一定平衡。它适用于任 意质点系。
即 δW 0
或
Fi δri 0
或
Fxiδxi Fyiδyi Fziδzi 0
原理推导
Fi FNi 0
Fi
Mi
FNi δri
FFi i δδririFFNiNi δrδi ri 0 0
对于理FFFFFi想ii iiF约δδδ iδδr束rriiirrF,δiiir有iF0Fd0NiirFidFNδirNrFiiFiδNNriδii0rδidr0iFri0Ni00d ri 0
虚位移与虚位移原理

虚位移与虚位移原理虚位移与虚位移原理2010-04-22 10:528.2.1虚位移为了便于理解虚位移的概念,现把虚位移和实位移进行对比阐述。
1实位移--位置函数的微分实位移是质点系在微小的时间间隔内实际发生的位移,可用位置函数的微分表示。
设由n个质点组成的完整约束系统,其自由度为k,选取一组广义坐标,则每个点的位置可用其位置矢径表示。
满足该质点系的约束方程,取其微分(8-4)式(8-4)中,是满足约束条件的增量,是系统受不平衡力系作用而实际发生的微小位移,由动力学方程和运动初始条件确定。
由上式得到的不但是约束许可的,而且其大小和方向还满足运动的初始条件,并有一组惟一的值,称为质点系的一组实位移,而称为质点系的一组广义实位移。
2虚位移--位置函数的变分虚位移是质点系在某瞬时发生的一切为约束允许的微小位移,可用位置函数的变分表示。
(8-5)与实位移不同,虚位移是约束许可的,与主动力和运动初始条件无关的,不需要经历时间的假想微小位移。
在某一时刻,质点的虚位移可以有多个。
系统静平衡时,实位移不可能发生,而虚位移则只要约束允许即可发生。
是质点系的一组虚位移,而称为质点系的一组广义虚位移。
在定常约束下,实位移一定是虚位移中的一个。
如图8.6所示单摆,虚位移可为和,而实位移仅为其一。
但在非定常约束下,实位移一般不可能是虚位移中的一个,如图8.2中所示小球,其实位移中,摆长随时间变化,而虚位移是在固定时刻,摆长不变时的位移,二者显然不同。
思考8-3①试画出思考8-1图(a)中质点B以及图(b)中套筒D的实位移和虚位移。
②试画出图8.5中双摆的虚位移。
3虚位移的计算计算质点系中各点的虚位移以及确定这些虚位移之间的关系涉及质点系的位形变化,内容十分广泛。
这里主要针对定常完整约束的刚体系统,介绍通常采用的几何法与解析法。
例8.1试确定图所示曲柄连杆机构中,A,B两点虚位移之间的关系。
解①几何法。
此处可用求实位移的方法来确定各点虚位移之间的关系。
第四章 虚功原理
若令 k = 1 m = 1
rmk × 1 = rkm ×1
rmk = rkm
反力互等定理:k支座发生单位位移在m支座引起的反力 rmk 等于m支座发生单位位移在k支座引起的反力 rkm
m =1
结构力学
第4章 虚功原理
4、反力位移互等定理
r mk
Fk =1
θm=1
δkm
k状态
m状态
虚功互等定理
v Cm
可直接用几何方法验证。 静力方法解决几何问题。
l1
l2
l3
结构力学
第4章 虚功原理
七、互等定理 虚功互等定理、位移互等定理、反力互等定理、反力位移互等定理 1、虚功互等定理
Fk A
θmk
FNk
C
mm A B km C
εm γm
1
B
FQk Mk
k状态(静力) 虚功原理
s
m状态( 位移) λ FQm 1 M m FNm = εm = γm = EA GA ρ m EI
D a
C
建立静力状态(k)
2、沿FRD 方向给以微小单位虚位移 km =1,建立位移状态(m)
D FR D
q=F/ 2a A E B
F
C
3、建立虚功方程,求未知力
FRD ×1 = 0
静力状态(k)
A E B C D' km=1 D
FRD = 0
可直接用平衡方程验证。
位移状态(m)
几何方法解决静力问题。
结构力学
第4章 虚功原理
5、等值反向共面的两力偶的虚功
mk
(a)
A
B
mk
(b)
A
θ'km θ"km
虚功原理(虚位移原理)
§5、2虚功原理(虚位移原理)一、虚位移和实位移实位移:由于运动而实际发生的位移 dt v r d= 对应时间间隔dt ,同时满足运动微分方程虚位移:t 时刻,质点在约束允许情况下可能发生的无限小位置变更虚位移是可能位移,纯几何概念(非运动学概念),以i rδ表示(1)特点(本质):想象中可能发生的位移,它只取决于质点在t 时刻的位置和约束方程,并不对应一段时间间隔()0=t δ,它是一个抽象的等时变分概念(2)直观意义(求法):对于非稳定约束,在t 时刻将约束“冻结”,然后考察在约束允许情况下的可能位移,即视约束方程中的t 不变()0=t δ,对约束方程进行等时变分运算(同微分运算,注意)0=t δ即可得虚位移;对于稳定约束,由于约束方程中不显含t ,“冻结”已无实际意义,等时变分运算与微分运算完全相同。
Example 质点被限制在以等速u 匀速上升的水平面内运动,约束方程为 0=-ut z 0=z δ udt dz =(3)实位移是唯一的,虚位移可若干个;对稳定约束,实位移为若干个虚位移中的某一个;对非稳定约束,实位移与虚位移不一致。
见273p 图5.2-1二、理想约束实功-作用在质点上的力(含约束力i R )在实位移rd中所作的功 dW虚功-作用在质点上的力(含约束力i R )在任意虚位移rδ中所作的功 W δ其中 i R为第i 个质点受的约束力 若∑=⋅ii i r R 0δ体系所受诸约束反力在任意虚位移中所作元功之和等于零⇒理想约束例如 光滑曲面、曲线约束,刚性杆,不可伸长的绳索等刚性杆约束 022112111='+'-=⋅+⋅r f r f r f r f δδδδ (21f f-= 21f f =; 21r r '='δδ 刚性杆约束所允许) 由于引入了虚位移,巧妙的消取了约束反力(优点 亦是缺点)三、虚功原理(分析力学重要原理之一)(受约束力学体系的力学原理之一)体系受k 个几何约束,在主动力和约束力的共同作用下处于平衡状态,则其中每个质点均处于平衡状态,即 0=+i i R F (2,1=i ……)n 0=⋅+⋅ii i i r R r F δδ⇒对系统求和⇒0=⋅+⋅∑∑i i ii i ir R r Fδδ 对于理想约束∑=⋅ii i r R 0δ 则=W δ0=⋅∑i i ir Fδ∑=++ii iz i iy i ixz F y F x F)(δδδ 虚功原理⇒具有理想约束力学体系,其平衡的充要条件是所有主动力在任意虚位移中所作元功之和等于零 (1717 伯努利)说明:1、由=W δ0=⋅∑i i ir Fδ ,只能求出平衡条件,不能求出约束反力,欲求约束反力i R,需用拉格朗日未定乘数法2、运用虚功原理求平衡条件的方法步骤(1)确定系统自由度,选择合适的广义坐标;(2)将i r表示为广义坐标q的函数,并求出i rδ(i i i z y x δδδ,,);(3)由虚功原理列出平衡方程,并令αδq 的系数为零,求出平衡条件。
理论力学15-2虚功原理N
F
x B
y
x
若用几何法分析虚位移: 几何法分析虚位移,无需 对AB 杆,δrB方向如图, 设定坐标系。 由协调关系,δyC方向如图。 两虚位移在BC杆方向投影应相等: rB cos(2 90) rC cos(90 ) rB sin 2 rC sin 两虚位移关系: rC 2rB cos 用虚功方程 (FCy视为主动力) FCy (rC ) F (rB cos(90 )) 0
2 rD rE 3
3 r2 rE 4
四) 用虚功方程 ( Fi ri ) 0 10 r1 FD (rD ) 6 r2 3(- ) 0 3rE rE rE 2rE rD r1 r2
3 3 6 4 1 2 3 1 [10 FD ( ) 6 3( )]rE 0 3 3 4 6 FD 11(kN ) ( )
四、虚位移原理应用
一) 用虚位移原理求平衡位置的主动力
基本步骤: 1. 受力分析 画出全部可作虚功的主动力; 2. 虚位移分析 1) 变分法:建坐标系,列出虚位移点的坐标, 进行变分计算,建立虚位移之间的关系。 2) 几何法:根据虚位移的协调关系及虚位移的 投影关系,建立虚位移之间的关系。 3. 使用虚位移原理:
若求B点约束反力,虚位移图?
若求A点约束反力,虚位移图?
二) 用虚位移原理求平衡时的约束反力 虚位移原理是作用于质点系上所有主动力在任 何虚位移中所作虚功之和为零。 它与约束反力无关,似乎无法求约束反力。 若用该原理求约束反力,可沿所求约束反力方 向解除相应约束,并用一假想的主动力代替。 再用虚位移原理,求出该假想施加的“主动 力”,仍可得到对应的约束反力。
虚位移原理
移 dx, dy, dz, , dr, 。 3、在完整定常约束的情形下,微小的实位移必然是虚位移之一。因为,只 有约束所容许的位移才是实际上可能发生的;而约束所容许的任何微小位移 都是虚位移。 4、在完整非定常约束情形下,所谓虚位移,是指在给定瞬时,把约束看 作不变的,而为约束所容许的任何微小位移。这样,微小实位移就不再是 虚位移之一。
rB vB sin( ) rA v A cos
C
三角形OAB内角和 Θ+φ+∠OAB= 180º
y
或者,由于 C 为AB的瞬心,故
A
O
vA AC
*
=
vB BC
*
= AB
rA
B rB
x
若已知平面图形上A、B 两点速度VA 、VB 的方向,则作VA 、VB 的垂线,其交 点P 为该瞬时平面图形的速度瞬心。其速度为零(总可以找到这样的点)。
★主要用于确定主动力之间的关系和系统的平衡位置。虚位移原理只能求解 有运动自由度的系统的主动力平衡条件。 具体证明过程略
Fi ri 0 成立。 证明:(1) 必要性:即质点系平衡,
质点系处于平衡 →任一质点Mi也平衡→ Fi Ni 0 设Mi 的虚位移为 ri ,则 ( Fi Ni ) ri 0 对整个质点系:
由正弦定理同样可得出结果 2、解析法(详)
BC AC AC sin( ) sin(90 ) cos
求δxB, δyB, δxA, δyA,如何?
解析法是利用对约束方程或坐标表达式进行变分以求出虚位移 之间的关系。例如椭圆规机构如图
y
xB , y A
有约束方程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十五章虚位移原理(静动法)
§15-1 约束、虚位移、虚功
一、约束及其分类
限制质点或质点系运动的条件称为约束,限制条件的数学方程称为约束方程。
1、几何约束和运动约束
限制质点或质点系在空间的几何位置的条件称为几何约束。
限制质点系运动情况的运动学条件称运动约束。
2、定常约束和非定常约束
约束条件随时间变化的称非定常约束,否则称定常约束。
3、其余分类
约束方程中包含坐标对时间的导数,且不可能积分或有限形式的约束称非完整约束,否则为完整约束。
约束方程是等式的,称双侧约束(或称固执约束),约束方程为不等式的,称单侧约束(或称非固执单侧约束)。
本章只讨论定常的双侧、完整、几何约束。
二、虚位移
在某瞬时,质点系在约束允许的条件下,可能实现的任何无限小的位移称为虚位移。
虚位移的表示方法:
ϕ
δδ,
x r 一般表示法
线位移
角位移
三、虚功
力在虚位移中作的功称虚功。
即:
r
F W δδ⋅=θ
δδsin x F W =()ϕ
δδF M W z =或
四、理想约束
如果在质点系的任何虚位移中,所有约束力所作虚功的和等于零,称这种约束为理想约束。
∑∑=⋅==0
i Ni Ni N r F W W δδδ
§15-2 虚位移原理
一质点系在力的作用下处于平衡状态某质点受力如图示,且:
=+Ni i F F Ni
F i
F 0
=⋅+⋅=i Ni i i i r F r F W δδδ为该质点设定虚位移且
i r δi
r δ∑∑=⋅+⋅0
i Ni
i
i
r F
r F δδ且
=∴
∑i
W
δ虚功方程
虚位移原理
所表达出的原理
虚位移原理(虚功原理):对于具有理想约束的质点系,其平衡的充分必要条件是:作用于质点系的所有主动力在任何虚位移中所作的虚功之和等于零。
()∑=++0
i zi i yi i
xi
z F y F x
F δδδ投影后的解析式为:
例1:图中所示结构,各杆自重不计,在G点作用一铅
直向上的力F,
求:支座B的水平约束力。
l
GE
DG
CB
CD
CE
AC=
=
=
=
=
=
解:解除B 端水平约束,以力代替,如图(b)Bx F 0
=+=G B Bx F y F x F w δδδθδθ
δδθδθ
θcos 3,sin 2sin 3,cos 2l y l x l y l x G B G B =-===由虚位移原理得:
各虚位移关系为:
带入虚功方程得:()0
cos 3sin 2=⋅+-θδθθδθl F l F Bx θ
cot F F Bx 2
3
=
如图在CG 间加一弹簧,刚度K ,且已有伸长量,仍求。
Bx F 0δ解法二:
在弹簧处也代之以力,如图(b),其中
=⋅+⋅-⋅+⋅===G G G C C B Bx F G C y F y F y F x F W k F F δδδδδδ
θδθ
δθδθδθδθδcos 3,cos ,sin 2l y l y l x G C B ==-=θ
θθsin 3,sin ,cos 2l y l y l x G C B ===0
cos 3cos 3cos sin 2(00=+-+-θθδθδδθδθδθδθl F l k l k l F Bx 代入虚功方程得:
θ
δθcot cot 2
3
0k F F Bx -=解得:
例2:图所示椭圆规机构中,连杆AB 长为L ,滑块A,B与杆重均不计,忽略各处摩擦,机构在图示位置平衡。
求:主动力与之间的关系。
B F A F
∑=⋅0
i i r F δ,
,B A r r δδ解:为A 、B 两处添加虚位移
=-B B A A r F r F δδ由虚位移原理得:
ϕ
δϕδsin cos A B r r =且0
cos =-∴
B B B A r F r F δδϕϕtan B A F F =∴
例3:如图所示机构,不计各构件自重与各处摩擦,求机构在图示位置平衡时,主动力偶矩M与主动力F之间的关系。
解:为B 、C 两处添加虚位移
c
r δθδ,由虚位移原理得:
∑=-=0
c F r F M w δθδδ由图中关系有θ
δδsin e a r r =θ
θδδδδθθθδδ2sin ,sin h r r h OB r a C e ====θ
2sin Fh M =
例4:求图所示无重组合梁支座A的约束力。
解:解除A处约束,代之,给虚位移,如图(b)
F
A
2211=++-=s F M s F s F W A A F δϕδδδδ由虚位移原理得:
A M A A
s s s s s δδϕδδϕδδδδϕ81111,833,1=====8各虚位移间关系为:
A A M s s s s δδδδ14
112=⋅==8117474M F F F A 8114118321--=代入虚功方程得:。