第10章达朗贝尔原理及虚位移原理
第10章达朗贝尔原理及虚位移原理

sA
3 11 1 FA F1 F2 M 8 14 8
解:
(1) 给虚位移 rA , rB ,
由 rB cos rA sin ( rA , rB 在 A ,B 连线上投影相等)
代入虚功方程,有
FA rA FB rB 0
Fi ri 0
FA rB cot FB rB
y
A
rA
O
rB
M
B
x
实位移是质点系真实实现的位移,它与约束条件、时间、 主动力以及运动的初始条件有关 .
实位移
dr , dx, d
等
10.3.3 虚功
力在虚位移中作的功称虚功.
W F r
W M
如果在质点系的任何虚位移中,所有约束力所作虚功的和 等于零,称这种约束为理想约束.
s 2 h
F
F'
s
W
F
FN s 2 Fl 0
FN
FN h 2 Fl 0 WF 2
因 是任意的
FN h 2 Fl 0 2
4 l FN F h
例10-6 已知:如图所示椭圆规机构中,连杆AB长为l,滑块A,B与杆 重均不计,忽略各处摩擦,机构在图示位置平衡. 求:主动力FA与 FB 之间的关系。
mg FT FI 0
b
F
0, FT cos mg 0
F
解得
n
0, FT sin FI 0
FT
v
mg 1.96 N cos
FT l sin 2 2.1 m s m
达朗贝尔原理 理论力学

J z mi ri m
2
2 z
-刚体对z轴的转动惯量。
ρ:回转半径
J z J ZC md
2
J z mi ri m
2
2 z
-平行移轴公式
例1 求简单物体的转动惯量。(平行移轴)
解:由转动惯量的定义:
Jc
1 dx x x 3
2
l 2
l 2 l 2
a A R A R O
A O
A O 2( M P sinR )
(Q 3P ) R
2
FIA
g
FN
例6 在图示机构中,沿斜面向上作纯滚动的圆柱体和鼓轮O 均为均质物体,各重为P和Q,半径均为R,绳子不可伸长,其 质量不计,斜面倾角,如在鼓轮上作用一常力偶矩M,试求: 圆柱体A的角加速度。
(2)
FgC2 MgC2
A
FAX
C2 mg
B
4 均质圆柱体重为W,半径为R,沿倾斜平板从静止状 态开始,自固定端O处向下作纯滚动。平板相对水平线的倾 角为 ,忽略板的重量。试求: 固定端O处的约束力。
解题分析
以整体为研究对象,画受力图。
?确定惯性力大小
求解惯性力就是求解运动; 求解FN就是求解未知的约束力(包括动反力)
在已知运动求约束力的问题中,动静法往往十分方便
3.质点系的达朗伯原理
一 原理描述
质点i:
质点系的主动力系,约束力系和惯性力系组成平衡力系:
作用于质点系上的主动力系,约束力系和惯性力 系在形式上组成平衡力系。-质点系的达朗伯原理。
2 i i z
结论
平面刚体做定轴转动
如果刚体有质量对称面且该面与转轴z垂直; 向质量对称面进行简化,取转轴与该面交点为简化中心
《达朗贝尔原理》课件

该微分方程描述了刚体在力矩作用下的动态行为,是刚体动力学中的基本方程之 一。
达朗贝尔原理的积分方程形式
达朗贝尔原理的积分方程形式为:M(t2)-M(t1)=∫t1t2F·dr, 其中M(t2)和M(t1)分别表示刚体在时刻t2和t1的动量矩, ∫t1t2F·dr表示在时间t1到t2之间力矩的积分。
船舶工程
用于分析船舶的运动特性和稳定性。
02
达朗贝尔原理的数学表达
达朗贝尔原理的公式表达
达朗贝尔原理的公式表达为: M=∫F·dr,其中M表示刚体绕固定 点O转动的动量矩,F表示刚体上任 一点的速度矢量,dr表示矢径。
该公式描述了刚体在力矩作用下的运 动规律,是刚体动力学中的基本原理 之一。
达朗贝尔原理的微分方程形式
限制条件
达朗贝尔原理在处理复杂系统时,可能无法考虑所有 相互作用力和能量转换,导致预测精度下降。
与其他物理定律的互补性
与牛顿第三定律互补
达朗贝尔原理与牛顿第三定律互补,强调了 力和运动的相互关系。
与能量守恒定律的互补性
达朗贝尔原理在处理保守系统时,与能量守 恒定律相一致,但在非保守系统中存在差异
。
详细描述
在弹性力学中,达朗贝尔原理可以用来分析 各种复杂的力学问题,如梁的弯曲、板的变 形等。通过应用该原理,我们可以建立各种 弹性力学问题的数学模型,并进一步求解其 解析解或近似解。
05
达朗贝尔原理的局限性
适用范围和限制条件
适用范围
达朗贝尔原理主要适用于线性、保守的力学系统。对 于非线性、非保守系统,达朗贝尔原理可能不适用。
14.达朗贝尔原理

FIR = − mac
16
17
二、定轴转动刚体 先讨论具有垂直于转轴的质量对称平面 的简单情况。 直线 i : 平动, 过Mi点, FIi = −mi ai 空间惯性力系—>平面惯性力系(质量对称面) O为转轴z与质量对称平面的交点,向O点简化: 主矢: 主矩: O
FIR = −maC
M IO = ∑ mO ( FIi ) + ∑ mO ( FIi )
例3 已知: 飞轮质量为m,半径为R,以匀角速度 已知: 飞轮质量为 半径为 以匀角速度 的影响. 的影响 求:轮缘横截面的张力. 轮缘横截面的张力.
ω 定轴转动,设 定轴转动,
轮辐质量不计,质量均布在较薄的轮缘上 不考虑重力 轮辐质量不计 质量均布在较薄的轮缘上,不考虑重力 质量均布在较薄的轮缘上
因
ϕ =ωt,得
Fy = (m + m )g + m eω cosωt 1 2 2
2
F = −m2eω2 sinωt x
M = m2gesin ωt +m2eω2hsin ωt
例6 已知:如图所示,电动绞车安装在梁上 梁的两端搁在支座上, 电动绞车安装在梁上,梁的两端搁在支座上 已知:如图所示 电动绞车安装在梁上 梁的两端搁在支座上 绞车与梁共重为P.绞盘半径为 绞盘半径为R,与电机转子固结在一 绞车与梁共重为 绞盘半径为 与电机转子固结在一 转动惯量为J 质心位于O 绞车以加速度a提升质 起,转动惯量为 ,质心位于 处.绞车以加速度 提升质 转动惯量为 质心位于 绞车以加速度 量为m的重物 其它尺寸如图. 的重物,其它尺寸如图 量为 的重物 其它尺寸如图 受到的附加约束力. 求:支座A,B受到的附加约束力 支座 , 受到的附加约束力
虚位移原理

rA rB rA rB L W 0 FrB M 0
m3 g
A
900
C2
平衡方程的求解方法
C1 M m1 g m2 g O
研究OA杆
B F
M
F
O
0
FAx L M 0 (1)
m3 g
FAy FAx A A
C1 M m1 g O FOy FOx
F
n
Ni
ri 0 ?
' ' ( FNB FSB ) r1 ( FNB FSB ) r2 ( FNA FSA ) r2 FN 1 r2
( FNB FSB ) r1 FSB r1 0
(2):无摩擦 是理想约束
F
5. 列出虚功方程并求解。
二、虚位移分析
质点系中各质点的虚位移之间存在着一定的关 系, 确定这些关系通常有两种方法:
(一) 几何法 由运动学知,质点的位移与速度成正比,即
dr v dt
因此可以用分析速度的方法分析各点虚位移之间的关系 δr B δφ ——虚速度法 A B δrA rA v A a a b
得
FA FB tan
(3)
虚速度法
rA vA , dt rB vB dt
定义:
为虚速度
代入到
Fi ri 0 中, 得
FB vB FAvA 0
由速度投影定理,有
vB cos v A sin ,
代入上式 得 FA FB tan
只限制某方向运动的约束称为单面约束。在两个相
对的方向上同时对物体运动进行限制的约束称为双
拉格朗日方程的三种推导方法

拉格朗日方程的三种推导方法 1 引言拉格朗日方程是分析力学中的重要方程,其地位相当于牛顿第二定律之于牛顿力学。
2 达朗贝尔原理推导达朗贝尔原理由法国物理学家与数学家让•达朗贝尔发现并以其命名。
达朗贝尔原理表明:对于任意物理系统,所有惯性力或施加的外力,经过符合约束条件的虚位移,所作的虚功的总合为零。
即:δW =∑(F i +I i )∙δr i =0i(1)其中I i 为惯性力,I i=−m i a i 。
F i 为粒子所受外力,δr i 为符合系统约束的虚位移。
设粒子 P i 的位置 r i 为广义坐标q 1,q 2,⋯,q n 与时间 t 的函数:r i =r i (q 1,q 2,⋯,q n ,t)则虚位移可以表示为:δr i =∑ðr i ðq jjδq j(2)粒子的速度v i=v i (q 1,q 2,⋯,q n ,q 1,q 2,⋯,q n ,t) 可表示为:取速度对于广义速度的偏微分:(3)首先转化方程 (1) 的加速度项。
将方程 (2) 代入:应用乘积法则:注意到的参数为,而速度的参数为,所以,。
因此,以下关系式成立:(4) 将方程 (3) 与 (4) 代入,加速度项成为代入动能表达式:,则加速度项与动能的关系为(5) 然后转换方程(1)的外力项。
代入方程 (2) 得:(6) 其中是广义力:将方程(5) 与 (6) 代入方程(1) 可得:(7) 假设所有的广义坐标都相互独立,则所有的广义坐标的虚位移也都相互独立。
由于这些虚位移都是任意设定的,只有满足下述方程,才能使方程 (7) 成立:(8) 这系统的广义力与广义位势之间的关系式为代入得:定义拉格朗日量为动能与势能之差,可得拉格朗日方程:3哈密顿原理推导哈密顿原理可数学表述为:21ttLdtδ=⎰在等时变分情况下,有()dq q dt δδ•=2211()0t t t t Ldt L dt δδ==⎰⎰ (1)由拉格朗日量定义得,在等时变分情况下有L LL q q qqδδδ••∂∂=+∂∂(2)其中第一项可化为:()()()LL d d L d L q q q q dt dt dt q q q q δδδδ•••••∂∂∂∂==•-∂∂∂∂(3)将(3)代入(2)得()()d L d L LL q q qdt dt qq q δδδδ••∂∂∂=•-+∂∂∂ (4)将(4)代入(1)得2121()(())0t t t t L d L L q q q dt dt qqq δδδ••∂∂∂•+-+=∂∂∂⎰(5)在12,t t 处0q δ=,所以(5)变为21(())0t t d L Lq q dt dt qq δδ•∂∂-=∂∂⎰(6)即21[(())]0t t d L Lq dt dt qq δ•∂∂-+=∂∂⎰(7)q 是独立变量,所以 拉格朗日方程:4欧拉-拉格朗日方程推导欧拉-拉格朗日方程可以表述为:设有函数和:其中是自变量。
达朗贝尔原理

aA l1
O
1
2
A C B
aA
由加速度基点法有
A
aCA 2
B C
aC aA aCA
aA
aA aC
1 aC l1 l 2 2
(2) 取AB 杆为研究对象
FgR2
Mg2
2
B
A
9g 1 , 7l
FgR 2
3g 2 7l
FAx
l 1 m(l1 2 ) M g 2 ml 2 2 2 12
研究整体
F
解得
x
0
F Fs m1 m2 a 0
3 F m1 m2 3 g 2 3 Fs m1 g F 2
M IA
A
FN
Fs f s FN f s m1 m2 g
解得
Fs 3m1 fs FN 2m1 m2
D m2 g
mr 2 mgr (3 4 ) 3
n gR 2
2
FgR 2mr , F 2mr , M gO
7 2 mr 3
(2)将惯性力系向质心C简化,其 主矢主矩分别为: F ma 2mr
gR C
MA
FAy
MgC
F ma 2mr
n gR n C
2
mg
例题
已知:两均质且长度为l直杆 自水平位置无初速地释放。 求: 两杆的角加速度和 O、A处的约束反力。 解: (1) 取系统为研究对象
FOx
O
A
B
FgR1
FgR2
Mg1
1
Mg2
2
B
A O
mg
达朗贝尔原理

结论:平动刚体的惯性力系合成为一个 作用在质心的惯性力
二、刚体定轴转动
(一) 刚体有与转轴 垂直的对称面 结论:可将空 间惯性力系简 化为在对称平 面内的力系( 相当于将刚体 压扁到对称平 面内)
l
FIjn
j
z
FIjt
z
FIin
i
FIit
ω α ω α
l
O
O
0 C α 45 A
O FIy
aC acx acy a A aCA
acx 2 2 l 2 acy 2 2 2 2
aA
aCA
a cx a cy
B
FIx macx FIy macy
l a cx a cy 2
mi ai FRi FIi mi ai FRi FIi 0
在每一个质点上加上惯性力后,此质点平衡。
显然,系统的任意部分(包括整体)也是平衡的。
O
例:质量m、长度l的均 质杆,以匀角速度ω绕z 轴转动,试求θ角。
z
θ
dFI
A mg η
ω d 2 dFI m sin l l l M zi mg 2 sin cosdFI 0 0
达朗贝尔原理
在惯性系中
ma FR
a
非惯性系中的妙招
mar FR mae mac FR FIe FIc
惯性
0 FR ma FR FI
§9-1达朗贝尔原理(动静法) 一、质点的达朗贝尔原理 牛顿定律
α C A
a cx
a cy
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于每一个研究对象,平面问题有三个平衡方程,空 间问题有六个平衡方程。
9
因
有
i Fi 0,
i M 0 Fi 0,
e Fi FIi 0 e M 0 Fi M 0 FIi 0
Fi FNi FIi 0
i 1,2,, n
对整个质点系,如果在每一个质点上都假象地加上惯性力, 则主动力系、约束反力系、惯性力系在形式上构成平衡力系。 这就是质点系的达朗贝尔原理。可用方程表示为: 则有
e i Fi FIi 0 Fi e i M 0 Fi M 0 Fi M 0 FIi 0
解:
FI 1 m1a, FI 2 m2 a
FIit mi r mi a ,
M
由
i
O
0,
m1 g m1a m2 g m2a r mi ar 0
i
2 v FIin mi r
m ar m ar mar
m1 m2 a g m1 m2 m
也称为质点系的达朗贝尔原理:作用在质点系上的外
力与虚加在每个质点上的惯性力在形式上组成平衡力系.
例10-2
已知:如图所示,定滑轮的半径为r,质量为m均匀分布在轮缘 上,绕水平轴O转动.垮过滑轮的无重绳的两端挂有质量 为m1和m2的重物(m1>m2),绳与轮间不打滑,轴承摩擦 忽略不计。 求:重物的加速度.
限制质点或质点系在空间的几何位置的条件称为几何
约束. 如
x y l
2 2
2
f x, y, z 0
x y r
2 A 2 A
2
2 2
xB x A
yB 0
2
yB y A l
限制质点系运动情况的运动学条件称运动约束.
v A r 0
A r 0 x
10.1
10.1.1惯性力
惯性力、质点的达朗贝尔原理
质点受其它物体的作用而引起运动状态变化时,由质点本身 的惯性力引起对施力物体的动反作用力,为受力质点的惯性力。
例如人用力 F 推车,使车产生加速度 a ,同时,车也
给人手一个反作用力 F ' :
F ' F ma
力 F ' 是由于小车具有惯性,力图保持原来的运动状态,对于 施力物体(人手)产生的反抗力。称为小车的惯性力。
3
定义:质点惯性力 F J ma 加速运动的质点,对迫使其产生加速运动的物体的
惯性反抗的总和。
① F 大小:FJ = ma ②
J
F J 方向:与 a 相反
③惯性力作用在使质点产生加速度的其他施力物体上。 按不同坐标系,惯性力可分解为:
Fx J ma x FyJ ma y Fz J ma z
第10章 达朗贝尔原理及虚位移原理
达朗贝尔原理和虚位移原理分别从 不同的角度分析系统的平衡问题,是研 究力学平衡问题的另一途径。两者结合 起来组成动力学普遍方程,为求解复杂 系统的动力学问题提供了另一种普遍方 法,构成了分析力学的基础。
章节简介
10.1
10.2 10.3
惯性力、质点的达朗贝尔原理
质点系的达朗贝尔原理 约束、虚位移、虚功
F J ma ——切向惯性力 Fn J man ——法............... Fb J mab 0
4
10.1.2 质点的达朗贝尔原理
非自由质点M:质量m,受主动力 F, 约束反力 N 作 用, F 、N 的 合力为 ma F FN 由牛顿第二定律: R ma 假象地将 F J 作用在M上,则
mg FT FI 0
b
F
0, FT cos mg 0
F
解得
n
0, FT sin FI 0
FT
v
mg 1.96 N cos
FT l sin 2 2.1 m s m
10.2
则有
质点系的达朗贝尔原理
设有一质点系由n个质点组成,对任一质点,虚加惯性力,
F
J
R F J ma ma 0
即: F N FJ 0 表明:质点系中每个质点上作用的主动力,约束力和它的惯性力 在形式上组成平衡力系,这就是质点的达朗贝尔原理。
5
这样,质点的动力学问题就可以用静力学的方法来解。 但要注意:该方程对动力学问题来说只是形式上的平衡,
而实际上惯性力并不作用在质点上,质点并不平衡。采用
sin FB 0
i 0,
0 2 m mR 2 R 2 cos d 2 2
FA
FB 2 Nhomakorabea0
m mR 2 2 R sin d 2 2
10.3 约束 · 虚位移· 虚功
10.3.1约束及其分类
限制质点或质点系运动的条件称为约束. 限制条件的数学方程称为约束方程. 1)几何约束和运动约束
2)定常约束和非定常约束
约束条件随时间变化的称 非定常约束. 不随时间变化的约束称定常约束.
x y l0 vt
2 2
2
3) 其它分类
约束方程中包含坐标对时间的导数,且不可能积分为有 限形式的约束称非完整约束. 约束方程中不包含坐标对时间的导数,或者约束方程 中的积分项可以积分为有限形式的约束为完整约束. 约束方程是等式的,称双侧约束(或称固执约束). 约束方程为不等式的,称单侧约束(或称非固执单侧约束)
解得
例10-3
已知:飞轮质量为m,半径为R,以匀角速度 定轴转动,设 轮辐质量不计,质量均布在较薄的轮缘上,不考虑重力 的影响. 求:轮缘横截面的张力.
m 2 解: FIi mi a R i R 2R
n i
F
x
0,
F
Ii
cos FA 0
Ii
F
令
y
0,
F
动静法解决动力学问题的最大优点,就是可以利用静力学
提供的解题方法,给动力学问题一种统一的解题格式。也
就是:对于动力学问题,假想地加上惯性力,就可以用平
衡方程求解。
6
例10-1
已知:
m 0.1kg, l 0.3m, 60
求: 用达朗贝尔原理求解
v , FT .
v2 解: FI ma n m l sin