福建省厦门市湖滨中学2019-2020学年第二学期期末考试七年级数学试卷(PDF版无答案)

合集下载

2019-2020学年福建省厦门市初一下学期期末数学调研试题

2019-2020学年福建省厦门市初一下学期期末数学调研试题
(1)至少购进乙种电冰箱多少台?
(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?
23.(8分)如图,在 的正方形网格中,格点三角形 经过平移后, 点移到 点.
(1)请作出三角形 平移后的三角形 ;
(2)若 ,求 的度数.
24.(10分)学兴趣小组的同学们在一次课外探究活动时,发现了一个有趣的结论:两个有理数和的平方减去它们差的平方,总等于它们积的 倍.
15.
【解析】
【分析】
把x与y的值代入方程组求出a与b的值,代入原式计算即可得到结果.
【详解】
把 代入方程组 中,
可得: ,
解得: ,
把a=-4,b=5代入a2-b2=16-25=-9,
(1)若这两个有理数分别为 、 ,请用含 、 的等式表示上述结论.
(2)利用你学过的知识,说明①中等式的正确性.
25.(10分)某商场为做好“家电下乡”的惠民服务,决定从厂家购进甲、乙、丙三种不同型号的电视机108台,其中甲种电视机的台数是丙种的4倍,购进三种电视机的总金额不超过147 000元,已知甲、乙、丙三种型号的电视机的出厂价格分别为1 000元/台,1 500元/台,2 000元/台.
故答案为80°.
【点睛】
本题考查了平行线的判定与性质:内错角相等,两直线平行;两直线平行,同旁内角互补.
14.70°
【解析】
【详解】
∵a∥b,
∴∠1=40°.
由折叠知,∠2=∠3,
∵∠2+∠3=180°-40°=140°,
∴∠3=140°÷2=70°.
∴∠α=∠3=70°.
故答案为70°.
【点睛】
本题考查了平行线的性质,①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补.根据平行线的性质解答即可.

2019-2020学年福建省厦门市七年级下学期期末数学试卷及答案解析

2019-2020学年福建省厦门市七年级下学期期末数学试卷及答案解析

第 1 页 共 18 页
2019-2020学年福建省厦门市七年级下学期期末数学试卷
一、选择题(本大题有10小题,每小题4分,共40分)
1.下列各点中,在第一象限的是( )
A .(1,0)
B .(1,1)
C .(1,﹣1)
D .(﹣1,1)
2.如图,直线l 与直线a ,b 相交,且a ∥b ,∠1=110°,则∠2的度数是( )
A .20°
B .70°
C .90°
D .110°
3.为调查学生对国家“一带一路”战略的知晓率,某市一所中学初中部准备调查60名学生,
以下样本具有代表性的是( )
A .全校男生中随机抽取60名
B .七年级学生中随机抽取60名
C .全校少先队员中随机抽取60名
D .七、八、九年级分别随机抽取20名学生
4.如图,三角形ABC 中,∠ACB =90°,CD ⊥AB 于点D ,则下列说法错误..
的是( )
A .点A 到直线BC 的距离为线段A
B 的长度
B .点A 到直线CD 的距离为线段AD 的长度
C .点B 到直线AC 的距离为线段BC 的长度
D .点C 到直线AB 的距离为线段CD 的长度
5.下列命题中是真命题的是( )
A .同位角相等
B .平行于同一条直线的两条直线互相平行
C .互补的两个角是邻补角
D .如果一个数能被3整除,那么它一定能被6整除。

福建省2019-2020年七年级下学期期末测试数学试卷1

福建省2019-2020年七年级下学期期末测试数学试卷1

福建省2019-2020年七年级下学期期末测试数学试卷一、选择题:每小题2分,共24分.每小题只有一项是符合题目要求的.1.(2分)若代数式x+4的值是2,则x等于()A.2B.﹣2 C.6D.﹣62.(2分)画△ABC的边AB上的高,下列画法中,正确的是()A.B.C.D.3.(2分)下列图案既是中心对称,又是轴对称的是()A.B.C.D.4.(2分)下列判断不正确的是()A.形状相同的图形是全等图形B.能够完全重合的两个三角形全等C.全等图形的形状和大小都相同D.全等三角形的对应角相等5.(2分)如果关于x的不等式(a+2)x>a+2的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣2 D.a<﹣26.(2分)现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1B.2C.3D.47.(2分)在△ABC中,若2∠A=∠B=∠C,则△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.无法确定8.(2分)方程3x﹣4y=2的一组解是()A.B.C.D.9.(2分)下列说法中不正确的是()A.线段有1条对称轴B.等边三角形有3条对称轴C.角只有1条对称轴D.底与腰不相等的等腰三角形只有一条对称轴10.(2分)不等式组的解集在数轴上表示正确的是()A.B.C.D.11.(2分)只用下列正多边形地砖中的一种,能够铺满地面的是()A.正十边形B.正八边形C.正六边形D.正五边形12.(2分)在一次数学阅读课中,小红碰到一个问题:今有鸡兔同笼,上有十七头,下有五十二足,问鸡兔各几何?设x为鸡数,y为兔数,聪明的你请帮她算出x,y的值分别是()A.B.C.D.二、填空题:每小题3分,分值24分.13.(3分)如果5x=10﹣2x,那么5x+=10.14.(3分)请写出一个二元一次方程组,使它的解是.15.(3分)如果一个正多边形的内角和等于1440°,那么这个正多边形的每一个外角的度数为.16.(3分)一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了道题.17.(3分)定义新运算:对于任意实数a,b,都与a⊗b=a(a+b)﹣1,若3⊗x的值小于12,请列出不等式是.18.(3分)小明从镜子里看到镜子对面电子钟的像如图所示:,实际时间是.19.(3分)若点M取在多边形的一条边上(不是顶点),再将点M与n边形个顶点连结起来,将此多边形分割成9个三角形,则n边形是边形.20.(3分)如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有种.三、解答题:共7小题,满分52分.21.(10分)解方程或不等式.(1)2x+1=5x+7(2)求不等式:+2>x的非负整数解.22.(6分)如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.(1)将△ABC向左平移6个单位长度得到得到△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.23.(6分)课外活动中一些学生分组参加活动,原来每组有8人,后来重新编组,每组6人,这样比原来增加2组,问这些学生共有几人?(用方程解)24.(6分)二元一次方程组的解满足方程x﹣4y=5,求k的值.25.(6分)如图,在△ABC中,∠CAB=95°,AB=3cm,BC=6.2cm,△ABC顺时针旋转一定角度得到△ADE,点D恰好落在BC边上,△ABD为等边三角形.(1)旋转中心是,旋转的角度是;(2)请求出∠E的度数和CD的长.26.(9分)某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号销售收入第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?27.(9分)(1)如图①,你直到∠BOC=∠B+∠C+∠A的奥秘吗?请用你学过的知识予以证明;(2)如图②,设x=∠A+∠B+∠C+∠D+∠E,运用(1)中的结论填空.x=°;x=°;x=°;(3)如图③,一个六角星,其中∠BOD=70°,则:∠A+∠B+∠C+∠D+∠E+∠F=°.七年级下学期期末数学试卷参考答案与试题解析一、选择题:每小题2分,共24分.每小题只有一项是符合题目要求的.1.(2分)若代数式x+4的值是2,则x等于()A.2B.﹣2 C.6D.﹣6考点:解一元一次方程;代数式求值.专题:计算题.分析:根据已知条件列出关于x的一元一次方程,通过解一元一次方程来求x的值.解答:解:依题意,得x+4=2移项,得x=﹣2故选:B.点评:题实际考查解一元一次方程的解法;解一元一次方程常见的过程有去括号、移项、系数化为1等.2.(2分)画△ABC的边AB上的高,下列画法中,正确的是()A.B.C.D.考点:三角形的角平分线、中线和高.分析:三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.解答:解:过点C作边AB的垂线段,即画AB边上的高CD,所以画法正确的是D.故选:D.点评:考查了三角形的高的概念,能够正确作三角形一边上的高.3.(2分)下列图案既是中心对称,又是轴对称的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、不是轴对称图形,是中心对称图形.故本选项错误;B、是轴对称图形,也是中心对称图形.故本选项正确;C、是轴对称图形,不是中心对称图形.故本选项错误;D、不是轴对称图形,也不是中心对称图形.故本选项错误.故选B.点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.(2分)下列判断不正确的是()A.形状相同的图形是全等图形B.能够完全重合的两个三角形全等C.全等图形的形状和大小都相同D.全等三角形的对应角相等考点:全等三角形的判定与性质.专题:常规题型.分析:根据能够完全重合的两个图形叫做全等形,结合各项说法作出判断即可.解答:解:A、两个形状相同的图形大小不一定相等,故本项错误;根据能够完全重合的两个图形叫做全等形,可得:B、能够完全重合的两个三角形全等正确,故本项错误;C、全等图形的形状和大小都相同正确,故本项错误;D、根据全等三角形的性质可得:全等三角形的对应角相等,故本选项正确;故选:A.点评:本题考查了全等形的概念和三角形全等的性质:1、能够完全重合的两个图形叫做全等形,2、全等三角形的对应边相等;全等三角形的对应角相等;全等图形的形状和大小都相同,做题时要细心体会.5.(2分)如果关于x的不等式(a+2)x>a+2的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣2 D.a<﹣2考点:不等式的性质;不等式的解集.分析:根据不等式的解法,两边都除以(a+2),不等号的方向改变,a+2<0计算即可得解.解答:解:∵(a+2)x>a+2两边都除以(a+2)得x<1,∴a+2<0,∴a<﹣2.故选D.点评:主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.(2分)现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1B.2C.3D.4考点:三角形三边关系.分析:从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.解答:解:四条木棒的所有组合:3,4,5和3,4,7和3,5,7和4,5,7;只有3,4,7不能组成三角形.故选:C.点评:考查了三角形三边关系,三角形的三边关系:任意两边之和>第三边,任意两边之差<第三边;注意情况的多解和取舍.7.(2分)在△ABC中,若2∠A=∠B=∠C,则△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.无法确定考点:三角形内角和定理.分析:运用三角形的内角和定理求出∠A=36°,进而求出∠B=∠C=72°,即可解决问题.解答:解:在△ABC中,∵2∠A=∠B=∠C,且∠A+∠B+∠C=180°,∴5∠A=180°,∠A=36°,∴∠B=∠C=72°,∴△ABC是锐角等腰三角形.故选B.点评:本题主要考查了等腰三角形的定义、三角形的内角和定理及其应用问题;灵活运用三角形的内角和定理来解题是关键.8.(2分)方程3x﹣4y=2的一组解是()A.B.C.D.考点:二元一次方程的解.专题:计算题.分析:把各项中x与y代入计算检验即可得到结果.解答:解:把x=2,y=1代入方程左边得:6﹣4=2,右边=2,∴左边=右边,则是方程3x﹣4y=2的一组解.故选D.点评:此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.(2分)下列说法中不正确的是()A.线段有1条对称轴B.等边三角形有3条对称轴C.角只有1条对称轴D.底与腰不相等的等腰三角形只有一条对称轴考点:轴对称的性质.分析:根据轴对称图形的概念和具体图形确定各个选项中图形的对称轴,判断得到答案.解答:解:线段有本身所在的直线和垂直平分线2条对称轴,A错误;等边三角形有三条高所在的直线3条对称轴,B正确;角只有角平分线所在的直线1条对称轴,C正确;底与腰不相等的等腰三角形只有一条对称轴,D正确,故选:A.点评:本题考查的是轴对称图形的知识,掌握轴对称图形的概念、正确确定图形的对称轴的条数是解题的关键.10.(2分)不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.专题:计算题.分析:求出不等式组的解集,表示在数轴上即可.解答:解:,由①得:x≥﹣1,由②得:x<1,则不等式组的解集为﹣1≤x<1,故选B点评:此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.11.(2分)只用下列正多边形地砖中的一种,能够铺满地面的是()A.正十边形B.正八边形C.正六边形D.正五边形考点:平面镶嵌(密铺).分析:本题意在考查学生对平面镶嵌知识的掌握情况.解答:解:由平面镶嵌的知识可知,只用一种正多边形能够铺满地面的是正三角形或正四边形或正六边形,故选项A、B、D不能够铺满地面.故选C.点评:本题意在考查学生对平面镶嵌知识的掌握情况,体现了学数学用数学的思想.有部分考生根据直觉认为是正八边形,其实由平面镶嵌的知识可知只用一种正多边形能够铺满地面的是正三角形或正四边形或正六边形.12.(2分)在一次数学阅读课中,小红碰到一个问题:今有鸡兔同笼,上有十七头,下有五十二足,问鸡兔各几何?设x为鸡数,y为兔数,聪明的你请帮她算出x,y的值分别是()A.B.C.D.考点:二元一次方程组的应用.分析:根据等量关系:上有十七头,下有五十二足,即可列出方程组.解答:解:设x为鸡数,y为兔数,由题意得,解得:.故选:C.点评:此题考查了二元一次方程方程组的实际运用,解答本题的关键是仔细审题,根据等量关系得出方程组.二、填空题:每小题3分,分值24分.13.(3分)如果5x=10﹣2x,那么5x+2x=10.考点:等式的性质.分析:根据等式的性质进行填空.解答:解:在等式5x=10﹣2x的两边同时加上2x,得5x+2x=10.故答案是:2x.点评:本题考查了等式的性质.1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.14.(3分)请写出一个二元一次方程组,使它的解是.考点:二元一次方程组的解.专题:开放型.分析:由x=﹣1,y=1为解列出方程组即可.解答:解:的解为.故答案为:.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程值域中两方程成立的未知数的值.15.(3分)如果一个正多边形的内角和等于1440°,那么这个正多边形的每一个外角的度数为36°.考点:多边形内角与外角.分析:首先设此多边形为n边形,根据题意得:180(n﹣2)=1440,即可求得n=10,再由多边形的外角和等于360°,即可求得答案.解答:解:设此多边形为n边形,根据题意得:180(n﹣2)=1440,解得:n=10,∴这个正多边形的每一个外角等于:360°÷10=36°.故答案为:36°.点评:此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n﹣2)•180°,外角和等于360°.16.(3分)一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了5道题.考点:二元一次方程的应用.分析:设答对x道题,答错了y道题,根据对1题给5分,错1题扣2分,不答题不给分也不扣分,总分为65分和有20题选择题可分别列等式求解.解答:解:设答对x道题,答错了y道题,根据题意可得:,解得:,故他答错了5道题.故答案为:5.点评:此题主要考查了二元一次方程组的应用,根据题意利用所得分数以及有20题选择题分别得出等式是解题关键.17.(3分)定义新运算:对于任意实数a,b,都与a⊗b=a(a+b)﹣1,若3⊗x的值小于12,请列出不等式是3(3+x)﹣1<12.考点:由实际问题抽象出一元一次不等式.专题:新定义.分析:根据题目所给的运算法则列不等式.解答:解:由题意得,3(3+x)﹣1<12.故答案为:3(3+x)﹣1<12.点评:本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系是解题的关键.18.(3分)小明从镜子里看到镜子对面电子钟的像如图所示:,实际时间是16:25:08.考点:轴对称图形.分析:利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.解答:解:根据镜面对称的性质,题中所显示的时刻与16:25:08成轴对称,所以此时实际时刻为:16:25:08.故答案为:16:25:08.点评:此题考查了镜面反射的原理与性质,得到相应的对称轴是解决本题的关键.19.(3分)若点M取在多边形的一条边上(不是顶点),再将点M与n边形个顶点连结起来,将此多边形分割成9个三角形,则n边形是十边形.考点:多边形的对角线.分析:可根据多边形的一点(不是顶点)出发,连接各个顶点得到的三角形个数与多边形的边数的关系求解.解答:解:多边形一条边上的一点M(不是顶点)出发,连接各个顶点得到9个三角形,则这个多边形的边数为9+1=10.故答案为:十.点评:考查了多边形的对角线,多边形一条边上的一点(不是顶点)出发,连接各个顶点得到的三角形个数=多边形的边数﹣1.20.(3分)如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种考点:概率公式;轴对称图形.分析:根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.解答:解:选择小正三角形涂黑,使整个被涂黑的图案构成一个轴对称图形,选择的位置有以下几种:1处,2处,3处,选择的位置共有3处.故答案为:3.点评:本题考查了利用轴对称设计图案的知识,关键是掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.三、解答题:共7小题,满分52分.21.(10分)解方程或不等式.(1)2x+1=5x+7(2)求不等式:+2>x的非负整数解.考点:一元一次不等式的整数解;解一元一次方程.分析:(1)先移项、再合并同类项,然后系数化为1即可求解;(2)首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.解答:解:(1)2x+1=5x+7,移项得,2x﹣5x=7﹣1,合并同类项得﹣3x=6,系数化为1得x=﹣2;(2)x+6>3x,﹣2x>﹣6,x<3,故不等式:+2>x的非负整数解为0,1,2.点评:本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.同时考查了解一元一次方程.22.(6分)如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.(1)将△ABC向左平移6个单位长度得到得到△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.考点:作图-旋转变换;作图-平移变换.分析:(1)将点A、B、C分别向左平移6个单位长度,得出对应点,即可得出△A1B1C1;(2)将点A、B、C分别绕点O按逆时针方向旋转180°,得出对应点,即可得出△A2B2C2.解答:解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.点评:此题主要考查了图形的平移和旋转,根据已知得出对应点位置是解题关键.23.(6分)课外活动中一些学生分组参加活动,原来每组有8人,后来重新编组,每组6人,这样比原来增加2组,问这些学生共有几人?(用方程解)考点:一元一次方程的应用.分析:设这些学生共有x人,根据“原来每组有8人,后来重新编组,每组6人,这样比原来增加2组”建立方程,解方程即可.解答:解:设这些学生共有x人,根据题意得﹣=2,解得x=48.答:这些学生共有48人.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.24.(6分)二元一次方程组的解满足方程x﹣4y=5,求k的值.考点:二元一次方程组的解.专题:计算题.分析:把k看做已知数求出方程组的解表示出x与y,代入方程计算即可求出k的值.解答:解:,①+②得:6x=12k,即x=2k,①﹣②得:2y=﹣2k,即y=﹣k,把x=2k,y=﹣k代入方程得:k+4k=5,解得:k=1.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程值域中两方程成立的未知数的值.25.(6分)如图,在△ABC中,∠CAB=95°,AB=3cm,BC=6.2cm,△ABC顺时针旋转一定角度得到△ADE,点D恰好落在BC边上,△ABD为等边三角形.(1)旋转中心是点A,旋转的角度是60°;(2)请求出∠E的度数和CD的长.考点:旋转的性质.分析:(1)根据旋转的定义进行解答;(2)先根据旋转的性质得到AD=AB,∠BAD的度数等于旋转角的度数,由于∠B=60°,则可判断△ADB为等边三角形,根据等边三角形的性质得∠BAD=60°,即旋转角的度数为60°,BD=AB=3cm所以CD=BC﹣BD.解答:解:(1)∵△ABC绕点A按顺时针旋转一定角度得到△ADE,∴旋转中心是点A,∠BAD的度数等于旋转角的度数,∵△ADB为等边三角形,∴∠BAD=60°,即旋转角的度数为60°.故答案是:点A;60°;(2)∵△ABD为等边三角形,∴AB=BD=3cm,∠B=60°,∴∠C=180°﹣∠CAB﹣∠B=180°﹣95°﹣65°=25°.∵△ABC顺时针旋转一定角度得到△ADE,∴∠E=∠C=25°,∴CD=BC﹣BD=6.2﹣3=3.2(cm).点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等边三角形的判定与性质.26.(9分)某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号销售收入第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B型号的电扇收入1800元,4台A型号10台B型号的电扇收入3100元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台,根据金额不多余5400元,列不等式求解.解答:解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:,解得:,答:A、B两种型号电风扇的销售单价分别为250元、210元;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台.依题意得:200a+170(30﹣a)≤5400,解得:a≤10.答:超市最多采购A种型号电风扇10台时,采购金额不多于5400元.点评:本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.27.(9分)(1)如图①,你直到∠BOC=∠B+∠C+∠A的奥秘吗?请用你学过的知识予以证明;(2)如图②,设x=∠A+∠B+∠C+∠D+∠E,运用(1)中的结论填空.x=180°;x=180°;x=180°;(3)如图③,一个六角星,其中∠BOD=70°,则:∠A+∠B+∠C+∠D+∠E+∠F=140°.考点:三角形内角和定理;三角形的外角性质.分析:(1)首先延长BO交AC于点D,可得BOC=∠BDC+∠C,然后根据∠BDC=∠A+∠B,判断出∠BOC=∠B+∠C+∠A即可.(2)a、首先根据外角的性质,可得∠1=∠A+∠B,∠2=∠C+∠D,然后根据∠1+∠2+∠E=180°,可得x=∠A+∠B+∠C+∠D+∠E=180,据此解答即可.b、首先根据外角的性质,可得∠1=∠A+∠B,∠2=∠C+∠D,然后根据∠1+∠2+∠E=180°,可得x=∠A+∠B+∠C+∠D+∠E=180,据此解答即可.c、首先延长EA交CD于点F,EA和BC交于点G,然后根据外角的性质,可得∠GFC=∠D+∠E,∠FGC=∠A+∠B,再根据∠GFC+∠FGC+∠C=180°,可得x=∠A+∠B+∠C+∠D+∠E=180°,据此解答即可.(3)根据∠BOD=70°,可得∠A+∠C+∠E=70°,∠B+∠D+∠F=70°,据此求出∠A+∠B+∠C+∠D+∠E+∠F的度数是多少即可.解答:解:(1)如图①,延长BO交AC于点D,∠BOC=∠BDC+∠C,又∵∠BDC=∠A+∠B,∴∠BOC=∠B+∠C+∠A.(2)如图②,,根据外角的性质,可得∠1=∠A+∠B,∠2=∠C+∠D,∵∠1+∠2+∠E=180°,∴x=∠A+∠B+∠C+∠D+∠E=180°.如图③,,根据外角的性质,可得∠1=∠A+∠B,∠2=∠C+∠D,∵∠1+∠2+∠E=180°,∴x=∠A+∠B+∠C+∠D+∠E=180°.如图④,延长EA交CD于点F,EA和B C交于点G,,根据外角的性质,可得∠GFC=∠D+∠E,∠FGC=∠A+∠B,∵∠GFC+∠FGC+∠C=180°,∴x=∠A+∠B+∠C+∠D+∠E=180°.(3)如图⑤,,∵∠BOD=70°,∴∠A+∠C+∠E=70°,∴∠B+∠D+∠F=70°,∴∠A+∠B+∠C+∠D+∠E+∠F=70°+70°=140°.故答案为:180、180、180、140.点评:(1)此题主要考查了三角形的内角和定理,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°.(2)此题还考查了三角形的外角的性质和应用,要熟练掌握,解答此题的关键是要明确:①三角形的外角和为360°.②三角形的一个外角等于和它不相邻的两个内角的和.③三角形的一个外角大于和它不相邻的任何一个内角.。

福建省厦门市七年级下学期数学期末考试试卷

福建省厦门市七年级下学期数学期末考试试卷

福建省厦门市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020七下·淮滨期末) 下列关于立方根的说法中,正确的是()A . -9的立方根是-3B . 立方根等于它本身的数有C . -64的立方根为4D . 一个数的立方根不是正数就是负数2. (2分) (2019七上·哈尔滨期中) 如图,点E在AD的延长线上,下列条件中能判断AB∥CD的是()A . ∠C=∠CDEB . ∠ABD=∠CBDC . ∠ABD=∠CDBD . ∠C+∠ADC=180°3. (2分) (2017八下·龙海期中) 在平面直角坐标系中,点(3,﹣2)所在象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限4. (2分)已知是方程2x-ay=3的一个解,那么a的值是()A . 1B . 3C . -3D . -15. (2分) (2020七下·长春期中) 用代入法解方程组时,将方程①代入方程②正确的是()A .B .C .D .6. (2分) (2017七下·钦北期末) 一元一次不等式组无解,则a与b的关系是()A . a≥bB . a≤bC . a>b>0D . a<b<07. (2分)王大伯有甲、乙、丙三块不同等级的棉田60亩、20亩、10亩,想估算自己今年的棉花产量,请你给王大伯出个主意()A . 从甲棉田抽出部分进行估算B . 从乙棉田抽出部分进行估算C . 从丙棉田抽出部分进行估算D . 按6:2:1的比例从甲、乙、丙三块棉田抽取进行估算8. (2分) (2016七下·广饶开学考) 下列不等式变形正确的是()A . 由a>b得ac>bcB . 由a>b得﹣2a>﹣2bC . 由a>b得﹣a<﹣bD . 由a>b得a﹣2<b﹣29. (2分) (2018七下·越秀期中) 下列命题不成立的是()A . 等角的补角相等B . 两直线平行,内错角相等C . 同位角相等D . 对顶角相等10. (2分) (2019七下·南岗期末) 一元一次不等式组的解集在数轴上表示为().A .B .C .D .二、填空题 (共6题;共6分)11. (1分) (2019七下·端州期末) 如图,直线AB,CD相交于点O,OM⊥AB于O,若∠MOD=35°,则∠COB=________度.12. (1分)(2019·凤翔模拟) 在实数1,﹣,0,中,最大的数________.13. (1分) (2019七下·东莞期末) 为了了解5000件商品的质量问题,从中任意抽取100件商品进行试验在这个问题中,样本容量是________.14. (1分)(2018·吉林模拟) 已知点P(3﹣m,m)在第二象限,则m的取值范围是________.15. (1分) (2019七下·港南期中) 若方程是二元一次方程,则m=________,n=________.16. (1分)(2018·威海) 如图,在平面直角坐标系中,点A1的坐标为(1,2),以点O为圆心,以OA1长为半径画弧,交直线y= x于点B1 .过B1点作B1A2∥y轴,交直线y=2x于点A2 ,以O为圆心,以OA2长为半径画弧,交直线y= x于点B2;过点B2作B2A3∥y轴,交直线y=2x于点A3 ,以点O为圆心,以OA3长为半径画弧,交直线y= x于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4 ,以点O为圆心,以OA4长为半径画弧,交直线y= x于点B4 ,…按照如此规律进行下去,点B2018的坐标为________.三、解答题 (共8题;共74分)17. (2分) (2017七下·江阴期中) 解下列各方程组:(1);(2)18. (5分)解不等式组并将解集在数轴上表示出来.19. (10分) (2020七下·泰兴期中) 在某体育用品商店,购买50根跳绳和80个毽子共用1120元,购买30根跳绳和50个毽子共用680元.(1)跳绳、毽子的单价各是多少元?(2)该店在“元旦”节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1700元,该店的商品按原价的几折销售?20. (6分) (2016九上·平定期末)(1)计算:(2)用配方法解方程:4x2-8x-5=0.21. (10分)(2019·无锡) 一次函数的图像与x轴的负半轴相交于点A,与y轴的正半轴相交于点B,且△OAB的外接圆的圆心M的横坐标为-3.(1)求一次函数的解析式;(2)求图中阴影部分的面积.22. (11分) (2017七下·通辽期末) 为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?23. (15分) (2017九上·遂宁期末) 如图,二次函数的图象经过坐标原点,与x轴的另一个交点为A(-2,0).(1)求二次函数的解析式(2)在抛物线上是否存在一点P,使△AOP的面积为3,若存在请求出点P的坐标,若不存在,请说明理由.24. (15分)(2019·嘉兴模拟) 立定跳远是嘉兴市体育中考的抽考项目之一,某校九年级(1),(2)班准备集体购买某品牌的立定跳远训练鞋.现了解到某网店正好有这种品牌训练鞋的促销活动,其购买的单价y(元/双)与一次性购买的数量x(双)之间满足的函数关系如图所示.(1)当10≤x<60时,求y关于x的函数表达式;(2)九(1),(2)班共购买此品牌鞋子100双,由于某种原因需分两次购买,且一次购买数量多于25双且少于60双;①若两次购买鞋子共花费9200元,求第一次的购买数量;②如何规划两次购买的方案,使所花费用最少,最少多少元?参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共74分)17-1、17-2、18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、22-3、22-4、23-1、23-2、24-1、24-2、。

(3份试卷汇总)2019-2020学年厦门市初一下学期期末数学调研试题

(3份试卷汇总)2019-2020学年厦门市初一下学期期末数学调研试题

2019-2020学年初一下学期期末模拟数学试卷 一、选择题(每题只有一个答案正确)1.若关于x 的二次三项式x 2﹣kx ﹣b 因式分解为(x ﹣1)(x ﹣3),则k+b 的值为( )A .﹣1B .1C .﹣7D .72.小明到单位附近的加油站加油,如图是小明所用的加油机上的数据显示牌,则数据中的变量有( )A .金额B .数量C .单价D .金额和数量3.已知1纳米910-=米,某种植物花粉的直径为35000纳米,则该花粉的直径为A .53.510-⨯米B .43.510⨯米C .93.510-⨯米D .63.510-⨯米4.如图,EF AB ⊥于点H ,EF CD ⊥于点F ,//HI FG ,FG 与AB 交于点G ,40GFD ∠=︒,则EHI ∠的度数为( )A .40︒B .45︒C .50︒D .55︒5.ABC △的三边长分别为,,a b c ,下列条件:①A B C ∠=∠-∠;②()()2a b c b c =+-;③::3:4:5A B C ∠∠∠=;④::5:12:13a b c =其中能判断ABC △是直角三角形的个数有( ) A .1个B .2个C .3个D .4个 6.在下列实数:2π、3、4、227、﹣1.010010001…中,无理数有( ) A .1个 B .2个 C .3个 D .4个7.小丽只带2元和5元的两种面额的钞票(数量足够多),她要买27元的商品,而商店不找零钱,要她刚好付27元,她的付款方式有( )种.A .1B .2C .3D .48.如图,点E 在AC 的延长线上,下列条件不能判断//AC BD 的是( )A .34∠=∠B .D DCE ∠=∠C .12∠=∠D .180D ACD ∠+∠=︒9.如图,点D 为△ABC 边BC 的延长线上一点.∠ABC 的角平分线与∠ACD 的角平分线交于点M ,将△MBC 以直线BC 为对称轴翻折得到△NBC,∠NBC 的角平分线与∠NCB 的角平分线交于点Q ,若∠A=48°,则∠BQC 的度数为( )A .138°B .114°C .102°D .100° 10.《九章算术》是中国传统的数学著作之一,奠定了中国传统数学的基本框架,其中方程术是重要的数学成就之一,书中有一个方程问题:今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗,问醇、行酒各得几何?大意是:今有美酒一斗的价格是50钱,普通酒一斗的价格是10钱,现在买这两种酒2斗共付30钱,问两种酒各买多少?设买美酒斗,普通酒斗,则有( )A .B .C .D .二、填空题题11.把一张长方形纸条按如图所示折叠后,若∠AOB′=70°,则∠B ′OG =_____.12.如图,已知DE BC ,DAB=56∠︒;ACF=115∠︒,则BAC=∠__________°.13.如图,////DH EG BC ,//DC EF ,DC 与EG 交于点M ,那么在图中与EFB ∠相等的角(不包括EFB ∠)有_______________________.(填上所有符合条件的角)14.如图,直线//AB CD ,E 为直线AB 上一点,EH 、EM 分别交直线CD 于点F 、M ,EH 平分AEM ∠,MN AB ⊥,垂足为点N ,若CFH α∠=,则EMN ∠=__________.(用含α的式子表示)15.若一个多边形的内角和是900º,则这个多边形是 边形.16.如图,C 岛在A 岛的北偏东45°方向,在B 岛的北偏西25°方向,则从C 岛看A ,B 两岛的视角∠ACB =________.17.已知a 2+a ﹣3=0,则2019﹣a 3﹣4a 2= .三、解答题18.为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?19.(6分)计算(1)(﹣2a 2)(3ab 2﹣a 2b );(2)(34)﹣1+(34)0﹣3﹣1+|﹣12|.20.(6分)如图,已知DE∥BC,∠3=∠B,则∠1+∠2=180°.下面是王宁同学的思考过程,请你在括号内填上理由、依据或内容.思考过程因为DE∥BC(已知)所以∠3=∠EHC ()因为∠3=∠B(已知)所以∠B=∠EHC ()所以AB∥EH ()∠2+ ()=180°()因为∠1=∠4()所以∠1+∠2=180°(等量代换)21.(6分)为了加强市民的节水意识,合理利用水资源,抚州市采用价格调控手段以达到节水的目的,我市自来水收费价目表如下:每月用水量价格不超出6m3的部分2元/m3超出6m3不超出10m3的部分4元/m3超出10m3的部分8元/m3注:水费按月结算若某户居民1月份用水8m3,则应收水费2×6+4×(8﹣6)=20(元)(1)若用户缴水费14元,则用水m3;(2)若该户居民4月份共用水15m3,则该户居民4月份应缴水费多少元.22.(8分)阅读并填空:如图,ABC是等腰三角形,AB AC=,D是边AC延长线上的一点,E在边AB上且联接DE交BC 于O,如果OE OD,那么CD BE=,为什么?解:过点E 作EF AC 交BC 于F所以ACB EFB ∠=∠(两直线平行,同位角相等)D OEF ∠=∠(________) 在OCD 与OFE △中()________COD FOE OD OED OEF ⎧∠=∠⎪=⎨⎪∠=∠⎩所以OCD OFE △≌△,(________)所以CD FE =(________)因为AB AC =(已知)所以ACB B =∠∠(________)所以EFB B ∠=∠(等量代换)所以BE FE =(________)所以CD BE =23.(8分)进入六月以来,西瓜出现热卖.佳佳水果超市用760元购进甲、乙两个品种的西瓜,销售完共获利360元,其进价和售价如表:甲品种 乙品种 进价(元/千克) 1.6 1.4 售价(元/千克) 2.4 2(1)求佳佳水果超市购进甲、乙两个品种的西瓜各多少千克?(2)由于销售较好,该超市决定,按进价再购进甲,乙两个品种西瓜,购进乙品种西瓜的重量不变,购进甲品种西瓜的重量是原来的2倍,甲品种西瓜按原价销售,乙品种西瓜让利销售.若两个品种的西瓜售完获利不少于560元,问乙品种西瓜最低售价为多少元?24.(10分)解方程式或方程组(1)13542x x -=+ (2)12323329412x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩25.(10分)已知关于x 、y 的方程组21{21x y a x y a -=++=-的解适合不等式2x-y>3,求a 的取值范围.参考答案一、选择题(每题只有一个答案正确)1.B【解析】【分析】利用多项式乘以多项式法则计算,再利用多项式相等的条件求出k 与b 的值,即可求出所求【详解】解:根据题意得:x 2﹣kx ﹣b =(x ﹣1)(x ﹣3)=x 2﹣4x+3,∴k =4,b =﹣3,则k+b =1,故选:B .【点睛】此题考查了因式分解﹣十字相乘法,熟练掌握运算法则是解本题的关键.2.D【解析】【分析】根据常量与变量的定义即可判断.【详解】常量是固定不变的量,变量是变化的量,单价是不变的量,而金额是随着数量的变化而变化,故选:D .【点睛】本题考查常量与变量,解题的关键是正确理解常量与变量,本题属于基础题型.3.A【解析】【分析】科学记数法的表示形式为10n a -⨯的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】解:∵1纳米910-=米,∴直径为35000纳米=35000×910- m=3.5×510-米,故选:A .【点睛】本题考查用科学记数法表示较小的数,一般形式为-10n a ⨯,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.C【解析】【分析】根据EF AB ⊥于点H ,EF CD ⊥于点F 得到∠EFG=90°-40︒=50°,再由//HI FG 得出∠EHI=∠EFG=50°.【详解】解:∵EF AB ⊥于点H ,EF CD ⊥于点F∴∠EHB=∠EFD=90°∵40GFD ∠=︒∴∠EFG=90°-40︒=50°∵//HI FG∴∠EHI=∠EFG=50°故选C【点睛】本题考查了垂直和平行线,熟练掌握垂直和平行线的性质是解题关键.5.C【解析】【分析】判定直角三角形的方法有两个:一是有一个角是90︒的三角形是直角三角形;二是根据勾股逆定理判断,即三角形的三边满足222+=a b c ,其中边c 为斜边.【详解】解:由三角形内角和定理可知180A B C ︒∠+∠+∠=,①中A B C ∠=∠-∠,180B C B C ︒∴∠-∠+∠+∠=,2180B ︒∴∠=,90B ︒∴∠=,能判断ABC △是直角三角形,①正确, ③中318045345A ︒︒∠=⨯=++, 418060345B ︒︒∠=⨯=++,518075345C ︒︒∠=⨯=++,ABC △不是直角三角形,③错误;②中化简得222a b c =- 即222a c b += ,边b 是斜边,由勾股逆定理ABC △是直角三角形,②正确; ④中经计算满足222+=a b c ,其中边c 为斜边,由勾股逆定理ABC △是直角三角形,④正确,所以能判断ABC △是直角三角形的个数有3个.故答案为:C【点睛】本题考查了直角三角形的判定,主要从边和角两方面去考虑,即有一个角是直角或三边满足222+=a b c ,灵活运用直角三角形边角的特殊性质取判定直角三角形是解题的关键.6.C【解析】【分析】根据“无理数”的定义进行分析判断即可.【详解】∵在实数:π2、227、-1.010010001…中,属于无理数的是:-1.010*******π, ∴上述实数中,属于无理数的有3个.故选C.【点睛】本题考查了无理数,熟记“无理数”的定义:“无限不循环小数叫做无理数”是解答本题的关键. 7.C【解析】分析:先根据题意列出二元一次方程,再根据x ,y 都是非负整数可求得x ,y 的值.详解:解:设2元的共有x 张,5元的共有y 张,由题意,2x+5y=27∴x=12(27-5y ) ∵x ,y 是非负整数,∴15x y ⎧⎨⎩==或111x y ⎧⎨⎩==或63x y ⎧⎨⎩==,∴付款的方式共有3种.故选C.点睛:本题考查二元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再根据实际意义求解.8.C【解析】【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断即可.【详解】解:根据∠3=∠4,可得AC∥BD,故A选项能判定;根据∠D=∠DCE,可得AC∥BD,故B选项能判定;根据∠1=∠2,可得AB∥CD,而不能判定AC∥BD,故C选项符合题意;根据∠D+∠ACD=180°,可得AC∥BD,故D选项能判定;故选:C.【点睛】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.9.C【解析】【分析】设∠ABC=a°,根据外角定理可知,∠ACD=∠A+∠ABC=48°+a°,∵CM平分∠ACD,∴∠ACM=12∠ACD=24°+a2°,而根据三角形内角和等于180°可知,∠ACB=180°-∠A-∠ABC=132°-a°,故∠BCM=∠ACB+∠ACM=156°-a2°,∵△MBC以直线BC为对称轴翻折得到△NBC,BM平分∠ABC,∴∠BCM=∠BCN=156°-a2°,∠CBN=∠CBM=12∠ABC=a2°,∵∠NBC的角平分线与∠NCB的角平分线交于点Q,∴∠QBC=12∠NBC=a4°,∠QCB=12∠NCB=78°-a4°,故根据根据三角形内角和等于180°,∠BQC=180°-∠QCB-∠QBC,未知数抵消,求出∠BQC的值. 【详解】设∠ABC=a°,根据外角定理可知,∠ACD=∠A+∠ABC=48°+a°,∵CM平分∠ACD,∴∠ACM=12∠ACD=24°+a2°,而根据三角形内角和等于180°可知,∠ACB=180°-∠A-∠ABC=132°-a°,故∠BCM=∠ACB+∠ACM=156°-a2°,∵△MBC以直线BC为对称轴翻折得到△NBC,BM平分∠ABC,∴∠BCM=∠BCN=156°-a2°,∠CBN=∠CBM=12∠ABC=a2°,∵∠NBC的角平分线与∠NCB的角平分线交于点Q,∴∠QBC=12∠NBC=a4°,∠QCB=12∠NCB=78°-a4°,故根据根据三角形内角和等于180°,∠BQC=180°-∠QCB-∠QBC=180°-78°+a4°-a4°=102°,故答案选C.【点睛】本题主要考查了角平分线的基本性质、对称轴图形的基本性质以及三角形的基本性质,解本题的要点在于角的转化,利用已知角来求出未知角.10.C【解析】【分析】根据“美酒一斗的价格是50钱、买两种酒2斗共付30钱”列出方程组即可;【详解】解:依题意得:;故选择:C.【点睛】考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.二、填空题题11.55°【解析】【分析】由翻折性质得,∠BOG=∠B′OG,根据邻补角定义可得.【详解】解:由翻折性质得,∠BOG=∠B′OG,∵∠AOB′+∠BOG+∠B′OG=180°,∴∠B′OG=12(180°﹣∠AOB′)=12(180°﹣70°)=55°.故答案为55°.【点睛】考核知识点:补角,折叠.12.59【解析】【分析】∠︒,再由三角形外角的性质即可求出∠BAC的值.由平行线的性质可求出∠ABC=DAB=56【详解】∠︒,∵DE BC,DAB=56∠︒,∴∠ABC=DAB=56∴∠BAC=∠ACF-∠ABC=115°-56°=59°.故答案为:59.【点睛】本题考查了平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.也考查了三角形外角的性质. 13.∠DCB,∠GMC,∠DME,∠HDC,∠GEF【解析】【分析】根据两直线平行,同位角相等、内错角相等进行分析即可.【详解】∵EF∥DC,∴∠EFB=∠DCB,∵EG∥BC,∴∠DME=∠DCB,∠GMC=∠DCB,∠GEF=∠EFB,∵DH∥BC,∴∠HDC=∠DCB,∴∠EFB=∠DCB=∠GMC=∠DME=∠HDC=∠GEF,故答案为:∠DCB,∠GMC,∠DME,∠HDC,∠GEF.【点睛】此题考查平行线的性质,解题关键是掌握两直线平行,同位角相等;两直线平行,内错角相等.α-14.0290【解析】【分析】先利用平行线的性质得到∠AEH=∠CFH=α,再根据角平分线定义得到∠MEH=∠AEH=α,则利用邻补角的定义得到∠MEN=180∘−2α,然后根据三角形内角和计算∠EMN的度数.【详解】∵AB//CD,∴∠AEH=∠CFH=α,∵EH平分∠AEM,∴∠MEH=∠AEH=α,∴∠MEN=180∘−2α,∵MN⊥AB,∴∠MNE=90∘,∴∠EMN=90∘−(180∘−2α)=2α−90∘.故答案为2α−90∘.【点睛】本题考查角平分线,解题关键在于根据三角形内角和计算∠EMN的度数.15.七【解析】【分析】n-⋅︒,列式求解即可.根据多边形的内角和公式()2180【详解】设这个多边形是n边形,根据题意得,()2180900n-⋅︒=︒,n=.解得7故答案为7.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.16.70°【解析】【分析】【详解】连接AB.∵C岛在A岛的北偏东45°方向,在B岛的北偏25°方向,∴∠CAB+∠ABC=180°-(45°+25°)=110°,∵三角形内角和是180°,∴∠ACB=180°-(∠CAB+∠ABC)=180°-110°=70°.17.1【解析】【分析】首先根据:230a a +-=,可得:23a a +=;然后把324a a --适当变形,应用代入法,求出算式的值是多少即可.【详解】解:∵230a a +-=,∴23a a +=,∴2019324a a --=2019()223a a a a +--=2019233a a --=2019()23a a -+=2019﹣3×3=20199-=1故答案为:1.【点睛】本题主要考查了因式分解的应用,要熟练掌握,注意灵活变形.三、解答题18.(1)20%;(2)600【解析】试题分析:(1)根据扇形统计图可以求得“非常了解”的人数的百分比;(2)根据扇形统计图可以求得对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人.试题解析:(1)由题意可得,“非常了解”的人数的百分比为:, 即“非常了解”的人数的百分比为20%; (2)由题意可得,对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有:1200×=600(人),即对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有600人考点:(1)扇形统计图;(2)用样本估计总体19.(1)﹣6a3b2+2a4b; (2)5 2【解析】【分析】(1)直接利用单项式乘以多项式的运算法则求出即可;(2)根据指数的运算法则和绝对值的规则进行变形,然后计算即可.【详解】解:(1)(﹣2a2)(3ab2﹣a2b)=-6a3b2+2a4b;(2)(34)﹣1+(34)0﹣3﹣1+|﹣12|=43+1﹣13+12=52.【点睛】本题考查了单项式乘以多项式,指数的运算和绝对值的化简,正确掌握运算法则是解题关键.20.两直线平行,内错角相等.等量代换或等式的性质;同位角相等,两直线平行;对顶角相等. 【解析】【分析】据平行线的判定和性质和对顶角性质进行分析即可.【详解】因为DE∥BC(已知),所以∠3=∠EHC(两直线平行,内错角相等).因为∠3=∠B(已知),所以∠B=∠EHC(等量代换或等式性质).所以AB∥EH(同位角相等,两直线平行).所以∠2+(∠4)=180°(两直线平行,同旁内角互补).因为∠1=∠4(对顶角相等),所以∠1+∠2=180°(等量代换).【点睛】考核知识点:平行线的判定和性质.21.(1)6.5;(2)68元.【解析】【分析】解答本题需明确用户缴的水费是由哪几部分组成的.(1)设用水xm3,由用户缴水费14元可判断用水量超出6m3不超出10m3,进而列方程求解;(2)由于4月份用水量超过10m3,于是可知4月份的水费需要分成不超过6m3的部分、超过6m3不超过10m3的部分和超出10m3的部分,分别算出每段的费用,相加即为总费用,.【详解】解:(1)设用水xm3,根据题意得:6×2+4(x﹣6)=14,解得:x=6.5,则用水6.5m3;故答案为6.5;(2)根据题意得:6×2+4×4+8×(15﹣10)=12+16+40=68(元).答:总水费是68(元).【点睛】本题考查一元一次方程的应用.理解题意,根据数量关系,把问题转化为方程解决是关键.22.见解析【解析】【分析】△≌△,写出证明过程和依据即可.先根据平行线的性质,得到角的关系,然后证明OCD OFE【详解】EF AC交BC于F,解:过点E作//∠=∠(两直线平行,同位角相等),∴ACB EFB∠=∠(两直线平行,内错角相等),∴D OEF△中在OCD与OFE()()()COD FOE OD OED OEF ⎧∠=∠⎪=⎨⎪∠=∠⎩对顶角相等已知已证, ∴OCD OFE △≌△,(ASA )∴CD FE =(全等三角形对应边相等)∵AB AC =(已知)∴ACB B =∠∠(等边对等角)∴EFB B ∠=∠(等量代换)∴BE FE =(等角对等边)∴CD BE =;【点睛】本题考查了全等三角形的判定和性质,平行线的性质,解题的关键是由平行线的性质正确找到证明三角形全等的条件,从而进行证明.23.(1)300千克, 200千克;(2)1.1元/千克.【解析】【分析】(1)设佳佳水果超市购进甲品种西瓜x 千克,购进乙品种西瓜y 千克,根据总价=单价×数量结合总利润=每千克的利润×数量,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设乙品种西瓜的售价为m 元/千克,根据总利润=每千克的利润×数量结合售完获利不少于560元,即可得出关于m 的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:(1)设佳佳水果超市购进甲品种西瓜x 千克,购进乙品种西瓜y 千克,依题意,得: 1.6 1.4760(2.4 1.6)(2 1.4)360x y x y +=⎧⎨-+-=⎩, 解得:300200x y =⎧⎨=⎩. 答:佳佳水果超市购进甲品种西瓜300千克,购进乙品种西瓜200千克.(2)设乙品种西瓜的售价为m 元/千克,依题意,得:300×2×(2.4﹣1.6)+200×(m ﹣1.4)≥560,解得:m≥1.1.答:乙品种西瓜最低售价为1.1元/千克.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.24.(1)x=-149;(2)259xy=-⎧⎪⎨=⎪⎩【解析】【分析】(1)依次移项、合并同类项、系数化为1即可;(2)方程组利用加减消元法求出解即可.【详解】(1)12x﹣3=5x+4,化简得:x﹣6=10x+8,移项,合并同类项得,9x=﹣14,系数化为1得,x=﹣149,故方程的解为x=﹣149,(2)12323329412x yx y⎧+=⎪⎪⎨⎪-=⎪⎩①②,①化简得:3x+18y=4③,②化简得:12x﹣9y=﹣29④,③×4﹣④得:81y=45,解得y=59,把y=59带入③得:3x+10=4,解得x=﹣2,故方程组的解为259 xy=-⎧⎪⎨=⎪⎩【点睛】此题考查了一元一次方程和二元一次方程组的解,熟练掌握运算法则是解本题的关键.25.a>1.【解析】分析:解关于x、y的方程组,并把所得结果代入不等式2x-y>3中得到关于a的不等式,解此不等式即可求得a 的取值范围.详解:解关于x、y的方程组2121x y ax y a-=+⎧⎨+=-⎩得:513{23axay-=-=,∵2x-y>1,∴1022333a a--->,∴解得:a>1.点睛:本题是一道二元一次方程组和一元一次不等式综合的题目,“能正确求得所给方程组的解,并把所得的解代入2x-y>1中得到关于a的不等式”是解答本题的关键.2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.若a >b ,则下列不等式中正确的是( )A .a ﹣1<b ﹣1B .a+2>b+2C .﹣3a >﹣3bD .4a <4b 2.下列调查中,适宜采用全面调查方式的是( )A .了解我市的空气污染情况B .对端午节期间市场上粽子质量情况的调查C .了解全班同学每天做家庭作业的时间D .考查某类烟花爆竹燃放安全情况3.依据国家实行的《国家学生体质健康标准》,对怀柔区初一学生身高进行抽样调查,以便总结怀柔区初一学生现存的身高问题,分析其影响因素,为学生的健康发展及学校体育教育改革提出合理项建议.已知怀柔区初一学生有男生840人,女生800人,他们的身高在150≤x<175范围内,随机抽取初一学生进行抽样调查.抽取的样本中,男生比女生多2人,利用所得数据绘制如下统计图表:身高情况分组表组别身高(cm ) A150≤x<155 B155≤x<160 C160≤x<165 D165≤x<170 E170≤x<175•根据统计图表提供的信息,下列说法中•①抽取男生的样本中,身高在155≤x<165之间的学生有18人;•②初一学生中女生的身高的中位数在B 组;•③抽取的样本中,抽取女生的样本容量是38;•④初一学生身高在160≤x<170之间的学生约有800人.•其中合理的是()A.①②B.①④C.②④D.③④4.下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a3)2=a6D.a8÷a4=a2 5.下面的调查,适合全面调查的是( )A.了解一批袋装食品是否含有防腐剂B.了解全班同学每周体育锻炼的时间C.了解中央电视台《诗词大会》的收视率D.了解某公园暑假的游客数量6.某班级的一次数学考试成绩统计图如图,则下列说法错误的是( )A.得分在70~80分的人数最多B.该班的总人数为40C.人数最少的得分段的频数为2 D.得分及格(≥60分)的有12人7.若长方形面积是2a2﹣2ab+6a,一边长为2a,则这个长方形的周长是() A.6a﹣2b+6 B.2a﹣2b+6 C.6a﹣2b D.3a﹣b+3 8.用不等式表示图中的解集,其中正确的是( )A.x>-3 B.x<-3C.x≥-3 D.x≤-39.下面调查方式中,合适的是()A.调查某新型防火材料的防火性能,采用全面调查方式B.调查某县销往广州市的马铃薯质量情况,采用抽样调查方式C.试航前对我国第一艘国产航母各系统的检查,采用抽样调查方式D.调查中央电视台2019年五四运动100周年晚会的收视情况,采用全面调查方式10.下列说法正确的个数有()(1)过一点,有且只有一条直线与已知直线平行;(2)一条直线有且只有一条垂线;(3)不相交的两条直线叫做平行线;(4)直线外一点到这条直线的垂线段叫做这点到这条直线的距离;(5)在同一平面内,垂直于同一条直线的两条直线互相平行;(6)两条直线被第三条直线所截,同位角相等.A .0个B .1个C .2个D .3个 二、填空题题11.若关于x 的一元一次不等式组011x a x x ->⎧⎨->-⎩无解,则a 的取值范围是________. 12.如图,一个长方形窗框ABCD 被EF 分成上下两个长方形,上部分长方形又被分成三个小长方形,其中G ,H 为AD 的四等分点(G 在H 左侧)且AG HD =.一晾衣杆斜靠在窗框上的PG 位置,P 为BC 中点.若4BC =,PG 分长方形BEFC 的左右面积之比为:a b ,则PG 分长方形AEFD 的左右面积之比为________.(用含a ,b 的代数式表示)13.如图,已知直线AB ,CD 相交于点O ,OA 平分∠EOC ,∠EOC=70°,则∠BOD 的度数是_______°14.如图,在ABC ∆中,E 、D 分别为AB 、CE 的中点,且24ABC S ∆=,则EDB S ∆=________.15.4x a+2b ﹣5﹣2y 3a ﹣b ﹣3=8是二元一次方程,那么a =_____,b =_____.16.平面直角坐标系中的点P (-4,6)在第_________象限.17.如图,等边DEF 的顶点分别在等边ABC 各边上,且DE BC ⊥于E ,若6AB =,则DE =_____.三、解答题18.某商场购进A 、B 两种型号的智能扫地机器人共60个,这两种机器人的进价、售价如表所示. 类型价格A 型B 型进价(元/个)2000 2600 售价(元/个) 2800 3700 (1)若恰好用掉14.4万元,那么这两种机器人各购进多少个?(2)在每种机器人销售利润不变的情况下,若该商场计划销售这批智能扫地机器人的总利润不少于53000元,问至少需购进B 型智能扫地机器人多少个?19.(6分)已知直线CD⊥AB 于点O ,∠EOF=90°,射线OP 平分∠COF.(1)如图1,∠EOF 在直线CD 的右侧:①若∠COE=30°,求∠BOF 和∠POE 的度数;②请判断∠POE 与∠BOP 之间存在怎样的数量关系?并说明理由.(2)如图2,∠EOF 在直线CD 的左侧,且点E 在点F 的下方:①请直接写出∠POE 与∠BOP 之间的数量关系;②请直接写出∠POE 与∠DOP 之间的数量关系.20.(6分)王勇和李华一起做风筝,选用细木棒做成如图所示的“筝形”框架,要求AB AD =,BC CD =,AB BC >.(1)观察此图,是否是轴对称图形,若是,指出对称轴;(2)ABC ∠和ADC ∠相等吗?为什么?(3)判断BD 是否被AC 垂直平分,并说明你的理由.21.(6分)若x+y=3,且(x+2)(y+2)=1.(1)求xy 的值;(2)求x 2+3xy+y 2的值.22.(8分)如图:已知AB ∥DE ∥CF ,若∠ABC =70°,∠CDE =130°,则∠BCD 的度数是_____.23.(8分)已知△ABC ,O 是△ABC 所在平面内的一点,连接 OB 、OC ,将∠ABO 、∠ACO 分别记为∠1、∠1.(1)如图(1),当点 O 在图中所示的位置时,∠1+∠1+∠A +∠O = ;(1)如图(1),当点 O 在△ABC 的内部时,∠1、∠1、∠A 、∠OC 四个角之间满足怎样 的数量关系?请写出你的结论并说明理由;(3)当点 O 在△ABC 所在平面内运动时(点 O 不在三边所在的直线上),由于所处的位 置不同,∠1、∠1、∠A 、∠OC 四个角之间满足的数量关系还存在着与(1)、(1) 中不同的结论,请在图(3)中画出一种不同的示意图,并直接写出相应的结论.24.(10分)观察下列等式,探究其中规律.第1个等式:311=;第2个等式:3312(12)(24)9+=+++=第3个等式:333123(123)(246)(369)36++=++++++++=……(1)第4个等式:33331234+++= (直接填写结果);(2)根据以上规律请计算:3333331234510++++++; (3)通过以上规律请猜想写出:333331234a +++++= (直接填写结果). 25.(10分)(1)计算:232163327 (2)已知2(1)9x -=,求x 的值.参考答案一、选择题(每题只有一个答案正确)1.B【解析】【分析】根据不等式的3个基本性质:1.两边都加上或减去同一个数或同一个式子,不等号的方向不变; 2.两边都乘以或除以同一个正数,不等号的方向不变;3.两边都乘以或除以同一个负数,不等号的方向改变.结合选项,即可得出答案.【详解】A 、由a >b 可得:a ﹣1>b ﹣1,错误;B 、由a >b 可得:a+2>b+2,正确;C 、由a >b 可得:﹣3a <﹣3b ,错误;D 、由a >b 可得:44a b >,错误; 故选B .【点睛】本题考查不等式的基本性质,熟练掌握不等式的3个基本性质是解题关键.2.C【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A.了解我市的空气污染情况,适合抽样调查;B.对端午节期间市场上粽子质量情况的调查,适合抽样调查;C.了解全班同学每天做家庭作业的时间,适合全面调查;D.考查某类烟花爆竹燃放安全情况,适合抽样调查;故选:C.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.B【解析】【分析】根据频数分布直方图和中位数的定义可判断①、②;由男生总人数及男生比女生多2人可判断③;分别计算男、女生身高的样本中160cm至170cm所占比例,然后分别乘以男、女生总人数,可分别求出男、女生身高中160cm至170cm的人数再相加即可判断④.【详解】解:由直方图可知,抽取男生的样本中,身高在155≤x<165之间的学生有8+10=18人,故①正确;由A与B的百分比之和为10.5%+37.5%=48%<50%,则女生身高的中位数在C组,故②错误;∵男生身高的样本容量为4+8+10+12+8=42,∴女生身高的样本容量为40,故③错误;∵男生身高在160cm至170cm(不含170cm)的学生有840×2242=440人,女生身高在160cm至170cm(不含170cm)的学生有800×(30%+15%)=360人∴身高在160cm至170cm(不含170cm)的学生有440+360=800(人),故④正确;故选B.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.注意④千万不能这样计算(840+800)×2218 4240++.4.C【解析】【分析】根据整式的运算法则逐一计算即可得.【详解】A、a2、a3不能合并,此选项错误;B、a2•a3=a5,此选项错误;C、(a3)2=a6,此选项正确;D、a8÷a4=a4,此选项错误;故选:C.【点睛】此题考查整式的运算,解题的关键是掌握同底数幂的乘法、幂的乘方、同底数幂的除法运算法则.5.B【解析】【分析】适合普查的方式一般有以下几种:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.依据以上要求可得到答案.【详解】解:A、要了解一批袋装食品是否含有防腐剂,具有破坏性,宜采用抽查方式;B、了解某班学生每周体育锻炼的时间,数量小,准确度高,往往选用全面调查;C、了解中央电视台《诗词大会》的收视率,普查的意义或价值不大,应选择抽样调查;D、了解某公园暑假的游客数量,具有时间范围较大,不易操作,不适宜采用普查方式.故选:B.【点睛】本题考查的是普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.6.D【解析】试题分析:A、得分在70~80分之间的人数最多,有14人,此选项正确;B、该班的总人数为4+12+14+8+2=40人,此选项正确;C、得分在90~100分之间的人数最少,有2人,频数为2,此选项正确;D、及格(≥60分)人数是12+14+8+2=36人,此选项错误.故选D.点睛:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.7.A。

福建省2019-2020学年七年级下学期期末考试数学试卷4

福建省2019-2020学年七年级下学期期末考试数学试卷4

福建省2019-2020学年七年级下学期期末考试数学试卷(时间:120分钟;满分:150分) 成绩_______ 一、选择题: (本大题共10小题,共40分) 1、下列调查中,适宜采用普查的是( )A 、了解全国中学生心理健康状况B 、了解我市火锅底料的合格情况C 、了解一批新型远程导弹的杀伤半径D 、了解某班学生对马航失联事件的关注情况 2、将点(1,2)A -向右平移2个单位,再向上平移3个单位得B 点,则B 的坐标为( ) A 、(-1,1) B 、(-1,-5) C 、(3,1) D 、(3,-5) 3、以下列各组线段长为边能组成三角形的是( )A 、1,2,4B 、8,6,4C 、12,5,6D 、2,3,64、⎩⎨⎧==21y x 是方程ax -y =3的解,则a 的值是( )A 、5B 、-5C 、2D 、15、如图,直线PQ ⊥MN ,垂足为O ,AB 是过点O 的直线,∠1=50°,则∠2的度数为( )A 、50°B 、40°C 、60°D 、65°第5题 第8题 第10题 6、若b a >,则下列式子正确的是( )A 、b a 44->-B 、b a 2121< C 、b a ->-44 D 、44->-b a 7、在实数,,0.101001,,14.3-π中,无理数的个数是( )A 、2个B 、3个C 、4个D 、5个8、如图,已知:D ,E 分别是△ABC 的边BC 和边AC 的中点,连接DE ,AD ,若S △ABC =24cm 2,则△DEC 的面积的面积为( ) A 、4 cm 2B 、6 cm 2C 、8cm 2D 、12cm 29、某车间56名工人,每人每天能生产螺栓16个或螺母24个,设有x 名工人生产螺栓,有y 名工人生产螺母,每天生产的螺栓和螺母按1:2配套,所列方程组正确的是( ) A 、⎩⎨⎧=⨯=+y x y x 2416256 B 、⎩⎨⎧=⨯=+y x y x 1624256C 、⎩⎨⎧⨯==+y x y x 2421656 D 、⎩⎨⎧⨯==+yx y x 162245610、实数a 、b 在数轴上的位置如图所示,且a b >,则化简b a b a ++-的结果为( )A 、2aB 、2bC 、-2aD 、-2bba O O二、填空题: (本大题共9小题,共32分) 11、25=12、如图,直线a ∥b ,则∠A 的度数是 °13、已知一个正多边形的一个内角是120°,则这个多边形的边数是14、若1+-b a 与42++b a 互为相反数,则2015)(b a -=15、如图,点O 是△ABC 的∠ABC 与∠ACB 两个角的角平分线的交点,若∠BOC=118°,则∠A 的角度是 °16、如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是第1个图形 第2个图形 第3个图形 第4个图形 …三、解答题:(本大题共9小题,共86分)17、(本小题满分8分) 计算: 3--431-92+⎪⎭⎫⎝⎛⨯18、(本小题满分8分) 解方程组:⎩⎨⎧-=+=-1373y x y x19、(本小题满分8分) 解不等式组⎪⎩⎪⎨⎧≤-+>+32152)2(3x x x x20、(本小题满分8分)在如图所示的平面直角坐标系中表示下面各点: A (4,2);B (﹣3,﹣2);C (2,﹣2) (1)(2分)画出点A ,B ,C ,并将各点依次用线段连接起来。

2019-2020学年厦门市初一下学期期末数学调研试题

2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.若2022110.3,3,,33a b c d--⎛⎫⎛⎫=-=-=-=-⎪ ⎪⎝⎭⎝⎭,则它们的大小关系是( )A.a<b<c<d B.a<d<c<b C.b<a<d<c D.c<a<d<b2.如图,在△ABC中,∠BAC=90°,∠ABC=2∠C,BE平分∠ABC交AC于E,AD⊥BE于D,下列结论:①AC-BE=AE;②点E在线段BC的垂直平分线上;③∠DAE=∠C;④BC=3AD,其中正确的个数有()A.4个B.3个C.2个D.1个3.下列运算中正确的是()A.x+x=2x2B.(x4)2= x8C.x1.x2=x6D.(-2x) 2=-4x24.某中学阅览室在装修过程中,准备用边长相等的正方形、正三角形两种地砖铺满地面,在每个顶点的周围正方形、正三角形地砖的块数分别是( )A.1、2 B.2、1 C.2、2 D.2、35.在下列方程中,,,,,二元一次方程的个数是()A.个B.个C.个D.个6.下列调查中,适宜采用全面调查方式的是()A.调查市场上某灯泡的质量情况B.调查某市市民对伦敦奥运会吉祥物的知晓率C.调查某品牌圆珠笔的使用寿命D.调查乘坐飞机的旅客是否携带了违禁物品7.如图,直线AB,CD被直线EF,GH所截,有下列结论:①若∠l1=∠2,则AB∥CD;②若∠1=∠2,则EF∥GH;③若∠1=∠3,则AB∥CD;④若∠1=∠3,则EF∥GH.其中,正确的个数是()A.1个B.2个C.3个D.4个8.一个等腰三角形的两条边长分别为3、7,则这个等腰三角形的周长为( )A .13B .17C .13或17D .21或17 9.一款智能手机的磁卡芯片直径为0.0000000075米,这个数据用科学记数法表示为( ) A .87510⨯ B .97.510-⨯ C .90.7510-⨯ D .87.510-⨯10.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是( )A .企业男员工B .企业年满50岁及以上的员工C .用企业人员名册,随机抽取三分之一的员工D .企业新进员工 二、填空题题11.已知x a y b =⎧⎨=⎩方程组2425x y x y -=⎧⎨+=⎩的解,则3a b -的平方根是________. 12.在实数227,0,-2,2π,-0.333•••,3.14,76.0123456…(小数部分由连续的自然数组成)中,无理数有______个.13.如图,在ABC △中,B =63,C ∠=51,AD 是BC 边上的高,AE 是BAC ∠的平分线,则DAE ∠的度数_____°.14.如图,六边形ABCDEF 是正六边形,若l 1∥l 2,则∠1﹣∠2=_____.15.比较355<”或“>”)16.课本上,公式(a-b )2=a 2-2ab+b 2,是由公式(a+b )2=a 2+2ab+b 2推导出来的,该推导过程的第一步是(a-b )2=_____.17.编一个二元一次方程组,使它有无数组解_____.三、解答题18.完成下面的说理过程:如图,在四边形ABCD 中,E ,F 分别是CD ,AB 延长线上的点,连接EF ,分别交AD ,BC 于点G ,H .已知12∠=∠,A C ∠=∠.对//AD BC 和//AB CD 说明理由.理由:12∠=∠(已知),1AGH∠=∠(______),2AGH∴∠=∠(等量代换).//AD BC∴(______).ADE C∴∠=∠(______).A C∠=∠(______),ADE A∴∠=∠(______).//AB CD∴(______).19.(6分)计算:(1)312⎛⎫⎪⎝⎭-20190-│-5│ ;(2)(a+2)2-(a+1)(a-1).20.(6分)某班到毕业时共结余班费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金给50位同学每人购买一件文化衫或一本相册作为纪念品,已知每件文化衫比每本相册贵9元,用200元恰好可以买到2件文化衫和5本相册.(1)求每件文化衫和每本相册的价格分别为多少元?(2)有几种购买文化衫和相册的方案?21.(6分)已知AB∥CD,点E为平面内一点,BE⊥CE于E,(1)如图1,请直接写出∠ABE和∠DCE之间的数量关系;(2)如图2,过点E作EF⊥CD,垂足为F,求证:∠CEF=∠ABE;(3)如图3,在(2)的条件下,作EG平分∠CEF交DF于点G,作ED平分∠BEF交CD于D,连接BD,若∠DBE+∠ABD=180°,且∠BDE=3∠GEF,求∠BEG的度数.22.(8分)如图,已知四边形ABCD中,∠D=100°,AC平分∠BCD,且∠ACB=40°,∠BAC=70°.(1)AD 与BC 平行吗?试写出推理过程;(2)求∠DAC 和∠EAD 的度数.23.(8分)先化简,再求值:[(2x +y)2-y(y +4x)-8xy]÷(2x),其中x =2,y =-1.24.(10分)解分式方程:.25.(10分)已知方程组137x y a x y a-=+⎧⎨+=--⎩的解x 是非正数,y 为负数. (1)求a 的取值范围; (2)化简:|2||3|a a +--.参考答案一、选择题(每题只有一个答案正确)1.C【解析】【分析】直接化简各数,进而比较大小即可.【详解】解:∵a=-0.32=-0.09,b=-3-2=19-,c= 212-⎛⎫- ⎪⎝⎭=4,d= 013⎛⎫- ⎪⎝⎭=1, ∴它们的大小关系是:b <a <d <c .故选C .【点睛】 此题主要考查了负指数幂的性质以及有理数大小比较,正确化简各数是解题关键.2.B【解析】【分析】根据三角形内角和定理、线段垂直平分线的判定定理、直角三角形的性质判断即可.∵90,2BAC ABC C ∠=︒∠=∠∴60,30ABC C ∠=︒∠=︒∵BE 平分ABC ∠ ∴1302EBC ABE ABC ∠=∠=∠=︒ ∴EBC C ∠=∠∴EB EC =∴AC BE AC EC AE -=-=,则①正确∵EB EC =∴点E 在线段BC 的垂直平分线上,则②正确∵90,30BAC ABE ∠=︒∠=︒∴60AEB ∠=︒∵AD BE ⊥∴30DAE ∠=︒∴DAE C ∠=∠,则③正确∵90,30BAC C ∠=︒∠=︒∴2BC AB =,则④错误综上,正确的个数为3个故选:B .【点睛】本题主要考查了线段的垂直平分线的判定、三角形内角和定理、直角三角形的性质,掌握相关的判定定理和性质定理是解题关键.3.B【解析】【分析】直接利用合并同类项法则以及幂的乘方运算法则和同底数幂的除法运算法则计算得出答案.【详解】A. x+x=2x ,故此选项错误;B. (x 4)2= x 8,正确;C. x 1.x 2=x 5,故此选项错误;D. (-2x) 2=4x 2,故此选项错误;故选:B.本题主要考查同底数幂的乘法、幂的乘方和积的乘方,熟悉掌握是关键.4.D【解析】【分析】由镶嵌的条件知,在一个顶点处各个内角和为160°.【详解】正三角形的每个内角是60°,正方形的每个内角是90°,∵1×60°+2×90°=160°,∴正方形、正三角形地砖的块数可以分别是2,1.故选D.【点睛】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.5.D【解析】【分析】二元一次方程是指含有两个未知数(例如x和y),并且所含未知数的项的次数都是1的方程.【详解】只有一个未知数,是一元一次方程;是二元二次方程;不是整式方程;是二元一次方程;是二元二次方程;故选:D【点睛】考核知识点:二元一次方程.理解定义是关键.6.D【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:调查市场上某灯泡的质量情况适宜采用抽样调查方式;调查某市市民对伦敦奥运会吉祥物的知晓率适宜采用抽样调查方式;调查某品牌圆珠笔的使用寿命适宜采用抽样调查方式;调查乘坐飞机的旅客是否携带了违禁物品适宜采用全面调查方式,故选:D.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.B【解析】【分析】同位角相等,两直线平行,据此进行判断即可.【详解】解:直线AB,CD被直线EF,GH所截,若∠1=∠2,则EF∥GH,故②正确;若∠l=∠3,则AB∥CD,故③正确;故选B.【点睛】本题主要考查了的平行线的判定,平行线的判定是由角的数量关系判断两直线的位置关系.8.B【解析】【分析】根据腰为3或7,分类求解,注意根据三角形的三边关系进行判断.【详解】∵等腰三角形的一边长为3,另一边长为7,∴有两种情况:①7为底,3为腰,而3+3=6<7,那么应舍去;②3为底,7为腰,那么7+7+3=17;∴该三角形的周长是7+7+3=17,故选B.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.9.B【解析】【分析】绝对值小于1的正数也可以用科学记数法表示:10n a -⨯,将0.0000000075写出这个形式即可得出结果.【详解】解:90.0000000075=7.510-⨯故选:B .【点睛】本题主要考查的是科学记数法,正确的掌握科学记数法的表示形式是解题的关键.10.C【解析】【分析】样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.根据样本的确定方法与原则,结合实际情况,依次分析选项可得答案.【详解】A 、调查对象只涉及到男性员工,选取的样本不具有代表性质;B 、调查对象只涉及到即将退休的员工,选取的样本不具有代表性质;C 、用企业人员名册,随机抽取三分之一的员工,选取的样本具有代表性;D 调查对象只涉及到新进员工,选取的样本不具有代表性,故选C.【点睛】本题考查了样本的确定方法,明确样本要具有代表性和广泛性是解题的关键.二、填空题题11.3±【解析】【分析】把x,y 的值代入方程组即可解答【详解】根据题意得2425a b a b -=+=⎧⎨⎩①②, ①+②,得3a-b=9.所以3a-b 3±故答案为:3±【点睛】此题考查二元一次方程组的解,掌握运算法则是解题关键12.3【解析】【分析】根据无理数的定义即可判断.【详解】在实数227,2π,-0.333•••,3.14,76.0123456…(小数部分由连续的自然数组成)中,无理数有,2π,76.0123456…(小数部分由连续的自然数组成),故为3个,故填:3.【点睛】此题主要考查无理数的定义,解题的关键是熟知无限不循环小数为无理数.13.6【解析】【分析】根据三角形内角和定理可得∠BAC 的度数,根据角平分线的定义可求出∠EAC 的度数,根据直角三角形两锐角互余可得∠DAC 的度数,即可求出∠DAE 的度数.【详解】∵在ABC 中,B ∠=63,C ∠=51,∴BAC ∠=180B C ∠∠--=1806351--=66,∵AE 是BAC ∠的平分线, ∴1EAC BAC 2∠∠==33, 在直角ADC 中,DAC ∠=90C ∠-=9051-=39,∴DAE ∠=DAC EAC ∠∠-=3933-=6.故答案为:6【点睛】本题考查角平分线的定义、三角形内角和定理及直角三角形的性质,熟练掌握定义及定理是解题关键. 14.60°【解析】【分析】首先根据多边形内角和180°•(n-2)可以计算出∠FAB=120°,再过A 作l ∥l 1,进而得到l ∥l 2,再根据平行线的性质可得∠4=∠2,∠1+∠3=180°,进而可以得出结果.【详解】解:如图,过A 作l ∥l 1,则∠4=∠2,∵六边形ABCDEF 是正六边形,∴∠FAB =120°,即∠4+∠3=120°,∴∠2+∠3=120°,即∠3=120°﹣∠2,∵l 1∥l 2,∴l ∥l 2,∴∠1+∠3=180°,∴∠1+120°﹣∠2=180°,∴∠1﹣∠2=180°﹣120°=60°,故答案为:60°.【点睛】此题主要考查了正多边形和平行线的性质,关键是掌握两直线平行、内错角相等,同旁内角互补. 15.>【解析】【分析】 53的大小,因为两实数都大于0,可将两实数平方,平方值大的,该数就大;【详解】32 =9,52=5∴35故答案为:>【点睛】此题主要考查了比较实数的大小,熟悉掌握实数大小的比较方法是解此题的关键;16.2[()]a b +-【解析】【分析】在完全平方公式(a+b )2=a 2+2ab+b 2推中用(-b )代替公式中的字母b 即可.【详解】解:将(a+b )2=a 2+2ab+b 2中的b 用(-b )替换得:2222()[()]2()()a b a b a a b b -=+-=+-+-故答案为:2[()]a b +-【点睛】本题考查了完全平方公式,理解公式的推导过程是解答本题的关键.17.1222x y x y +=⎧⎨+=⎩(答案不唯一) 【解析】【分析】两个方程化简后是同一个方程可满足条件.【详解】解:根据题意得:1222x y x y +=⎧⎨+=⎩,此方程组有无数组解; 故答案为:1222x y x y +=⎧⎨+=⎩.(答案不唯一) 【点睛】本题考查了二元一次方程组的解,理解题意是解题的关键.三、解答题18.见解析【解析】【分析】首先根据对顶角的性质得到1AGH ∠=∠,等量代换可得2AGH ∠=∠,从而得到//AD BC ,然后根据平行线的性质可得ADE C ∠=∠,结合已知和内错角相等,两直线平行即可证明//AB CD .【详解】理由:12∠=∠(已知),∴1AGH ∠=∠(对顶角相等),2AGH ∴∠=∠(等量代换).//AD BC ∴(同位角相等,两直线平行).ADE C ∴∠=∠(两直线平行,同位角相等).A C ∠=∠(已知),ADE A ∴∠=∠(等量代换).//AB CD ∴(内错角相等,两直线平行).故答案为对顶角相等;同位角相等,两直线平行;两直线平行,同位角相等;已知;等量代换;内错角相等,两直线平行.【点睛】本题考查了平行线的判定和性质,熟练运用平行线的判定定理和性质定理进行推理论证是解题关键.19.(1)758-;(2)45a+.【解析】【分析】(1)原式利用绝对值的代数意义,零指数幂以及乘方的意义计算即可得到结果;(2)分别运用完全平方公式和平方差公式进行计算即可.【详解】(1)312⎛⎫⎪⎝⎭-20190-│-5│=115 8--=758-;(2)(a+2)2-(a+1)(a-1).=22441a a a++-+=45a+.【点睛】此题考查了整式的混合运算,以及有理数的运算,熟练掌握公式及运算法则是解本题的关键.20.(1)每件文化衫和每本相册的价格分别为35元和26元;(2)有三种方案.【解析】【分析】(1)通过理解题意可知本题存在两个等量关系,即每件文化衫比每本相册贵9元,用200元恰好可以买到2件文件衫和5本相册.根据这两个等量关系可列出方程组求解.(2)本题存在两个不等量关系,即设购买文化衫t件,购买相册(50-t)本,则1800-300≤35t+26(50-t)≤1800-270,根据t为正整数,解出不等式再进行比较即可.【详解】解:(1)设每件文化衫和每本相册的价格分别为x元和y元则9 25200 x yx y-=⎧⎨+=⎩,解得3526 xy=⎧⎨=⎩答:每件文化衫和每本相册的价格分别为35元和26元(2)设购买文化衫t件,购买相册50t-()本,则180********(50)1800270t t-≤+-≤-,解得:200230 99t≤≤t为正整数,232425t∴=,,,即有三种方案第一种方案:购买文化衫23件,相册27本,此时余下资金293元第二种方案:购买文化衫24件,相册26本,此时余下资金284元第三种方案:购买文化衫25件,相册25本,此时余下资金275元【点睛】本题考查了二元一次方程组和一元一次不等式组的实际应用,问题(1)在解决时只需认真分析题意,等量关系可列出方程组.问题(2)需利用不等式解决,另外要注意,同实际相联系的题目,需考虑字母的实际意义,从而确定具体的取值.21.(1)∠DCE=90°+∠ABE;(2)见解析;(3)∠BEG=105°.【解析】【分析】(1)结论:∠DCE=90°+∠ABE.如图1中,从BE交DC的延长线于H.利用三角形的外角的性质即可证明;(2)只要证明∠CEF与∠CEM互余,∠BEM与∠CEM互余,可得∠CEF=∠BEM即可解决问题;(3)如图3中,设∠GEF=α,∠EDF=β.想办法构建方程求出α即可解决问题;【详解】解:(1)结论:∠DCE=90°+∠ABE.理由:如图1中,从BE交DC的延长线于H.∵AB∥CH,∴∠ABE=∠H,∵BE⊥CE,∴∠CEH=90°,∴∠DCE=∠H+∠CEH=90°+∠H,∴∠DCE=90°+∠ABE.(2)如图2中,作EM∥CD,∵EM∥CD,CD∥AB,∴AB∥CD∥EM,∴∠BEM=∠ABE,∠F+∠FEM=180°,∵EF⊥CD,∴∠F=90°,∴∠FEM=90°,∴∠CEF与∠CEM互余,∵BE⊥CE,∴∠BEC=90°,∴∠BEM与∠CEM互余,∴∠CEF=∠BEM,∴∠CEF=∠ABE.(3)如图3中,设∠GEF=α,∠EDF=β.∴∠BDE=3∠GEF=3α,∵EG平分∠CEF,∴∠CEF=2∠FEG=2α,∴∠ABE=∠CEF=2α,∵AB∥CD∥EM,∴∠MED=∠EDF=β,∠KBD=∠BDF=3α+β,∠ABD+∠BDF=180°,∴∠BED=∠BEM+∠MED=2α+β,∵ED平分∠BEF,∴∠BED=∠FED=2α+β,∴∠DEC=β,∵∠BEC=90°,∴2α+2β=90°,∵∠DBE+∠ABD=180°,∠ABD+∠BDF=180°,∴∠DBE=∠BDF=∠BDE+∠EDF=3α+β,∵∠ABK=180°,∴∠ABE+∠B=DBE+∠KBD=180°,即2α+(3α+β)+(3α+β)=180°,∴6α+(2α+2β)=180°,∴α=15°,∴∠BEG=∠BEC+∠CEG=90°+15°=105°.【点睛】本题考查平行线的性质、垂线的性质、三角形的内角和定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考常考题型.22. (1)AD与BC平行;(2)∠DAC=40°,∠EAD=70°.【解析】【分析】(1)利用角平分线,∠BCD=80°,∠BCD和∠D互补.(2)利用(1)的结论得到∠DAC和∠EAD【详解】试题解析:(1)AD与BC平行.∵CA平分∠BCD,∠ACB=40°,∴∠BCD=2∠ACB=80°,又∵∠D=100°,∴∠BCD+∠D=80°+100°=180°,∴AD∥BC.(2)由(1)知,AD∥BC,∴∠DAC=∠ACB=40°,∴∠EAD=∠180°-∠BAC-∠DAC=180°-70°-40°=70°.23.2x-4y; 8【解析】试题分析:先利用整式的乘法公式展开得到原式=(4x2+4xy+y2-y2-4xy-8xy)÷(2x),再把括号内合并得到原式=(4x2-8xy)÷(2x),然后进行整式的除法运算,再把x与y的值代入计算即可.试题解析:原式=(4x2+4xy+y2-y2-4xy-8xy)÷(2x)=(4x2-8xy)÷(2x)=2x -4y.当x =2,y =-1时,原式=2×2-4×(-1)=4+4=8.故答案为2x -4y; 8.点睛:本题考查了整式的混合运算-化简求值:先计算整式的乘除,然后合并同类项,有括号先算括号,再把满足条件的字母的值代入计算得到对应的整式的值.24..【解析】【分析】方程两边同乘(x+2)(x ﹣2),化分式方程为整式方程,解整式方程求得x 的值,检验后即可求得分式方程的解. 【详解】方程两边同乘(x+2)(x ﹣2),得,x (x+2)﹣1=(x+2)(x ﹣2)整理得,x 2+2x ﹣1=x 2﹣4,解得, 经检验:是原方程的根,∴原方程的根是. 【点睛】本题考查的是分式方程的解法,解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.25.(1)23a -<≤;(2)21a -.【解析】【分析】(1)先解方程组,再根据题意列出不等式组,解之可得答案;(2)根据绝对值的性质求解可得.【详解】(1)解方程组得342x a y a =-+⎧⎨=--⎩由题意知0,0x y ≤<,∴30420a a -+≤⎧⎨--<⎩,解得:32a a ≤⎧⎨>-⎩, ∴a 的取值范围是:23a -<≤;(2)∵23a -<≤,∴20,30a a +>-≤,∴|2||3|a a +--2(3)a a =+--23a a =+-+21a =-.【点睛】本题主要考查解一元一次不等式组和二元一次方程组,解题的关键是根据题意列出不等式组以及根据绝对值的性质化简.2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.如图,a ∥b ,点A 在直线a 上,点C 在直线b 上,∠BAC =90°,AB =AC ,若∠1=20°,则∠2的度数为( )A .25°B .65°C .70°D .75°2.将一幅三角板如图所示摆放,若BC DE ,那么∠1的度数为( )(提示:延长EF 或DF )A .45°B .60°C .75°D .80°3.如图,在平面直角坐标系中,已知点A (2,1),B (﹣1,1),C (﹣1,﹣3),D (2,﹣3),点P 从点A 出发,以每秒1个单位长度的速度沿A ﹣B ﹣C ﹣D ﹣A …的规律在图边形ABCD 的边上循环运动,则第2019秒时点P 的坐标为( )A .(1,1)B .(0,1)C .(﹣1,1)D .(2,﹣1) 4.若与可以合并成一项,则的值是( ) A .2 B .0 C .-1 D .15.下列等式或不等式变形不正确...的是( ) A .若a b =,则22a b -=-B .若a b <,则ac bc <C .若132x -≤,则6x ≥- D .若23x y =,则32x y = 6.若a >b ,则下列结论错误的是( )A .a −7>b −7B .a+3>b+3C .a 5>b 5D .−3a>−3b7.下列代数式变形正确的是( )A .()()24551x x x x --=+-B .23231x x-=-=- C .()()222323x x -+=-D .2222442x x x x x --=--=-+ 8.下列计算错误的是( )A .235m n mn +=B .624a a a ÷=C .236()a a =D .23a a a ⋅=9.如图,将直尺与含30角的直角三角板放在一起,若125∠=︒,则2∠的度数是( )A .30B .45︒C .55︒D .65︒10.如图,两条直线a 、b 被第三条直线c 所截,若直线a ∥b ,∠1=80°,则∠2=( )A .80°B .100°C .120°D .130°二、填空题题 11.若关于x 的分式方程2311m x x=+--有增根,则m 的值为_____. 12.ABC 的三个内角的度数之比是1:3:5,如果按角分类,那么ABC 是______三角形.13.使分式的值为0,这时x=_____.14.若一个长方形的长减少 7cm ,宽增加 4cm 成为一个正方形,并且得到的正方形与原长 方形面积相等,则原长方形的长为___________-cm .15.一个正多边形的每个内角度数均为135°,则它的边数为____.16.如图,小章利用一张左、右两边已经破损的长方形纸片ABCD 做折纸游戏,他将纸片沿EF 折叠后,D 、C 两点分别落在D'、C'的位置,并利用量角器量得∠EFB =65°,则∠AED'等于_____度.17.已知:如图,点M 、N 分别在直线AB 、CD 上,且AB ∥CD ,若在同一平面内存在一点O ,使∠OMB =20°,∠OND =50°,则∠MON =_____.三、解答题18.如图,已知A (0,)a ,B (,0)b ,且满足460a b -++=(1)求A 、B 两点的坐标;(2)点C (m,n)在线段AB 上,m 、n 满足n-m=5,点D 在y 轴负半轴上,连CD 交x 轴的负半轴于点M ,且S △MBC =S △MOD ,求点D 的坐标;(3)平移直线AB ,交x 轴正半轴于E ,交y 轴于F ,P 为直线EF 上第三象限内的点,过P 作PG ⊥x 轴于G ,若S △PAB =20,且GE=12,求点P 的坐标.19.(6分)如图,在正方形网络中,每个小方格的的边长为1个单位长度,ABC ∆的顶点A ,B 的坐标分别为(0,5),(-2,2).(1)请在图中建立平面直角坐标系,并写出点C 的坐标:________.(2)平移ABC ∆,使点C 移动到点()7,4F -,画出平移后的DEF ∆,其中点D 与点A 对应,点E 与点B 对应.(3)求ABC ∆的面积.(4)在坐标轴上是否存在点P ,使POC ∆的面积与ABC ∆的面积相等,若存在,请直接写出点P 的坐标;若不存在,请说明理由.20.(6分)如图,12180∠+∠=︒,EDC ACD ∠=∠,求证:DEF A ∠=∠.21.(6分)某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?22.(8分)今年春季我县大旱,导致大量农作物减产,下图是一对农民父子的对话内容,请根据对话内容分别求出该农户今年两块农田的产量分别是多少千克?23.(8分)在我市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,该校有几种购买方案?(3)上面的哪种方案费用最低?按费用最低方案购买需要多少钱?24.(10分)等腰直角△ABC 中,AB =AC ,∠BAC =90°,过点B ,点C 分别作经过点A 的直线l 的垂线,垂足分别为M 、N .(1)请找到一对全等三角形,并说明理由;(2)BM ,CN ,MN 之间有何数量关系?并说明理由;(3)若BM =3,CN =5,求四边形MNCB 的面积.25.(10分)解方程组:()()22171136x y x y ⎧-++=⎪⎨+-=⎪⎩参考答案一、选择题(每题只有一个答案正确)1.B【解析】试题分析:∵∠BAC=90°,AB=AC ,∴∠B=∠ACB=45°,∵∠1=20°,∴∠ACE=20°+45°=65°,∵a ∥b ,∴∠2=∠ACE=65°,故选B .考点: 1.等腰直角三角形;2.平行线的性质.2.C【解析】【分析】延长DF 交BC 于点G ,根据两直线平行内错角相等可得CGF ∠度数,由外角的性质可得BFG ∠的度数,易知∠1的度数.【详解】解:如图,延长DF 交BC 于点GBC DE45CGF EDF ︒∴∠=∠=453015BFG CGF B ︒︒︒∴∠=∠-∠=-=1180180159075BFG DFE ︒︒︒︒︒∴∠=-∠-∠=--=故选:C【点睛】本题考查了平行线的性质,由题意添加辅助线构造内错角是解题的关键.3.C【解析】【分析】由点可得ABCD 是长方形,点P 从点A 出发沿着A ﹣B ﹣C ﹣D 回到点A 所走路程是14,即每过14秒点P 回到A 点一次,判断2019÷14的余数就是可知点P 的位置.【详解】解:由点A (2,1),B (﹣1,1),C (﹣1,﹣3),D (2,﹣3),可知ABCD 是长方形,∴AB =CD =3,CB =AD =4,∴点P 从点A 出发沿着A ﹣B ﹣C ﹣D 回到点A 所走路程是:3+3+4+4=14,∵2019÷14=144余3,∴第2019秒时P 点在B 处,∴P (﹣1,1)故选C .【点睛】本题考查动点运动,探索规律,平面内点的坐标特点.能够找到点的运动每14秒回到起点的规律是解题的关键.4.A【解析】【分析】根据同类项的意义,可得答案.由题意,得解得,∴m+n=2+0=2,故选A .【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.5.B【解析】【分析】根据等式的性质分析A 和D ,根据不等式的性质分析B 和C.【详解】A. 若a b =,则22a b -=-,正确;B. 若a b <,c>0,则ac bc <,故不正确;C. 若132x -≤,则6x ≥-,正确; D. 若23x y =,则32x y =,正确; 故选B.【点睛】本题考查了等式的性质,不等式的性质,熟练掌握等式的性质以及不等式的性质是解答本题的关键. 6.D【解析】分析:根据不等式的基本性质对各选项进行逐一分析即可.详解:A .不等式两边同时减去7,不等号方向不变,故A 选项正确;B .不等式两边同时加3,不等号方向不变,故B 选项正确;C .不等式两边同时除以5,不等号方向不变,故C 选项正确;D .不等式两边同时乘以-3,不等号方向改变,﹣3a <﹣3b ,故D 选项错误.故选D .点睛:本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.7.C【分析】根据十字相乘法分解因式、分式的运算逐项判断即可.【详解】A 、()()24551x x x x --=-+,此项错误 B 、2332x x x-=-,此项错误 C 、()[]()22223(23)23x x x ---=-=+,此项正确D 、2222(2)(2)442222222x x x x x x x x x x x x x -+---=-=-=-++++++,此项错误 故选:C .【点睛】本题考查了十字相乘法分解因式、分式的运算,掌握各运算法则是解题关键.8.A【解析】【分析】分别利用合并同类项法则、同底数幂的乘除运算法则以及幂的乘方运算法则分别化简求出答案.【详解】A 、2m +3n ,无法计算,故此选项符合题意;B 、a 6÷a 2=a 4,正确,故此选项不符合题意;C 、(a 2)3=a 6,正确,故此选项不符合题意;D 、a•a 2=a 3,正确,故此选项不符合题意;故选:A .【点睛】此题主要考查了同底数幂的乘除运算法则以及幂的乘方运算等知识,正确掌握运算法则是解题关键. 9.C【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,再根据两直线平行,内错角相等可得∠2=∠1.【详解】如图,由三角形的外角性质可得:∠1=10°+∠1=10°+25°=55°,∵AB∥CD,∴∠2=∠1=55°.故选:C.【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.10.B【解析】【分析】根据平行线的性质:两直线平行,同位角相等;则可以直接选出答案.【详解】∵a∥b,∴∠1=∠3=80°,∵∠3+∠2=180°,∴∠2=180°﹣80°=100°,故选:B.【点睛】本题考查了学生对平行线性质的掌握,掌握平行线同位角相等的性质是解决此题的关键.二、填空题题11.-2【解析】【分析】先去分母,根据分式方程有增根,求出x,再代入整式方程求出m.【详解】解:去分母得:2=3x﹣3﹣m,由分式方程有增根,得到x﹣1=0,即x=1,把x =1代入整式方程得:2=3﹣3﹣m ,解得:m =﹣2,故答案为:﹣2【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.12.钝角【解析】【分析】根据三角形内角和定理求出每个角的度数,再进行判断即可.【详解】∵ABC 的三个内角的度数之比是1:3:5∴ABC 的三个内角的度数是20°、60°、100°∴ABC 是钝角三角形故答案为:钝角.【点睛】本题考查了三角形类型的问题,掌握三角形内角和定理、三角形的分类是解题的关键.13.1【解析】试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法14.493. 【解析】【分析】设原长方形的长为xcm ,宽为ycm ,根据长方形的长减少7cm ,宽增加4cm ,组成正方形,且面积相等,列方程组求解.【详解】设原长方形的长为xcm ,宽为ycm ,由题意得,()()7474x y xy x y -+⎧⎨-+⎩==,解得:493163xy⎧⎪⎪⎨⎪⎪⎩==.故答案为:493.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.15.8【解析】【分析】试题分析:多边形的每一个内角的度数=(2)180?nn-⨯,根据公式就可以求出边数.【详解】设该正多边形的边数为n由题意得:(2)180?nn-⨯=135°解得:n=8故答案为8.【点睛】考点:多边形的内角和16.1【解析】【分析】先求出∠EFC,根据平行线的性质求出∠DEF,根据折叠求出∠D′EF,即可求出答案.【详解】解:∵∠EFB=65°,∴∠EFC=180°-65°=115°,∵四边形ABCD是长方形,∴AD∥BC,∴∠DEF=180°-∠EFC=180°-115°=65°,∵沿EF折叠D和D′重合,∴∠D′EF=∠DEF=65°,∴∠AED′=180°-65°-65°=1°,故答案为:1.【点睛】本题考查了折叠性质,矩形性质,平行线的性质的应用,注意:两直线平行,同旁内角互补.17.70°或30°【解析】【分析】分两种情况:点O在AB,CD之间,点O在AB上方,过O作OP∥AB,依据平行线的性质,即可得到∠MON 的度数.【详解】解:分两种情况:当点O在AB,CD之间时,过O作OP∥AB,则OP∥CD,∴∠OMB=∠POM=20°,∠OND=∠PON=50°,∴∠MON=∠POM+∠PON=20°+50°=70°;当点O在AB上方时,过O作OP∥AB,则OP∥CD,∴∠OMB=∠POM=20°,∠OND=∠PON=50°,∴∠MON=∠PON﹣∠POM=50°﹣20°=30°;故答案为:70°或30°.【点睛】本题主要考查了平行线的性质,解决问题的关键是作平行线,利用平行线的性质以及角的和差关系进行计算.三、解答题18.(1)A(0,2),B(-4,0);(2)D(0,-2);(3)P(-3,-3).【解析】【分析】(1)根据非负数的性质求得a、b的值即可;(2)由S△BCM=S△DOM知S△ABO=S△ACD=1.连CO,作CE⊥y轴,CF⊥x轴,则S△ABO=S△ACO+S△BCO,据此列出方程组求得C (-3,2)而S △ACD =12×CE×AD=1,易得OD=2,故D (0,-2); (3)由S △PAB =S △EAB =5求得OE=2.由S △ABF =S △PBA =5求得OF=83.结合S △PGE =S 梯GPFO +S △OEF 求得PG=3.所以P (-3,-3).【详解】解:(1)∵|a-2|≥060b +≥,460a b -++=∴4060a b -=+=,.∴a=2,b=-4.∴A (0,2),B (-4,0);(2)如图,由S △BCM =S △DOM∴S △ABO =S △ACD ,∵S △ABO =12×AO×BO=1. 连CO ,作CE ⊥y 轴于E ,CF ⊥x 轴于FS △ABO =S △ACO +S △BCO即12×4×n+12×2×(-m )=1 ∴53212n m n m -=⎧⎨-=⎩, ∴32m n =-⎧⎨=⎩∴C (-3,2)而S △ACD =12×CE×AD =12×3×(2+OD )=1 ∴OD=2,∴D (0,-2);(3)如图,∵S△PAB=S△EAB=5,∴12AO×BE=5,即2×(4+OE)=5,∴OE=2.∴E(2,0).∵GE=1,∴GO=3.∴G(-3,0).∵S△ABF=S△PBA=5,∴S△ABF=12×BO×AF=12×4×(2+OF)=5.∴OF=83.∴F(0,-83).∵S△PGE=S梯GPFO+S△OEF∴12×1×PG=12×(83+PG)×3+12×2×83∴PG=3∴P(-3,-3).【点睛】考查了坐标与图形性质,非负数的性质以及算术平方根,解题的关键是利用三角形的面积公式求得相关线段的长度.19. (1)(2,3)(2)见解析;(3)5;(4)(0,5)或(0,-5)或(103,0)或(-103,0)【解析】【分析】()1直接利用已知点建立平面直角坐标系进而得出答案;()2利用平移的性质得出对应点位置进而得出答案;()3利用三角形面积求法得出答案;()4利用已知ABC的面积得出P点位置即可.。

2019-2020学年厦门市初一下期末调研数学试题含解析

2019-2020学年厦门市初一下期末调研数学试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(每题只有一个答案正确)1.已知a是有理数,下列结论正确的是( )A.若a<0,则a2>0 B.a2>0C.若a<1,则a2<1 D.若a>0,则a2>a【答案】A【解析】【分析】根据不等式的基本性质对四个答案进行逐一分析即可.【详解】A选项:正确;B选项:当a=0时,不成立,故错误;C选项:例如a=-2,a2=4>1,故错误;D选项:例如a=0.1,a2=0.01<a=0.1,故错误;故选:A.【点睛】考查的是不等式的基本性质,解题关键是举例法进行判断.2.若x,y满足方程组254713x yx y-=⎧⎨+=⎩,则x+y的值为()A.3 B.4 C.5 D.6 【答案】A【解析】分析:直接把两式相加即可得出结论.详解:254713x yx y-=⎧⎨+=⎩①②,①+②得,6x+6y=18,解得x+y=1.故选:A.点睛:本题考查的是解二元一次方程组,熟知利用加减法解二元一次方程组是解答此题的关键.3.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()C .a=-2,b=3D .a=2,b=-3【答案】B【解析】 分析:根据整式的乘法,先还原多项式,然后对应求出a 、b 即可.详解:(x+1)(x-3)=x 2-3x+x-3=x 2-2x-3所以a=2,b=-3,故选B .点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键. 4.有四条线段,长度分别是4,6,8,10,从中任取三条能构成直角三角形的概率是( ) A .13 B .14 C .12 D .34【答案】B【解析】【分析】从四条线段中任意选取三条,找出所有的可能,以及能构成直角三角形的情况数,即可求出所求的概率.【详解】从四条线段中任意选取三条,所有的可能有:4,6,8;4,6,10;6,8,10;4,8,10共4种, 其中构成直角三角形的有6,8,10共1种,则P (构成直角三角形)=14故选B .【点睛】从四条线段中任意选取三条,找出所有的可能,以及能构成直角三角形的情况数,即可求出所求的概率. 5.若点(3,2)M m m --在第二象限,则m 的取值范围是( )A .23m <<B .2m <C .3m >D .2m > 【答案】C【解析】【分析】根据点在第二象限的特征,即可得到不等式,解不等式即可得到答案.【详解】∴横坐标为小于0,纵坐标大于0,∴3020mm-<⎧⎨->⎩,即:32 mm>⎧⎨>⎩,∴解集为:3m>,故选C.【点睛】本题主要考查了直角坐标轴中第二象限的点的特征和解不等式组,掌握第二象限的点的特征是解题的关键.6.“垃圾分一分,环境美十分”如果要了解人们进行垃圾分类的情况,则最合适的调查方式是()A.普查B.抽样调查C.在社会上随机调查 D.在学校里随机调查【答案】B【解析】【分析】根据抽样调查和全面调查的特点与意义,分别进行分析即可得出答案.【详解】解:要了解人们进行垃圾分类的情况,由于人数众多,意义不大,选普查不合适,在社会上和在学校里随机调查,选择的对象不全面,故选抽样调查.故选:B【点睛】本题主要考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.不等式1()33x m m->-的解集为1x>,则m的值为()A.1 B.1-C.4 D.4-【答案】C【解析】【分析】先根据一元一次不等式的解法求解不等式,然后根据不等式的解集为x>2,得出9-2m=2,求出m的值.【详解】解:1(x m)3m去括号得:x-m>9-3m,移项,合并同类项得:x>9-2m,∵此不等式的解集为x>2,∴9-2m=2,解得:m=2.故选C.【点睛】本题考查了解一元一次不等式,关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为2.8.下列从左到右的变形是因式分解的是()A.x(x+1)=x2+x B.x2+x+1=x(x+1)+1C.x2-x=x(x-1)D.2x(y-1)=2xy-2x【答案】C【解析】【分析】根据因式分解的定义逐个判断即可.【详解】解:A、是整式乘法,不是因式分解,故本选项不符合题意;B、提公因式法,但是没有完全因式分解,所以不是因式分解,故本选项不符合题意;C、是因式分解,故本选项符合题意;D、是整式乘法,不是因式分解,故本选项不符合题意;故选:C.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.9.如果方程组134541ax byx y-=⎧⎨-=⎩与3237ax byx y+=⎧⎨+=-⎩有相同的解,则a,b的值是()A.21ab=⎧⎨=⎩B.23ab=⎧⎨=-⎩C.521ab⎧=⎪⎨⎪=⎩D.45ab=⎧⎨=-⎩【答案】A 【解析】未知数的值,再代入另一组方程组即可.【详解】由已知得方程组4541 237x yx y-⎧⎨+-⎩==,解得45 xy⎧⎨-⎩==,代入133 ax byax by-⎧⎨+⎩==,得到4513 453a ba b+⎧⎨-⎩==,解得21 ab=⎧⎨=⎩.故选A.【点睛】此题比较复杂,考查了学生对方程组有公共解定义的理解能力及应用能力,是一道好题.10.以下列各组线段为边,能构成三角形的是()A.2,3,6 B.3,4,5 C.2,7,9 D.32,3,32【答案】B【解析】分析: 根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.详解: A、2+3<6,不能组成三角形,故此选项错误;B、3+4=7>5,能组成三角形,故此选项正确;C、2+7=9,不能组成三角形,故此选项错误;D、32+32=3,不能组成三角形,故此选项错误;故选:B.点睛: 此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.二、填空题11.如图,2||a b b--=_________ .【答案】a根据求绝对值法则和二次根式的性质,即可求解.【详解】 由数轴可知:0b a b a <<>,, ∴0a b ->,∴原式=a b b --=()a b b ---=a .故答案是:a .【点睛】本题主要考查求绝对值法则和二次根式的性质,掌握求绝对值法则和二次根式的性质,是解题的关键. 12.若523m x y +与8n x y 的和是单项式,则mn =______.【答案】6【解析】【分析】是单项式说明两式可以合并,从而可以判断两式为同类项,根据同类项的相同字母的指数相等可得出m 、n 的值.【详解】由题意得:523m x y +与8n x y 是同类项,∴m+5=8,n=2,解得m=3,n=2,∴mn=3×2=6.故答案为:6.【点睛】此题考查同类项,解题关键在于掌握掌握其性质.13.如图,已知AD ∥BC,∠B =30°,DB 平分∠ADE ,则∠ADE =________;【答案】60°直接利用平行线的性质以及角平分线的性质得出∠ADB=∠BDE,进而得出答案.【详解】∵AD∥BC,∴∠ADB=∠DBC,∵DB平分∠ADE,∴∠ADB=∠BDE=12∠ADE,∵∠B=30°,∴∠ADB=∠BDE=30°,则∠ADE的度数为:60°.故答案为:60°.【点睛】此题主要考查了平行线的性质,正确得出∠ADB的度数是解题关键.14.在平面直角坐标系中,点M(4,﹣5)在_____象限.【答案】四【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】在平面直角坐标系中,点M(4,-5)在第四象限,故答案为:四.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).15.如图,在七边形ABCDEFG中,AB ED,的延长线相交于点O.若图中七边形的部分外角1234∠∠∠∠、、、的角度和为220︒,则BOD∠的度数为________.【答案】40°【解析】由∠1+∠2+∠3+∠4=220°,由五边形OAGFE的外角和为360°,则可求得∠BOD的外角度数为:360°-220°=140°,然后利用邻补角定义,即可求得∠BOD.【详解】解:根据题意得:∠1+∠2+∠3+∠4=220°,∵五边形OAGFE的外角和为360°,∴∠BOD的外角为:360°-220°=140°,∴∠BOD=180°-140°=40°,故答案为40°.【点睛】本题主要考查多边形的外角和,利用外角和的关系求得∠BOD的外角是解题的关键.16.如图,在△ABC中,已知点D、E、F分别为BC、AD、BE的中点,且S△ABC=8cm2,则图中阴影部分△CEF的面积是_________.【答案】1cm1【解析】【分析】由点E为AD的中点,可得△ABC与△BCE的面积之比,同理可得,△BCE和△EFC的面积之比,即可解答出.【详解】如图,∵D为BC中点∴S△ABD= S△ACD=12S△BCA,∵E为AD的中点,∴S△ABC:S△BCE=1:1,同理可得,S△BCE:S△EFC=1:1,∵S△ABC=8cm1,∴S△EFC=14S△ABC=14×8=1cm1.故答案是:1cm1. 【点睛】17.如图,BD 平分ABC ∠,DE BC ⊥于点E ,7AB =,4DE =,则ABD ∆的面积为____.【答案】14【解析】【分析】根据角平分线的性质作出辅助线,即可求解.【详解】过D 点作DF ⊥BA 的延长线,∵BD 平分ABC ∠,DE BC ⊥于点E ,∴DF=DE=4,∴△ABD 的面积为174142⨯⨯=【点睛】 此题主要考查角平分线的性质,解题的关键是根据题意作出辅助线进行求解.三、解答题18.问题情景:如图1,中,有一块直角三角板放置在上(点在内),使三角板的两条直角边、恰好分别经过点和点. 试问与是否存在某种确定的数量关系?度;(2)类比探索:请探究与的关系.(3)类比延伸:如图2,改变直角三角包的位置;使点在外,三角板的两条直角边、仍然分别经过点和点,(2)中的结论是否仍然成立?若不成立请直接写出你的结论.【答案】(1)140,90,50;(2)结论:∠ABP+∠ACP=90°﹣∠A,理由详见解析;(3)不成立,存在结论:∠ACP﹣∠ABP=90°﹣∠A.【解析】【分析】(1)已知,根据三角形的内角和定理求出的度数,已知∠P=90°,根据三角形的内角和定理求出的度数,进而得到的度数;(2)由(1)中的度数,的度数,相减即可得到与∠A的关系;(3)在△ABC中,=180°-∠A,同理在△PBC中,=90°,相减可得到∠ACP﹣∠ABP=90°﹣∠A.【详解】解:(1)∵∴=180°-∠A=140°,∵∠P=90°,∴=90°,∴=140°-90°=50°,(2)结论:∠ABP+∠ACP=90°﹣∠A.证明:∵90°+(∠ABP+∠ACP)+∠A=180°,∴∠ABP+∠ACP+∠A=90°,∴∠ABP+∠ACP=90°﹣∠A.(3)不成立;存在结论:∠ACP﹣∠ABP=90°﹣∠A.理由:在△ABC中,=180°-∠A,在△PBC中,∠P=90°,∴=90°,∴()-()=180°-∠A-90°,∴∠ACP﹣∠ABP=90°﹣∠A.【点睛】此题主要考查三角形的内角和,解题的关键是根据题意找到角度之间的关系.19.为了庆祝即将到来的“五四”青年节,某校举行了书法比赛,赛后随机抽查部分参赛同学的成绩,并制作成图表如下:分数段频数频率60≤x<70 30 0.1570≤x<80 m 0.4580≤x<90 60 n90≤x≤10020 0.1请根据以上图表提供的信息,解答下列问题:(1)这次随机抽查了名学生;表中的数m=,n=;(2)请在图中补全频数分布直方图;(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是;(4)全校共有600名学生参加比赛,估计该校成绩80≤x<100范围内的学生有多少人?【答案】(1)200、90、0.3;(2)详见解析;(3)54°;(4)240.【解析】【分析】(1)根据60≤x<70的频数及其频率求得总人数,进而计算可得m、n的值;(2)根据(1)的结果,可以补全直方图;(3)用360°乘以样本中分数段60≤x<70的频率即可得;(4)总人数乘以样本中成绩80≤x <100范围内的学生人数所占比例.【详解】(1)本次调查的总人数为30÷0.15=200人,则m=200×0.45=90,n=60÷200=0.3,故答案为:200、90、0.3;(2)补全频数分布直方图如下:(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是360°×0.15=54°, 故答案为:54°; (4)600×6020200+=240, 答:估计该校成绩80≤x<100范围内的学生有240人. 【点睛】本题考查条形统计图、图表等知识.结合生活实际,绘制条形统计图或从统计图中获取有用的信息,是近年中考的热点.只要能认真准确读图,并作简单的计算,一般难度不大.20.完成下面的证明.已知:如图,//BC DE ,,BE DF 分别是ABC ∠,ADE ∠的平分线.求证:12∠=∠.证明:∵//BC DE∴ABC ADE ∠=∠.( ) ∵,BE DF 分别是ABC ∠,ADE ∠的平分线, ∴132ABC ∠=∠,142ADE ∠=∠ ∴34∠=∠.( )∴ // . ( ) ∴12∠=∠.( ) 【答案】见解析. 【解析】 【分析】根据两直线平行,同位角相等可得ABC ADE ∠=∠,继而由角平分线的定义结合等量代换可得34∠=∠,根据同位角相等,两直线平行可得DF//BE ,继而可得12∠=∠. 【详解】 ∵//BC DE ,∴ABC ADE ∠=∠(两直线平行,同位角相等), ∵,BE DF 分别是ABC ∠,ADE ∠的平分线, ∴132ABC ∠=∠,142ADE ∠=∠, ∴34∠=∠(等量代换),∴DF//BE(同位角相等,两直线平行), ∴12∠=∠(两直线平行,内错角相等),故答案为:两直线平行,同位角相等;等量代换;DF ,BE ;同位角相等,两直线平行;两直线平行,内错角相等. 【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的性质定理与判定定理是解题的关键. 21.如图1,已知//a b ,点A 、B 在直线a 上,点C 、D 在直线b 上,且AD BC ⊥于E .(1)求证:90ABC ADC ∠+∠=︒;(2)如图2,BF 平分ABC ∠交AD 于点F ,DG 平分ADC ∠交BC 于点G ,求AFB CGD ∠+∠的度数;(3)如图3,P 为线段AB 上一点,I 为线段BC 上一点,连接PI ,N 为IPB ∠的角平分线上一点,且12NCD BCN ∠=∠,则CIP ∠、IPN ∠、CNP ∠之间的数量关系是__________.【答案】(1)见解析;(2)225°;(3)3CNP CIP IPN ∠=∠+∠或3IPN CIP CNP ∠=∠+∠ 【解析】 【分析】(1) 过E 作EF ∥a,由BC ⊥AD 可知90BED ∠=︒,由平行可知ADC DEF ∠=∠,ABE BEF ∠=∠,从而可得ABC ADC ∠+∠=DEF ∠+BEF ∠=90BED ∠=︒(2)作//FM a ,//GN b ,设ABF EBF x ∠=∠=,ADG CDG y ∠=∠=,由平行线性质和邻补角定义可得()1802AFB y x ∠=︒-+,()1802CGD x y ∠=︒-+,进而计算出()36033AFB CGD x y ∠+∠=︒-+即可解答,(3)分两种情况解答:I .∠NCD 在∠BCD 内部,II NCD BCD ∠∠在外部,仿照(2)解答即可. 【详解】(1)证明:过E 作//EF a ,//a b∴////a b EFAD BC ⊥∴90BED ∠=︒//EF a∴ABE BEF ∠=∠//EF b∴ADC DEF ∠=∠∴90ABC ADC BED ∠+∠=∠=︒ (2)解:作//FM a ,//GN b ,设ABF EBF x ∠=∠=,ADG CDG y ∠=∠=, 由(1)知:2290x y +=︒,45x y +=︒,////FM a b ,∴2BFD y x ∠=+, ∴()1802AFB y x ∠=︒-+, 同理:()1802CGD x y ∠=︒-+,∴()36033360345225AFB CGD x y ∠+∠=︒-+=︒-⨯︒=︒(3)结论:3CNP CIP IPN ∠=∠+∠或3IPN CIP CNP ∠=∠+∠, I .∠NCD 在∠BCD 内部时,过I 点作//IG a ,过N 点作//QN b ,设∠IPN=∠BPN=x ,12NCD BCN ∠=∠=y , ∴∠BCD=3y. ∵a ∥b ,∴//////QN IG a b∴2IPB GIP x ∠=∠=,QNC DCN y ∠=∠=,QNP NPB x ∠=∠=, ∴CNP x y ∠=+,3CIG BCD y ∠=∠=, ∴32CIP CIG GIP y x ∠=∠+∠=+, ∴323()CIP IPN y x x x y ∠+∠=++=+ ∴3CNP CIP IPN ∠=∠+∠II.NCD ∠在BCD ∠外部时,如图3(2):过I 点作//IG a ,过N 点作//QN b ,设∠IPN=∠BPN=x ,12NCD BCN ∠=∠=y , ∴∠BCD=y. ∵a ∥b ,∴IG ∥a ∥//QN b∴2IPB GIP x ∠=∠=,QNC DCN y ∠=∠=,QNP NPB x ∠=∠=, ∴CNP x y ∠=-,2CIG BCD y ∠=∠=,∴32CIP CIG GIP y x ∠=∠+∠=+, ∴23CIP CNP y x x y x ∠+∠=++-= ∴3IPN CIP CNP ∠=∠+∠ 【点睛】本题考查了平行线的性质,角平分线的性质,熟练掌握平行线的性质定理是解题的关键.此类题目过拐点作平行线是常用辅助线作法.22.有若干个仅颜色不同的红球和黑球,现往一个不透明的袋子里装进4个红球和6个黑球.(1)若先从袋子里取出m 个红球(不放回),再从袋子里随机摸出一个球,将“摸到黑球”记为事件A .若事件A 为必然事件,则m= .(2)若先从袋子里取出n 个黑球,再放入2n 个红球,若随机摸出一个球是红球的概率等于2/3,通过计算求n 的值.【答案】(1)4;(2)2. 【解析】 【分析】(1)首先需明确必然事件发生的概率为1,则可判定袋子里都是黑球,已无红球,即可判定取出的是4个红球;(2)首先根据题意,分别得出目前袋子里的红球和黑球的数量,然后根据概率公式,列出关系式,即可得解. 【详解】解:(1)∵必然事件发生的概率为1, ∴可判定袋子里都是黑球,已无红球 ∴4m =;(2)根据题意,可得现在袋子里有()42n +个红球,()6n -个黑球,则随机摸出一个球是红球的概率是4224263n P n n +==++-解得2n =. 【点睛】此题主要考查概率问题,明确相关概念是解题关键.23.如图,在平面直角坐标系中,点A ,B 的坐标分别为()1,0-,()3,0,现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .(三角形可用符号∆表示,面积用符号S 表示)(1)直接写出点C ,D 的坐标.(2)在x 轴上是否存在点M ,连接MC ,MD ,使2MDC MBD S S ∆∆=,若存在,请求出点M 的坐标;若不存在,请说明理由.(3)点P 在直线BD 上运动,连接BD ,PO .①若P 在线段BD 之间时(不与B ,D 重合),求CDP BOP S S ∆∆+的取值范围; ②若P 在直线BD 上运动,请直接写出CPO ∠,DCP ∠,DCP ∠的数量关系.【答案】(1)()0,2C ,()4,2D ;(2)()1,0M 或()5,0;(3)①34CDP BOP S S ∆∆<+<;②当点P 在线段BD 上时,CPO DCP BOP ∠=∠+∠;当点P 在BD 的延长线上时,BOP CPO DCP ∠=∠+∠;当点P 在DB 的延长线上时,DCP BOP CPO ∠=∠+∠ 【解析】 【分析】(1)根据平移的性质即可解答;(2)设点M 的坐标为(),0a ,再利用三角形的面积公式进行计算,即可解答.(3)①分情况讨论:当点P 运动到点B 时,4CDP BOP S S ∆∆+<;当点P 运动到点D 时,3CDP BOP S S ∆∆+>;②分情况讨论当点P 在线段BD 上时,CPO DCP BOP ∠=∠+∠;当点P 在BD 的延长线上时,BOP CPO DCP ∠=∠+∠;当点P 在DB 的延长线上时,DCP BOP CPO ∠=∠+∠;【详解】解:(1)根据题意结合坐标轴可得:()0,2C ,()4,2D (2)存在,设点M 的坐标为(),0a()3,0B 3MB a ∴=-2MDC MBD S S ∆∆=114223222a ∴⨯⨯=⨯⨯-⨯ 32a ∴-=,1a =或5()1,0M ∴或()5,0(3)①()134272OCDB S =⨯+⨯=梯形, 当点P 运动到点B 时,pOC S ∆最小,pOC S ∆的最小值13232=⨯⨯=, 4CDP BOP S S ∆∆+<当点P 运动到点D 时,pOC S ∆最大,pOC S ∆的最大值14242=⨯⨯=, 3CDP BOP S S ∆∆+> 34CDP BOP S S ∆∆∴<+<②当点P 在线段BD 上时,CPO DCP BOP ∠=∠+∠ 当点P 在BD 的延长线上时,BOP CPO DCP ∠=∠+∠ 当点P 在DB 的延长线上时,DCP BOP CPO ∠=∠+∠ 【点睛】此题考查坐标与图形的性质,三角形的面积,平移的性质,解题关键在于分情况讨论.24.已知:如图,点M 是∠AOB 内一点,过点M 作ME ∥OA 交OB 于点E ,过点M 作MF ∥OB 交OA 于点F .(1)依题意,补全图形; (2)求证:∠MEB=∠AFM . 【答案】(1)见解析;(2)见解析 【解析】 【分析】(1)根据要求画出图形即可. (2)利用平行线的性质即可解决问题. 【详解】(1)补全图形,如图所示;(2)证明:∵ME ∥OA , ∴∠EMF=∠AFM . ∵MF ∥OB , ∴∠EMF=∠MEB . ∴∠MEB=∠AFM . 【点睛】本题考查平行线的性质,解题的关键是熟练掌握基本知识. 25.如图,已知A (0,)a ,B (,0)b ,且满足460a b -++= (1)求A 、B 两点的坐标;(2)点C (m,n)在线段AB 上,m 、n 满足n-m=5,点D 在y 轴负半轴上,连CD 交x 轴的负半轴于点M ,且S △MBC =S △MOD ,求点D 的坐标;(3)平移直线AB ,交x 轴正半轴于E ,交y 轴于F ,P 为直线EF 上第三象限内的点,过P 作PG ⊥x 轴于G ,若S △PAB =20,且GE=12,求点P 的坐标.【答案】(1)A(0,2),B(-4,0);(2)D(0,-2);(3)P(-3,-3). 【解析】 【分析】(1)根据非负数的性质求得a 、b 的值即可;(2)由S △BCM =S △DOM 知S △ABO =S △ACD =1.连CO ,作CE ⊥y 轴,CF ⊥x 轴,则S △ABO =S △ACO +S △BCO ,据此列出方程组求得C (-3,2)而S △ACD =12×CE×AD=1,易得OD=2,故D (0,-2); (3)由S △PAB =S △EAB =5求得OE=2.由S △ABF =S △PBA =5求得OF=83.结合S △PGE =S 梯GPFO +S △OEF 求得PG=3.所以P(-3,-3).【详解】解:(1)∵|a-2|≥060b +≥,460a b -++= ∴4060a b -=+=,. ∴a=2,b=-4.∴A (0,2),B (-4,0); (2)如图,由S △BCM =S △DOM ∴S △ABO =S △ACD , ∵S △ABO =12×AO×BO=1. 连CO ,作CE ⊥y 轴于E ,CF ⊥x 轴于F S △ABO =S △ACO +S △BCO 即12×4×n+12×2×(-m )=1 ∴53212n m n m -=⎧⎨-=⎩,∴32m n =-⎧⎨=⎩∴C (-3,2) 而S △ACD =12×CE×AD =12×3×(2+OD )=1 ∴OD=2, ∴D (0,-2); (3)如图,∵S△PAB=S△EAB=5,∴12AO×BE=5,即2×(4+OE)=5,∴OE=2.∴E(2,0).∵GE=1,∴GO=3.∴G(-3,0).∵S△ABF=S△PBA=5,∴S△ABF=12×BO×AF=12×4×(2+OF)=5.∴OF=83.∴F(0,-83).∵S△PGE=S梯GPFO+S△OEF∴12×1×PG=12×(83+PG)×3+12×2×83∴PG=3∴P(-3,-3).【点睛】考查了坐标与图形性质,非负数的性质以及算术平方根,解题的关键是利用三角形的面积公式求得相关线段的长度.。

福建省厦门市2019-2020学年初一下学期期末数学调研试题

【详解】
解:
去分母得 ,
移项得 ,
合并同类项得 ,
系数化为1得 ,
∵方程的解为负数,

去分母得 ,
移项得 ,
系数化为1得 ,
又∵当 时,分式方程无解
将 代入 ,解得 ,Leabharlann ∴ ,故 且选D.
【点睛】
本题考查分式方程的解,解一元一次不等式,解决本题时一定要考虑到方程无解时的情况,将这种情况下解出来的m排除.
(1)该年级至少有两人同月同日生,这是一个事件(填“必然”、“不可能”或“随机”);
(2)从这400名学生中随机选一人,选到2007年出生的概率是多少?
20.(6分)已知,直线 ,点 为平面上一点,连接 与 .
(1)如图1,点 在直线 、 之间,当 , 时,求 .
(2)如图2,点 在直线 、 之间 左侧, 与 的角平分线相交于点 ,写出 与 之间的数量关系,并说明理由.
A. B. C. D.
3.如图所示,利用尺规作∠AOB的平分线,做法如下:①在OA、OB上分别截取OD、OE,使OD=OE;②分别以D、E为圆心,大于 DE的长为半径画弧,两弧在∠AOB内交于一点C;③画射线OC,射线OC就是∠AOB的角平分线.在用尺规作角平分线时,用到的三角形全等的判定方法是()
2019-2020学年初一下学期期末模拟数学试卷
一、选择题(每题只有一个答案正确)
1.若关于 的方程 的解是负数,则 的取值范围是:()
A. B. C. 且 D. 且
2.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(-2,1),则表示棋子“炮”的点的坐标为( )

2019-2020学年厦门市七年级第二学期期末调研数学试题含解析

2019-2020学年厦门市七年级第二学期期末调研数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(每题只有一个答案正确)1.已知a>b,下列各式中正确的是()A.a-2 < b-2 B.ac > bc C.-2a < -2b D.a-b < 0【答案】C【解析】【分析】根据不等式的性质,解答即可;【详解】解:∵a>b∴a-2 >b-2,A.错误;当c>0,ac > bc才成立,B错误.;-2a < -2b,C正确;a-b >0, D错误;故答案为C;【点睛】本题考查了不等式的性质,即:基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变,基本性质2:不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变基本性质3:不等式两边同时乘以(或除以)同一个小于0的整式,不等号方向改变2.下列事件为必然事件的是()A.小王参加本次数学考试,成绩是150分B.某射击运动员射靶一次,正中靶心C.打开电视机,CCTV第一套节目正在播放新闻D.口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球【答案】D【解析】根据事件的分类的定义及分类对四个选项进行逐一分析即可:A、小王参加本次数学考试,成绩是150分是随机事件,故本选项错误;B、某射击运动员射靶一次,正中靶心是随机事件,故本选项错误;C、打开电视机,CCTV第一套节目正在播放新闻是随机事件,故本选项错误.D、口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球是必然事件,故本选项正确.故选D.3.直角坐标系中点P(2,2)a a +-不可能所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】【分析】由题可知a 2a 2+>-,所以不可能在第二象限,即可得出答案【详解】解:A.若点P 在第一象限,所以横纵坐标均为正,即2020a a +>⎧⎨->⎩,解得a>2;所以可以在第一象限; B.若点P 在第二象限,则有2020a a +<⎧⎨->⎩,无解,所以不可能在第二象限; C.若点P 在第三象限,则有2020a a +<⎧⎨-<⎩,解得a<-2,所以可以在第三象限 D. 若点P 在第四象限,则有2020a a +>⎧⎨-<⎩,解得2a 2-<<,所以可以在第四象限 故选B【点睛】此题考查四个象限中点的符号,熟练掌握四个象限中点的坐标正负是解题关键4.在平面直角坐标系中,点P (3,﹣2)在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】坐标系中的四个象限分别为第一象限(x >0, y >0);第二象限(x >0, y <0);第三象限(x <0, y <0);第四象限(x <0, y <0).所以P 在第四象限.5.如果a =355,b =444,c =533,那么a 、b 、c 的大小关系是( )A .a >b >cB .c >b >aC .b >a >cD .b >c >a 【答案】C【解析】【分析】根据幂的乘方得出指数都是11的幂,再根据底数的大小比较即可.【详解】a=355=(35)11=24311,b=444=(44)11=25611,c=533=(53)11=12511,∵256>243>125,∴b >a >c .故选C .【点睛】本题考查了幂的乘方,关键是掌握a mn =(a n )m .6.一个正多边形的内角和是,则这个正多边形的边数是( ) A .4B .5C .6D .7【答案】B【解析】【分析】 根据多边形的内角和公式列式进行计算即可求解. 【详解】 解:设多边形的边数是,则, 解得. 故选:B .【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.7.若m n <,则下列结论不一定成立的是( )A .11m n -<-B .22m n <C .33m n ->-D .22m n <【答案】D【解析】【分析】本题主要考查不等式的基本性质.基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变;不等式两边都乘(或除以)同一个负数,不等号的方向改变.【详解】A :不等式两边同时减去1,不等式成立,即m-1<n-1B :不等式两边同时乘2,不等式成立,即2m<2nC :不等式两边同时乘以13-,不等号方向改变,即33m n ->- D :当m<n ,且m n >时,22m n >,故22m n <不成立故正确答案为D【点睛】此题主要考查不等式的基本性质,基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变;不等式两边都乘(或除以)同一个负数,不等号的方向改变.8.已知a >b ,c≠0,则下列关系一定成立的是( ).A .ac >bcB .a b c c >C .c-a >c-bD .c+a >c+b 【答案】D【解析】【分析】根据不等式的基本性质一一判断可得答案.【详解】解:A 、当c <0时,不等式a >b 的两边同时乘以负数c ,则不等号的方向发生改变,即ac <bc .故本选项错误;B 、当c <0时,不等式a >b 的两边同时除以负数c ,则不等号的方向发生改变,即a b c c <.故本选项错误;C 、在不等式a >b 的两边同时乘以负数-1,则不等号的方向发生改变,即-a <-b ;然后再在不等式的两边同时加上c ,不等号的方向不变,即c-a <c-b .故本选项错误;D 、在不等式a >b 的两边同时加上c ,不等式仍然成立,即a+c >b+c ;故本选项正确.故选D.【点睛】本题主要考查的是不等式的基本性质.不等式的性质1: 不等式两边加(或减)同一个数(或式子), 不等号的方向不变.即如果a>b, 那么a ±c>b ±c; 不等式的性质2: 不等式两边乘(或除)以同一个正数, 不等号的方向不变.即如果a>b, c>0, 那么ac>bc 或(a c >b c); 不等式的性质3: 不等式两边乘(或除)以同一个负数,不等号的方向改变.即如果a>b,c<0,那么ac<bc 或(a c <bc ). 9.定义:平面内的直线l 1与l 2相交于点O ,对于该平面内任意一点M ,点M 到直线l 1、l 2的距离分别为a 、b ,则称有序非实数对(a ,b)是点M 的“距离坐标”,根据上述定义,距离坐标为(2,3)的点的个数是( )A .1B .2C .3D .4【答案】D【解析】【分析】 根据两条相交直线把平面分成四部分,在每一个部分内都存在一个满足要求的距离坐标解答.【详解】如图,直线l 1,l 2把平面分成四个部分,在每一部分内都有一个“距离坐标”为(2,3)的点,所以,共有4个.故选D .【点睛】本题考查了点到直线的距离,点的坐标的类比利用,读懂题目信息并且理解两条相交直线把平面分成四部分是解题的关键.10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1个单位长度.其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…,第n 次移动到A n ,则△O A 2 A 2019的面积是( )A .504B .10092C .1008D .1009【答案】B【解析】【分析】 由4414243(2,0),(21,0),(21,1),(22,1)n n n n A n A n A n A n ,据此得出A 2019的坐标,从而得出A 2A 2019=2010-1=1009,据此利用三角形的面积公式计算可得.【详解】由题意知4414243(2,0),(21,0),(21,1),(22,1)n n n n A n A nA n A n ∵2019÷4=504…3,∴2019(1010,1)A ,∵A 2(1,1)∴22019101011009A A ,则△OA2A2019的面积是110091100922,故选:B.【点睛】本题考查规律型:点的坐标,能根据题意得出四个点为一个周期,并通过此规律用含有n的代数式表示出一个周期内点的坐标是解决此题的关键.二、填空题11.下列图案是用长度相等的火柴按一定规律构成的图形,依次规律第6个图形中,共用火柴的根数是_______.图①图②图③图④【答案】1【解析】【分析】由已知图形可以发现:第1个图形中,有3根火柴.第2个图形中,有3+3=6根火柴.第3个图形中,有3+3+4=10根火柴,以此类推可得:第6个图形中,所需火柴的根数是3+3+4+5+6+7根.【详解】解:分析可得:第1个图形中,有3根火柴.第2个图形中,有3+3=6根火柴.第3个图形中,有3+3+4=10根火柴.…;第6个图形中,共用火柴的根数是3+3+4+5+6+7=1根.故答案为:1.【点睛】本题考查了规律型中的图形变化问题,要求学生首先分析题意,找到规律,并进行推导得出答案.12.若x2+kx+25是一个完全平方式,则k的值是____________.【答案】±1.【解析】【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.【详解】解:∵x2+kx+25=x2+kx+52,∴kx=±2•x•5,故答案为:±1.【点睛】本题考查完全平方式,根据平方项确定出一次项系数是解题关键,也是难点,熟记完全平方公式对解题非常重要.13.已知23,9n m n a a -==,则m a =___________.【答案】1【解析】【分析】首先根据a n =9,求出a 2n =81,然后用它除以a 2n−m ,即可求出a m 的值.【详解】解:∵a n =9,∴a 2n =92=81,∴a m =a 2n ÷a 2n−m =81÷3=1.故答案为:1.【点睛】此题主要考查了同底数幂的除法的运算法则以及幂的乘方的运算法则,解题的关键是熟练掌握基本知识,属于中考常考题型.14.如图,在平面内将ABC ∆绕点A 逆时针旋转至11AB C ∆,使1CC AB ∕∕,如果70BAC ∠=︒,那么旋转角________度.【答案】40【解析】【分析】根据旋转的性质可得出AC=AC',然后根据CC'∥AB ,∠BAC=70°,可得出∠AC'C 的度数,进而根据等腰三角形的性质可得出答案.【详解】解:由题意得:AC=AC',∴△ACC'是等腰三角形,∴∠AC'C=∠BAC=70°,∴∠CAC'=40°,即旋转角度α的度数为40°故答案为:40°【点睛】本题考查旋转的性质与等腰三角形的性质,属于基础题,难度一般,解答本题的关键是掌握旋转前后对应线段相等、对应角相等.15.如图,将三个数2、5、18表示在数轴上,则被图中表示的解集包含的数是__________.5【解析】【分析】根据实数比较大小的方法即可判断.【详解】2<22;因为2545184185【点睛】此题考查的是用数轴表示解集和实数的比较大小,掌握实数比较大小的方法是解决此题的关键.16.命题“垂直于同一直线的两直线平行”的题设是____________,结论是__________.【答案】两条直线垂直于同一条直线,这两条直线互相平行【解析】【分析】把命题可以写成“如果…那么…”,则如果后面为题设,那么后面为结论.【详解】“垂直于同一直线的两直线平行”的题设为:两直线都垂直于同一条直线;结论为:这两直线平行.故答案是:两直线都垂直于同一条直线;这两直线平行.【点睛】考查了命题与定理:把一个命题可以写成“如果…那么…”形式可区分命题的题设(如果后面的)与结论(那么后面的).17.与点(2,3)P -关于x 轴对称的点的横坐标是______.【答案】2-【解析】【分析】根据关于x 轴对称的点的性质求解即可.【详解】∵某点关于x 轴对称的点的横坐标等于该点的横坐标∴与点(2,3)P -关于x 轴对称的点的横坐标为2-故答案为:2-.【点睛】本题考查了对称点的问题,掌握关于x 轴对称的点的性质是解题的关键.三、解答题18.如图1,△CEF 的顶点C 、E 、F 分别与正方形ABCD 的顶点C 、A 、B 重合.(1)若正方形的边长为a ,用含a 的代数式表示:正方形ABCD 的周长等于 ,△CEF 的面积等于 .(2)如图2,将△CEF 绕点A 顺时针旋转,边CE 和正方形的边AD 交于点P . 连结AE , 设旋转角∠BCF=β.①试证:∠ACF=∠DCE ;②若△AEP 有一个内角等于60°,求β的值.【答案】(1)4a ,212a ;(2)①见解析;②β=15° 【解析】【分析】 (1)由正方形的性质和三角形面积公式可求解;(2)①由正方形的性质可得∠ACB=∠ACD=45°,由旋转的性质可得∠BCF=∠ACE ,即可得结论;②分三种情况讨论,由三角形内角和定理可求解.【详解】(1)∵正方形的边长为a∴正方形ABCD 的周长=4a ,△CEF 的面积=212a , 故答案为:4a ,212a , (2)①四边形ABCD 是正方形∴∠ACB=∠ACD=45°=∠DAC ,∵将△CEF 绕点C 顺时针旋转,∴∠BCF=∠ACE=β,AC=CE∴∠ACF=∠DCE②若∠APE=60°,∴∠ACE=∠APE-∠DAC=60°-45°=15°∴∠BCF=β=15°若∠AEP=60°,且AC=EC∴△AEC 是等边三角形∴∠ACE=60°∴∠BCF=β=60°P 在AD 延长线上,不符合题意舍去,若∠EAP=60°,∴∠EAC=105°,且AC=CE ,∴∠EAC=∠AEC=105°∴∠EAC+∠AEC+∠ACE >180°∴不合题意舍去,故答案为β=15°.【点睛】此题考查了旋转的性质,正方形的性质,全等三角形的性质,利用分类讨论思想是解题的关键. 19.解不等式组3(2)862x x x x--≤⎧⎨-⎩>,并把它们的解集表示在数轴上,写出满足该不等式组的所有整数解. 【答案】整数解为101,,- 【解析】【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集;【详解】解:()32862x x x x ⎧--≤⎨->⎩①②,由①得:1x ≥-由②得:2x <∴不等式组的解集为:12x -≤<∴整数解为:101-,,. 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.因式分解:(1) 229a b - (2) 3223242x y x y xy ++.【答案】(1)(a+3b )(a-3b );(2)2xy (x+y )2.【解析】【分析】(1)利用平方差公式分解即可;(2)先提取公因式2xy ,再根据完全平方公式进行二次分解.完全平方公式:a 2±2ab+b 2=(a±b )2.【详解】(1)原式=2223a b -=(a+3b )(a-3b );(2)原式=2xy (222x xy y ++)=2xy (x+y )2.【点睛】此题考查提公因式法与公式法的综合运用,掌握运算法则是解题关键21.如图,已知,,平分,,求的度数.【答案】答案见解析.【解析】【分析】根据平行线的性质、角平分线的定义即可解决问题.【详解】解:,,,平分,,,,.【点睛】本题考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.22.如图,三角形A′B′C′是三角形ABC经过某种变换后得到的图形.(1)分别写出点A和点A′,点B和点B′,点C和点C′的坐标;(2)观察点A和点A′,点B和点B′,点C和点C′的坐标,用文字语言描述它们的坐标之间的关系;(3)三角形ABC内任意一点M的坐标为(x,y),点M经过这种变换后得到点M′,则点M′的坐标为.【答案】解:(1)A(-2,4),A′(2,4),B(-4,2),B′(4,2),C(-1,-1),C′(1,-1);(2)横坐标互为相反数,纵坐标相等;(3)(-x,y)【解析】【分析】(1)根据点的位置写出坐标即可;(2)探究规律,利用规律解决问题即可;(3)利用(2)中结论解决问题即可.【详解】解:(1)A (-2,4),A′(2,4),B (-4,2),B′(4,2),C (-1,-1),C′(1,-1);(2)观察可知:横坐标互为相反数,纵坐标相等故答案为:横坐标互为相反数,纵坐标相等;(3)三角形ABC 内任意一点M 的坐标为(x ,y ),点M 经过这种变换后得到点M 则点'M 的坐标为(-x ,y ).故答案为:(-x ,y ).【点睛】本题考查几何变换类型,坐标与图形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(1)解方程组 :44335(9)6(2)x y x y ⎧+=⎪⎨⎪-=-⎩ (2)解不等式2241232x x x ---≤< (3)利用简单方法计算:2.3413.20.6613.226.4⨯+⨯-(4)因式分解:324126m m m -+-【答案】(1)60.5x y =⎧⎨=-⎩;(2)25x ≤<;(3)13.2;(4)()22263m m m --+ 【解析】【分析】(1)先变成一元一次方程,求出x 的值,再求出y 即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可;(3)先分解因式,再求出即可;(4)提取公因式即可.【详解】解:(1)整理得:34165633x y x y +=⎧⎨-=⎩①②①×3+②×2得:19x=114,解得:x=6,把x=6代入①得:18+4y=16,解得:y=-0.5,所以原方程组的解是:60.5xy=⎧⎨=-⎩;(2)原不等式组化为:224 2324132x xx x--⎧≤⎪⎪⎨--⎪<⎪⎩①②∵解不等式①得:x≥2,解不等式②得:x<5,∴不等式组的解集是2≤x<5;(3)2.34×13.2+0.66×13.2-26.4=2.34×13.2+0.66×13.2-13.2×2=13.2×(2.34+0.66-2)=13.2×1=13.2;(4)-4m3+12m2-6m=-2m(2m2-6m+3).【点睛】本题考查了解二元一次方程组,解一元一次不等式组,有理数的混合运算和分解因式等知识点,能灵活运用知识点进行计算是解此题的关键.24.在一条公路上顺次有A、B、C三地,甲、乙两车同时从A地出发,分别匀速前柱B地、C地,甲车到达B地停留一段时间后原速原路返回,乙车到达C地后立即原速原路返回(掉头时间忽略不计),乙车比甲车早1小时返回A地,甲、乙两车各自行驶的路程y(千米)与时间x(时)(从两车出发时开始计时)之间的变化情况如图所示.(1)在这个变化过程中,自变量是______,因变量是______.(2)甲车到达B地停留的时长为______小时,乙车从出发到返回A地共用了______小时.(3)甲车的速度是______千米/时,乙车的速度是______千米/时.(4)B 、C 两地相距______千米,甲车返回A 地途中y 与x 之间的关系式是______(不必写出自变量取值范围).【答案】 (1) 自变量是时间,因变量是路程;(2)3,6;(3)70,50;(4)10, y=70x-210【解析】【分析】(1)根据自变量与因变量的概念进行判断;(2)根据函数的图象可直接得出;(3)根据路程除以时间可得;(4)先求得甲乙到B 、C 的路程,再相减即为B 、C 两地的距离;【详解】(1)由函数的图像可得:行驶的路程是随着时间的变化而变化的,故自变量是时间,因变量是路程;(2)由图象可得:甲车到达B 地停留的时长为7-2-2=3(小时);乙车从出发到返回A 地共用了:7-1=6(小时)(3)甲的速度为:140702=(km/h ); 乙的速度为:300506=(km/h); (4)甲到B 的路程为:3002150÷= ;乙到C 的路程为:140km,所以B 、C 两地相距150-140=10km;由图可得甲车返回时的点的坐标为(5,140),返回到达A 地后的坐标为(7,140),设y 与x 的关系式为y=kx+b,将(5,140)、(7,280)代入可得:14052807k b k b =+⎧⎨=+⎩ 解得70210k b =⎧⎨=-⎩, 所以y 与x 的关系式为y=70x-210.【点睛】考查函数的图象、常量与变量和一次函数解析式,解答本题的关键是明确题意,利用数形结合的思想解答. 25.若方程组275x y k x y k +=+⎧⎨-=⎩的解x 与y 是互为相反数,求k 的值. 【答案】k=-6【解析】试题分析:由于x 与y 是互为相反数,则把y=-x 分别代入两个方程求出x ,然后得到关于k 的一次方程,再解此一次方程即可.试题解析:275x y k x y k ①②+=+⎧⎨-=⎩, 把y=−x 代入①得x−2x=7+k ,解得x=−7−k ,把y=−x 代入②得5x+x=k,解得x=6k , 所以−7−k=6k , 解得k=−6.点睛:本题考查了二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

厦门市湖滨中学2019-2020学年第二学期期末考
初一数学试卷
考试时间:2020年7月14日
命题人:王兆哲
一.选择题(每小题4分,共40分)
1.下列算式中,计算结果是负数的是
A .(2)7−+
B .|1|−
C .3(2)×−
D .2(1)−
2.下列实数中,是无理数的为
A .13
B .π
C .0
D .2.123122312223
3.下列各组图形中,能将其中一个图形经过平移变换得到另一个图形的是
A .
B .
C .
D .
4.湖滨中学学生会为了解2020年本校学生人均课外阅读量,计划开展抽样调查,下列抽样调查方案中最合适的是
A .到学校图书馆调查学生借阅量
B .对全校学生暑假课外阅读量进行调查
C .对初三年级学生的课外阅读量进行调查
D .在三个年级的学生中分别随机抽取一半学生进行课外阅读量的调查
5.如图,小手盖住的点的坐标可能为
A .(1,1)−
B .(1,1)−−
C .(1,1)
D .(1,1)− 6.如图1,OC 是AOB ∠的平分线,直线//l OB .若100AOB ∠=°,则1∠=
A .100°
B .50°
C .130°
D .25°
7.判断命题“如果1x <,那么210x −<”是假命题,只需举出一个反例.反例中的x 可
以为
A .2−
B .12−
C .0
D .12
8.下列不等式与1x >的解集表示在数轴上,无公共部分的是
A .1x
B .1x
C .x
D .
2x >
9.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x 个字,则下面所列方程正确的是
A .2434685x x x ++=
B .2334685x x x ++=
C .2234685x x x ++=
D .113468524
x x x ++= 10.已知a 、b 、c 满足3246a b c +−=,231a b c +−=,若a 、b 、c 都为负数,设32y a b c +−,求y 的取值范围( )
A .3y ≥−
B .3y ≥
C .324y ≤≤
D .0y ≥
二.填空题(本大题共6小题,第11题12分,其他各小题每题4分,共32分)
11.计算下列各题:
(1)4的平方根是 ;(2)25的算术平方根是 ;
(3)8−的立方根是 ;
(4)的相反数 ; (5的绝对值 ; (6 3;(填>, <或=)
12.已知30A ∠=°,则A ∠的补角是 度.
13.小明把一副三角板摆放在桌面上,如图所示,其中边BC ,DF 在同一条直线上,
可以得到 // ,依据是 .
14.疫情期间全国“停课不停学”初中生郑兴同学网上听课每节课a 分钟,每天六节
课,每天上网课总时长小于240分钟,可列不等式__________________ .
15.如图,平面直角坐标系xOy 中,有A 、B 、C 、D 四点,若有一直线l 经过点
(-1,3)且与y 轴垂直,则l 也会经过的点是___________ (填A 、B 、C 或D )
16.观察表一寻找规律,表二、表三分别是从表一中截取的一部分,则
a = ,
b = .
三.解答题(共78分)
17.(本题满分8分)解不等式组2037x x y x −≤ +>−−

18.(本题满分8分)计算:2−+−
19.(本题满分8分)解方程组:125x y x y −= +=

20.(本题满分8分)ABC ∆在平面直角坐标系中的位置如图所示.将
ABC ∆向右平移6个单位得到△111A B C ,再将△111A B C 向下平移4
个单位得到△222A B C ,
请画出△111A B C 和△222A B C ,并写出点2C 的坐标.
21.(本题满分8分)厦门市某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,划分等级后的数据整理如下表: 等级
非常了解 比较了解 基本了解 不太了解 频数
40 120 36 4 百分比 20% m 18% 2%
(1)本次调查样本容量为 ;表中的m 值为 .
(2)请你用量角器和直尺补全扇形统计图;
(3)若该校有学生2000人,请根据调查结果估计这些学生中“比较了解”垃圾分
类知识的人数约为多少人?
22.(本题满分8分)“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:
(1)今善行者与不善行者相距960步,两者相向而行,问谁,在相遇时两者各行几步?
(2)今不善行者先行100步,善行者追之,不善行者再走300步请问谁在前面,两人相隔多少步?
23.(本题满分10分)如图,已知12180∠+∠=°,3B ∠=∠.
(1)AB 与EF 是否平行,请说明理由;
(2)若50C ∠=°,求AED ∠的度数.
24.(本题满分10分)阅读:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位,用实数加法表示为3(2)1+−=.若坐标平面上的点作如下平移:沿x 轴方向平移的数量为a (向右为正,向左为负,
平移||a 个单位)
,沿y 轴方向平移的数量为b (向上为正,向下为负,平移||b 个单位),则把有序数对{a ,}b 叫做这一平移的“平移量”;“平移量” {a ,}b 与“平移量” {c ,}d 的加法运算法则为{a ,}{b c +,}{d a c =+,}b d +.
解决问题:
(1)计算:{}{}3,11,2+,
(2)动点P 从坐标原点O 出发,先按照“平移量” {3,1}平移到A ,再按照“平
移量” {1,2}平移到B ;若先把动点P 按照“平移量” {1,2}平移到C .再按
照“平移量” {3,1}平移,
最后的位置还是点B . 请你在图1中画出四边形OABC ;
(3)如图2,一艘船从码头O 出发,先航行到湖心岛码头(2,3)P ,再从码头P
航行到码头(5,5)Q ,最后回到出发点O .请用“平移量”加法算式表示它的航行
过程.
25.(本题满分10分)如图,//AD BC ,BE 平分ABC ∠交AD 于点E ,BD 平分EBC ∠.
(1)若30DBC ∠=°,求A ∠的度数;
(2)若点F 在线段AE 上,且72180DBC ABF ∠−∠=°,请问图中是
否存在与DFB ∠相等的角?若存在,请写出这个角,并说明理由;
若不存在,请说明理由.。

相关文档
最新文档