学习与记忆脑机制(终稿)
学习与记忆的神经生物学机制

学习与记忆的神经生物学机制学习与记忆是人类思维活动中的重要组成部分,涉及到神经系统的复杂机制。
本文将探讨学习与记忆的神经生物学机制,通过对大脑结构和神经元功能的分析,以及相关实验证据的介绍,全面解析了学习与记忆的神经基础。
一、大脑结构与学习记忆大脑是人类学习与记忆的基础,其中海马体、脑内嗅球、小脑皮质等结构与学习、记忆密切相关。
海马体位于颞叶内侧,被认为是短期记忆向长期记忆的转换关键区域,其功能障碍可导致长期记忆受损。
脑内嗅球则参与情感记忆的形成,其受损可导致情感记忆的缺失。
小脑皮质则参与到运动、技能类的学习,损伤可导致运动技能学习困难。
二、神经元与学习记忆神经元是神经系统的基本功能单元,其通过神经细胞之间的连接与突触传递信息。
学习与记忆是通过神经元之间的突触可塑性实现的,其中包括突触前后神经元连接强度的改变,即突触增益或突触减弱。
这种突触可塑性机制被称为突触可塑性。
长期增强突触连接能够加强信息传递效率,促进记忆的形成。
三、突触可塑性的机制突触可塑性机制包括短时程可塑性和长时程可塑性。
短时程可塑性通常涉及到神经传导物质的释放改变,突触前或突触后神经元的电活动改变等。
而长时程可塑性则主要包括长时程突触增强和长时程突触抑制两种形式。
长时程突触增强依赖于输入源的高频刺激,可引起神经元之间的突触传递增强,从而加强记忆的形成。
相反,长时程突触抑制则依赖于输入源的低频刺激,可引起神经元之间的突触传递减弱,从而影响记忆的形成。
四、实验证据与学习记忆许多实验证据支持学习与记忆的神经生物学机制。
例如,当动物在学习任务中表现出记忆能力增强时,其大脑相关区域的神经元活动也会相应改变。
神经成像研究表明,人类学习某项任务时,其脑活动也会发生变化。
此外,激活某些特定的神经元可以增强动物的记忆能力,而抑制这些神经元则会导致记忆能力下降。
总结:学习与记忆的神经生物学机制是一项复杂而庞大的研究领域。
通过对大脑结构和神经元功能的研究,我们可以更深入地了解学习与记忆的本质。
学习与记忆的神经机制分析研究

学习与记忆的神经机制分析研究学习和记忆是人类智力的核心,并对人类社会和个体能力发展产生深刻影响。
因此,了解学习与记忆的神经机制是神经科学领域的重要研究方向之一。
随着神经科学技术的不断进步,许多受试者研究和影像学技术的出现,研究人员已经能够更好地了解学习与记忆的基础神经机制。
1. 学习的神经机制学习是一种变化,它使人们能够掌握新知识和本领,改变其行为方式和适应新环境。
学习可以通过大脑中神经元和突触的强化和削弱来实现。
长期增强(LTP)是一种主要的神经机制,它通过改变突触的强度来增强神经元之间的连接。
这种强化可以持续数周或数月。
对于从事学习任务的大脑区域,LTP可能是学习和记忆形成的关键机制。
特定类型的突触间信号转导通路激活是造成LTP在突触内部的加强或减弱的本质。
另一个与学习过程相关的现象是神经振荡。
神经振荡是大脑中大量神经元之间的同步激活,可以帮助人们在记忆任务中进行序列整合。
神经振荡过程是由大脑中多个神经区域同时参与的,因此是该过程的整体特征而非单一神经区域的精确描述。
神经振荡的性质和特点因任务而异。
2. 记忆的神经机制记忆是使人们能够将过去的经验、知识和技能储存在大脑中,以便在需要时访问和使用。
神经元和突触的可塑性激活往往是记忆形成的关键。
记忆可以通过大脑的不同部分进行编码、存储、整合和提取。
这些部分包括海马、杏仁体、前额叶和下丘脑等。
海马是大脑中最有名的记忆区域之一。
在过去几十年间,大量证据表明:海马在短期记忆和长期记忆过程中都具有重要的作用。
海马还与神经振荡联系密切,支持人类在记忆整合和提取中的频率、时序整合和背景知识抑制等过程。
从神经元和突触的角度,各种不同类型的突触可塑性,如短期增强(STP)、长期减弱(LTD)和长期增强(LTP)等,对记忆形成和存储都可能起着关键作用。
3. 大脑功能连接在学习与记忆中的意义大脑功能连接是指连接不同神经网络、区域和大脑区域之间的交互,支撑整个脑系统的正常功能。
学习与记忆的神经机制

学习与记忆的神经机制学习与记忆是人类大脑非常重要的功能之一,也是脑科学领域的研究热点。
通过研究与了解学习与记忆的神经机制,我们可以更好地理解人类认知过程,帮助改善学习和记忆的效果。
本文将从神经元、突触可塑性以及记忆过程等方面探讨学习与记忆的神经机制。
一、神经元的作用与特点神经元是构成大脑和神经系统的基本单位,它们负责处理和传递信息。
神经元由细胞体、树突、轴突和突触等组成。
细胞体是神经元的核心部分,能够产生和处理电信号。
树突是神经元的输入部分,用于接收来自其他神经元的信号。
轴突是神经元的输出部分,将处理后的信号传递给其他神经元。
突触是神经元之间传递信号的连接点。
神经元通过突触之间的联系形成神经网络,并在其中传递和处理信号。
二、突触可塑性对学习与记忆的影响突触可塑性是指神经元之间突触连接的强度和效能可以通过学习和记忆经验的改变而发生变化。
突触可塑性是学习与记忆的基础,分为长期增强(LTP)和长期抑制(LTD)两种形式。
LTP指的是在神经元之间重复激活的情况下,突触连接强度增加,从而加强信号传递效果。
LTD则是在神经元之间反复激活产生竞争性信号时,突触连接强度减弱,从而削弱信号传递效果。
突触可塑性使得神经网络能够通过学习和记忆不断调整和优化。
三、学习与记忆的过程学习与记忆是一个复杂的过程,涉及多个脑区和神经途径的协同作用。
学习过程中,外部刺激通过感觉系统输入大脑,激活相关脑区的神经元。
这些神经元之间通过突触连接相互传递信号,形成神经回路。
当重复进行学习时,神经元之间的连接强度会发生改变,突触可塑性发挥作用,从而加强或削弱信号传递效果。
在记忆过程中,学习到的信息被大脑中的不同脑区进行存储和整合,形成记忆痕迹。
需要时,大脑会通过反馈路径重新激活相关的神经回路,使得记忆再次表达出来。
四、学习与记忆的影响因素学习与记忆的神经机制受到多种因素的影响。
环境刺激可以通过感觉系统对神经回路的激活程度起到调节作用。
情绪状态对学习与记忆有重要影响,情绪激活可以调节神经网络的活动,促进学习与记忆的加强。
大脑学习与记忆的生物学机制

大脑学习与记忆的生物学机制我们的大脑是人体最神奇的器官之一。
它不仅是我们日常生活中思考和决策的关键,也是记忆和学习的中心。
我们的记忆脑区和学习脑区是相互联系的,因此,当我们了解大脑学习和记忆的生物学机制时,我们能够更好地利用这些信息,以实现更快速、高效的学习和记忆。
一、大脑学习的生物学机制大脑学习的生物学机制是一个复杂而又令人着迷的过程。
我们的大脑是可塑的,意味着它有能力以多种方式进行改变。
我们的大脑内有一条通往身体其它部位的路径——神经元。
神经元通过接收和发送信息,使得我们的大脑具有了巨大的学习和适应能力。
在大脑中,神经元之间会形成新的连接,一些连接会被加强,一些则会被削弱,这个过程被称为突触可塑性。
经验和学习可以引起突触可塑性,这提供了学习和记忆的神经生物学基础。
二、大脑记忆的生物学机制大脑记忆的生物学机制同样非常关键。
在大脑中,由突触的束连接起来的神经元称为突触网络。
一项研究表明,长期记忆涉及的是突触网络的改变。
这个过程可以产生新的神经元连接,加强已有的连接,并削弱不关键的连接。
学习和记忆之间的关系也很密切。
学习能够加强网络中一些连接,同时记忆会加强和保持这些连接。
这种与学习和记忆相关的长期突触可塑性是大脑记忆的基础。
三、大脑学习和记忆的机制到底是什么尽管我们对于大脑学习和记忆的生物学机制已经有了一定的了解,但是我们尚不完全清楚这个机制的全部细节。
有许多因素可以影响大脑学习和记忆,例如,我们的情绪和注意力,甚至是我们所生活的环境。
一项研究表明,睡眠会对大脑学习和记忆产生重要作用。
它可以让我们的大脑有机会重复我们所学到的东西,以加强长期突触可塑性,从而加强和巩固我们的记忆。
这表明了我们的大脑在学习和记忆方面的生物学机制是与我们的睡眠特征相关的。
此外,不同的学科领域正在寻找新的方法来促进大脑学习和记忆的生物学机制。
例如,脑机接口(BMI)技术、神经调节、脑神经营养等。
所有这些都有望进一步改善我们对于大脑学习和记忆生物学机制的了解,以更好地优化我们的学习和记忆能力。
(完整版)学习与记忆脑机制(终稿)

2、记忆的分类
2.1 陈述性记忆(declarative memory)
▪ 对事实、事件情景及它们之间相互关系的记忆,有意识的、 能够用语言清晰的描述的记忆。
▪ 可以很快形成,也可以经过较长时间的学习后形成。 ▪ 情景式记忆:对一件具体的事物或一个场面 ▪ 语义式记忆:文字、语言
▪ 刺激A的出现预示着刺激B的出现
▪ 操作式条件反射(operant conditioning)
▪ 特定的行为预示着特定的结果
1.2.1 经典条件反射(classical conditioning)
19世纪末,俄国生理学家巴普 洛夫(Pavlov)发现的
动物学会在两个刺激之间形成 联系(食物和铃声)
当一个强刺激或伤害性刺激存在时,神经系统对 一个弱刺激的反应有可能变大的现象。
强烈的感觉刺激强化了对其它弱刺激的反应,包 括那些在以前不引起反应或只引起轻微反应的刺 激和已经习惯化了的刺激。
1.2 联合型学习(associative learning)
个体在事件与事件之间建立起某种形 式的联系或预示某种关系的学习。 ▪ 经典的条件反射(classical conditioning)
• 2.知识经验与组块:组块的作用在于减少适时记忆中的刺激单位,而增加每 一单位所包含的信息。人的知识经验越丰富,组块中所包含的信息越多。
• 3.分组:与组块相似,但它不是意义分组,各成份之间不存在意义联系。
组块可以提高记忆的容量和效率,Murdock(1961) 的实验证实了这种作用。
短时记忆信息的存储和遗忘
被试几乎每次都能正确报告除了某个声 音指定的那一行字母,正确率约达100%
记忆与学习的神经机制

记忆与学习的神经机制学习和记忆是人类智力的重要组成部分。
通过学习,我们能够获取新的知识和技能,并将其编码为记忆,以便在需要时进行回忆和应用。
学习和记忆的神经机制涉及多个脑区和神经途径的复杂相互作用。
在本文中,我们将探讨与学习和记忆相关的一些关键神经机制。
首先,学习和记忆的关键步骤之一是信息的编码。
编码是将外部刺激转化为神经信号的过程,使得这些信息可以在大脑中储存和处理。
在这一过程中,海马体和额叶皮层起着重要作用。
海马体位于大脑内侧,通过将不同的输入模式进行整合和组织,形成了所谓的“幕式记忆”,即对不同事件的时间和空间顺序的记忆。
而额叶皮层则负责对事物的特征进行编码,例如形状、颜色和声音等。
这些编码信息随后传递到其他脑区进行储存和加工。
其次,储存是学习和记忆过程中的另一个重要步骤。
储存是指将编码的信息长期保存在大脑中,以便在需要时能够进行访问。
储存的神经机制涉及到突触可塑性,即神经元之间连接的强度和效果能够发生变化。
这种突触可塑性有两种主要类型:长时程增强(LTP)和长时程抑制(LTD)。
LTP和LTD是通过突触前神经元和突触后神经元之间的通信进行的。
当两个神经元同时激活时,突触前神经元释放的神经递质会增加突触后神经元的兴奋性,从而加强突触的连接。
相反,当两个神经元的激活时间间隔较长时,突触前神经元释放的神经递质会减少突触后神经元的兴奋性,导致突触的连接减弱。
这种突触的可塑性使得储存信息的神经回路能够稳定地改变其连接强度,并形成特定的记忆。
最后,记忆的检索是学习和记忆过程的最终步骤。
检索是指从储存中提取信息并将其恢复到意识中的过程。
这涉及到大脑中的多个脑区的协同工作,包括海马体、额叶皮层和边缘系统等。
海马体通过检索编码信息并与其他脑区进行交互,以促进记忆的检索和回忆。
额叶皮层则负责对检索到的记忆进行关联和整合,以形成更为完整和综合的记忆。
此外,边缘系统(包括杏仁核、海马体和边缘回路)在情绪记忆和记忆的情境复原中起着关键作用。
学习与记忆脑机制

学习与记忆脑机制学习与记忆是人类认知能力中重要的组成部分,它们是我们获得知识和经验、处理信息以及做出决策的基础。
学习是指通过接触和体验新事物、新概念或新技能,使我们的认知系统得到改变和更新的过程。
而记忆是指将学习获得的信息储存起来,并在需要时再次提取和利用的过程。
学习和记忆的基本脑机制是神经元之间的突触连接强度和传递电信号的改变。
具体来说,学习和记忆可以分为短时记忆和长时记忆两个阶段。
短时记忆是指记忆信息的暂时存储,其容量有限且持续时间较短。
在学习过程中,信息首先被编码为神经元之间的突触连接强度改变。
这种改变通常被称为突触可塑性。
短时记忆的持续时间一般为几秒钟到几分钟不等,超过这个时间段,信息往往会被遗忘。
长时记忆是指信息经过加工和存储后,在较长时间内可以被提取和利用。
长时记忆的形成涉及到神经元突触连接的新建和改变。
这是一个较为复杂的过程,包括记忆的编码、存储和检索。
在学习中,重复和强化是加强和巩固长时记忆的关键因素。
大脑中的海马体、海马旁回、前额叶皮质等区域被认为在长时记忆的形成和存储中起着重要作用。
此外,学习和记忆的过程还受到情绪和注意力的影响。
情绪对学习和记忆有着双重作用。
正向情绪可以增强学习和记忆的效果,而负向情绪则可能干扰和破坏学习和记忆的过程。
注意力是指将注意力集中在一些特定信息上的能力。
注意力越集中,学习和记忆效果越好。
因此,情绪和注意力的调节对学习和记忆的质量和效果具有重要影响。
最后,应当指出的是,学习和记忆是一个复杂的过程,涉及到多个脑区和多种神经途径的相互作用。
目前,对学习和记忆脑机制的研究还存在很多未解之谜。
然而,通过对学习和记忆脑机制的深入研究,我们可以更好地理解和利用我们的认知能力,提高学习能力和记忆力,在学习和工作中取得更好的成绩。
人类大脑的学习和记忆机制

人类大脑的学习和记忆机制人类大脑是一个复杂而神奇的器官,它不仅负责我们的思考、决策和行为,还承担着学习和记忆的重要功能。
学习和记忆是人类智慧的基石,它们使我们能够积累知识、适应环境和不断进步。
本文将探讨人类大脑的学习和记忆机制,以及一些提高学习和记忆能力的方法。
一、学习机制学习是指通过获取新的知识、技能或经验,改变行为或思维方式的过程。
人类大脑通过神经元之间的连接和信号传递来实现学习。
当我们接触到新的信息时,大脑中的神经元会形成新的连接,这些连接被称为突触。
学习的过程就是通过加强或削弱这些突触连接来改变神经网络的结构和功能。
学习可以分为两种主要类型:隐式学习和显式学习。
隐式学习是指无意识地获取知识和技能,如骑自行车或游泳。
这种学习是通过大脑中的基底节和小脑来实现的,它们负责控制运动和习惯行为。
显式学习是指有意识地学习和记忆事实和概念,如学习历史或数学。
这种学习是通过大脑中的海马体和额叶皮层来实现的,它们负责记忆和认知功能。
二、记忆机制记忆是指保存和回忆过去经历和知识的能力。
人类大脑通过神经元之间的连接和信号传递来实现记忆。
记忆可以分为三个主要类型:感觉记忆、短期记忆和长期记忆。
感觉记忆是指对感官刺激的瞬时记忆,如看到一朵花或听到一首歌。
这种记忆只能持续几秒钟到几分钟,然后会逐渐消失。
短期记忆是指对信息的短暂存储和处理,如记住一个电话号码或一串数字。
这种记忆可以持续几分钟到几小时,但容易受到干扰而丢失。
长期记忆是指对信息的永久存储和回忆,如记住自己的生日或学习的知识。
这种记忆可以持续几天到几十年,但需要不断巩固和回顾才能保持。
记忆的形成和巩固涉及到多个脑区的协同工作。
当我们学习新的信息时,大脑中的神经元会形成新的连接,这些连接被称为记忆痕迹。
这些记忆痕迹在大脑中的不同区域之间进行传递和存储,从而形成长期记忆。
睡眠和休息对记忆的巩固和提取也起着重要的作用,它们帮助大脑整理和重组信息,加强记忆痕迹的稳定性和可访问性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
该刺激的反应增大或减弱的神经过程。
1.1.1 习惯化(habituation)
一个不具有伤害性的刺激重复作用时,神经系 统对该刺激的反应逐渐减弱的现象。 个体学会不理会无意义的、重复出现的刺激。
1.1.2 敏感化(sensitization)
当一个强刺激或伤害性刺激存在时,神经系统 对一个弱刺激的反应有可能变大的现象。 强烈的感觉刺激强化了对其它弱刺激的反应, 包括那些在以前不引起反应或只引起轻微反应
20世纪初,哥伦比亚大学心理 学家桑戴克(Thorndike)发现
动物学会将动作与一个有意义 的结果(食物)联系起来。
通过完成某种运动或操作才能 得到形成,其建立要求奖励紧 随反应之后出现 动机在操作式条件反射中起重 要作用,神经回路复杂。
2、记忆的分类
2.1 陈述性记忆(declarative memory)
部分报告法的成绩优于全部报告法
声象记忆的作用时间可达4s
感觉记忆按感觉信息原有形式来贮存。 他们是外界刺激的真实副本。尽管作 用时间短暂,但是为进一步的加工提 供了材料和时间。这使他成为一个完 整的记忆系统不可缺少的开始阶段
短时记忆
短时记忆的编码方式
短时记忆的容量
A E
工作记忆
B D
C
短时记忆信息的存储和 遗忘
无意识的、含糊的回忆,记忆的内容无法用语言来描述, 多次重复练习,一旦形成不易遗忘。 非联合型学习(习惯化和敏感化)形成的记忆 联合型学习形成的记忆 启动效应 程序性记忆
内隐记忆(implicit memory)
陈述性记忆与非陈述性记忆的区别
陈述性记忆通常通过有意识的回忆来获取,可以用语言 来描述被记忆的过程;
学习与记忆之间的关系?
简单地说,学些是获取新信息的过程,其结 果便是记忆。也就是说,在学习了某种东西 后,记忆便形成了,这种学习也许会发生在 信息的单次呈现后,也许是在信息的重复呈 现后。记忆必须是能够在一段时期内维持的 。
学习和记忆的基本过程:
获得:感知外界事物或接受外界信息的阶段,也就是通过
组块可以提高记忆的容量和效率,Murdock(1961) 的实验证实了这种作用。
短时记忆信息的存储和遗忘
复述是短时记忆存储的有效方法 • 1.复述分为两种:机械复述和精细复述
• 2.Craik & Wathins (1973) 研究表明机械复述不能加强记忆
• 3.Chase et al. (1981) 曾报道的一个叫B.F.的个案证明了精细复述是短时记忆 存储的重要条件
的刺激和已经习惯化了的刺激。
1.2 联合型学习(associative learning)
个体在事件与事件之间建立起某种形
式的联系或预示某种关系的学习。
经典的条件反射(classical conditioning )
刺激A的出现预示着刺激B的出现
操作式条件反射(operant conditioning)
保留或复述有用的信息。
大脑暂时保存信息的过程,容易被遗忘或被整合 到长时记忆中。
2.3.2 长时记忆(long-term memory)
较为持久的、容量较大的、不需要重复的记忆。
巩固
人类的记忆过程
因此:
① 记忆不是单一系统,而是有不同的类型
② 不同类型的记忆储存在脑的不同部位
③ 脑的特定部位受损,只影响特定类型的记忆
短时记忆的容量
1956年,美国心理学家George ler明确提出, 短时记忆容量为7±2个组块。 • 1.组块(Chunk) :是指将若干较小单位联合而成熟悉的、较大的单位的信息 加工,也指这样组成的单位。组块既是过程,也是单位。 • 2.知识经验与组块:组块的作用在于减少适时记忆中的刺激单位,而增加每 一单位所包含的信息。人的知识经验越丰富,组块中所包含的信息越多。 • 3.分组:与组块相似,但它不是意义分组,各成份之间不存在意义联系。
一般被试只能报告出4-5个字母
OPS
部分报告法 先给卡片上的三行字母分别配以声音信号,第一行配以高音,第二行配 以中音,第三行配以低音。在给被试呈现卡片后,立即呈现一种声音信 号,要求被试报告出声音信号所对应的卡片上的那一行字母。
被试几乎每次都能正确报告除了某个声 音指定的那一行字母,正确率约达100%
第七讲 学习与记忆
内容:
学习与记忆 感觉记忆 短时记忆与工作记忆 记忆的脑机制
学习和记忆是脑的最基本功能之一 学习(learning)?
人和动物依赖于经验来改变自身行为以适应环境 的神经过程,即获取新知识和新信息的过程。
记忆(memory)?
对获得的信息编码、巩固、储存和“再现”的神经过程
有关视觉感觉记忆的作用时间的实验(Erikon&Collins)
在实验中相继给被试看两组 点子。分别来看这两组点子 是随机点图,但是他们重叠 起来就会构成VOH三个字母 。改变先后呈现两组点子的 时距,根据确认三个字母的 情况就可以解释视觉感觉记 忆的作用时间
四耳人实验(Moray)
在屋子的四角有四个扬声器,被试面前的板子上安有四个灯,各代表一 个声源 实验时从2个,3个或者4个声源同时各呈现1-4个字母。
当条件刺激(CS)与非条件刺激(US)在时间上的结合
如果CS和US同时出现,或CS先于US出现,条件刺激能够建立
如果CS先于US出现但二者之间间隔时间较长,条件反射不稳 定或不能建立
如果CS晚于US出现,条件反射不能建立
1.2.2 操作式条件反射(OPERANT CONDITIONING )
特定的行为预示着特定的结果
1.2.1 经典条件反射(classical conditioning)
19世纪末,俄国生理学家巴普 洛夫(Pavlov)发现的 动物学会在两个刺激之间形成 联系(食物和铃声)
非条件刺激(US,食物):正常 情况下能引起可测量的生理反 应,如唾液分泌 条件刺激(CS,铃声):正常 情况下不能引起可测量的生理 反应
Sternberg(1969)的研究表明,短时记忆中信息的提取是通过系列扫描以 从头至尾扫描方式来实现的 。 可以将之理解为扫描模型 ( Scanning Model)。
工作记忆
工作记忆(Working Memory,WM)是对信息暂时 保持与操作的系统。它是由英国心理学Baddeley 等人于1974年提出的一个记忆模型。
感觉系统向脑内输入信号的阶段。注意对获得信息的影响
很大。 巩固:获得的信息在脑内编码贮存和保持的阶段。保存时 间的长短和巩固程度的强弱与该信息对个体的意义以及是 否反复应用有关。 再现:将贮存于脑内的信息提取出来使之重现于意识中的 过程,即回忆。
一、学习与记忆的分类
1、学习的分类
1.1 非联合型学习(non-associative learning) 刺激与反应之间不形成明确联系的学习形 式,通常是单一刺激长期作用后,个体对
对事实、事件情景及它们之间相互关系的记忆,有意识的、 能够用语言清晰的描述的记忆。 可以很快形成,也可以经过较长时间的学习后形成。 情景式记忆:对一件具体的事物或一个场面
语义式记忆:文字、语言
外显记忆(explicit memory)
2.2 非陈述性记忆(non-declarative息保持时 间及其短暂,很快就会消失
图像记忆的特性
应用延缓回忆,在刺激卡片和声音信号之间插入不同的时距 (Sperling) 在一个实验中应用4行字母,每行4个,共16个字母,并且系 统地改变这种时距。应用的时距为0.1,0.15,0.30,0.50,和1s
短时记忆的信息在得不到复述的情况下很快就会遗忘,那么是什 么原因导致了短时记忆的遗忘呢? 一种观点认为是由于信息痕迹的自然消退;另一种观点则认为是 受到其它无关信息的干扰。 Waungh & Norman (1965) 利用一个巧妙的实验将“消退”和“干扰”这 两个因素分离开来。
短时记忆的信息提取
语音环路 处理以语音为基础的言语信息 中央 执行 系统
情景缓冲 用来整合视觉,空间和言语 信息 器
处理视觉和空间的信息
Sensory Memory
The persistence of the auditory sensory memory trace in humans has
been measured in different ways, including physiological recordings. An event-related potential (ERP) known as the electrical mismatch negativity (MMN), or its magnetic counterpart, the mismatch field (MMF), has proven highly informative about the duration of echoic memory. The MMN brain response is elicited by the presentation of a deviant stimulus, such as a high- within a sequence of identical standard low tones. These mismatch responses are interpreted as representing sensory memory processes that hold recent auditory experience in echoic memory for comparison to new inputs: When the inputs differ, the MMN and MMF are generated. Hence, the amplitudes of these brain responses at different time intervals between the deviant and standard tones could be used to index how long the echoic memory trace persists.