北京理工大学2017级硕士研究生矩阵分析考试题
北京理工大学矩阵分析第四章作业答案

2 2 0 A 8 2 a 0 0 6 是单纯矩阵, 求 a, 并且求矩阵 A的谱分解表达式.
T
2 6
1 6
T
Hale Waihona Puke G1 H 1 1
1 3 1 1 3 3 1 3
1 3
1 3 1 1 3 3 1 3
1 3 1 3 1 3
1 3 1 3 1 3
G2 2 2H 3 3H
4-1:求矩阵 A 的满秩分解
2 1 2 3 1 A 2 5 1 4 1 1 3 1 2 1
对A只进行初等行变换, 得行简化阶梯形,
1 0 0 8 5 2 5 0 1 0 1 5 1 5 0 0 1 1 5 4 5
1 3 1 2 1 6
1 3 1 2 1 6
1 3 0 2 6
4 -3( 2) 已知
求 B 的谱分解.
0 1 1 B 1 0 1 1 1 0
B B H , 所以 B 是正规矩阵.
I - B ( 1)2 ( 2)
m n
, 秩(A)= r
行简化阶梯形 J
A 初等行变换
设主元在 i1 , i2 ,
A 中的第 i1 , i2 ,
, ir 列,则选取 , ir 列组成矩阵 B
m r
r n
,
去掉 J 中的零行,剩下的组成 C A=BC
例:设矩阵的满秩分解为 A=BC, 证明:
北理工2018-2019学年第一学期《矩阵理论及其应用》期末考试题

北京理工大学2018-2019学年第一学期
《矩阵理论及其应用》期末考试试题
1. 给出正规矩阵和Hermite 矩阵的定义,并给出这两类矩阵的包含关系(10分);
2. A 是n ×n 维矩阵,给出e A ,sin (A ),cos(A)的级数表达式(10分);
3. 列举任意3种矩阵分解方法,并给出数学定义(10分);
4. 对于任意m ×n 维复数矩阵A ,定义||A||=∑∑|a ij |n j=1m i=1,
证明||A||是矩阵范数(10分);
5. 证明伪逆矩阵A +唯一(10分);
6. 设A 是一个半正定H-阵且A ≠0,B 是一个正定的H-阵,证明|A +B|>|B|(10分);
7. A 为正规矩阵,证明与A 酉相似的矩阵也是正规矩阵(10分);
8. ||A ||<1,证明(E+A )非奇异(10分);
9. 证明ρ(A)≤||A||,其中ρ(A)为矩阵A 的谱半径,||A||为任意范数(10分);
10. 已知V 1,V 2是线性空间V 的两个子空间,证明dim (V 1)+dim (V 2)=dim (V 1+V 2)+dim(V 1∩V 2)(10分).。
北京理工大学出版社矩阵分析习题解答

2005级电路与系统矩阵分析作业3-1已知)(ij a A =是n 阶正定Hermite 矩阵,在n 维线性空间nC 中向量[]n x x x ,,,21 =α ,[]n y y y ,,,21 =β定义内积*),(βαβαA =。
(1)证明在上述定义下,nC 是酉空间;(2)写出nC 中的Canchy -Schwarz 不等式。
(1)证明:),(αβ=H A αβ=H H A )(βα=H A βα ,(βα,k )=),(βαβαk A k H =),(),()(),(γβγαγβγαγβαγβα+=+=+=+H H H A A AH A αααα=),(,因为A 为正定H 矩阵,所以0),(≥αα,当且仅当0),(0==ααα时,由上可知cn是酉空间。
証毕。
(2)解: ∑∑==n jnij ij i Hy a x A |||),(|βαβα∑∑==n jnij ijix ax ),(||||ααα,∑∑==n jnij ijiy ay ),(||||βββ由Cauchy-Schwarz 不等式有:∑∑∑∑∑∑≤n jnij ijin jnin jnij ijij ijiy ay x ax y ax *3-3(1)已知.A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡502613803---,试求酉矩阵U,使得U*AU 是上三角矩阵 解:由|λE-A| = (λ+1)3得 λ= -1是A 的特征值,当λ=-1时,可得|λE-A|=000000201于是ε1=(0,1,0)T是A 的特征向量。
选择与ε1正交,并且互相也正交两个向量组成酉阵:U 1= ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001010则U 1*A U 1= ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---520830631 取A 1= ⎥⎦⎤⎢⎣⎡--5283,|λE- A 1| = (λ+1)2λ= -1是A 1的特征值。
当λ=-1时,可得|λE- A 1|=0021,于是,α1 =( --52,51)T是A 的特征向量,选择与α1正交的向量组成酉阵U 2 = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡52515152 -,U 2*A 1U 2 = 51⎥⎦⎤⎢⎣⎡-2112⎥⎦⎤⎢⎣⎡--5283⎥⎦⎤⎢⎣⎡-2112 =⎥⎦⎤⎢⎣⎡---10101 3-9若S ,T 分别是实对称矩阵和反实对称矩阵,且0)det(≠--iS T E ,试证:1))((---++iS T E iS T E 是酉矩阵,。
矩阵分析 - 北京理工大学研究生院

课程名称:矩阵分析一、课程编码:1700002课内学时: 32 学分: 2二、适用学科专业:计算机、通信、软件、宇航、光电、生命科学等工科研究生专业三、先修课程:线性代数,高等数学四、教学目标通过本课程的学习,要使学生掌握线性空间、线性变换、Jordan标准形,及各种矩阵分解如QR分解、奇异值分解等,正规矩阵的结构、向量范数和矩阵范数、矩阵函数,广义逆矩阵、Kronecker积等概念和理论方法,提升研究生的数学基础,更好地掌握矩阵理论,在今后的专业研究或工作领域中熟练应用相关的矩阵分析技巧与方法,让科研结果有严格的数学理论依据。
五、教学方式教师授课六、主要内容及学时分配1、线性空间和线性变换(5学时)1.1线性空间的概念、基、维数、基变换与坐标变换1.2子空间、线性变换1.3线性变换的矩阵、特征值与特征向量、矩阵的可对角化条件2、λ-矩阵与矩阵的Jordan标准形(4学时)2.1 λ-矩阵及Smith标准形2.2 初等因子与相似条件2.3 Jordan标准形及应用;3、内积空间、正规矩阵、Hermite 矩阵(6学时)3.1 欧式空间、酉空间3.2标准正交基、Schmidt方法3.3酉变换、正交变换3.4幂等矩阵、正交投影3.5正规矩阵、Schur 引理3.6 Hermite 矩阵、Hermite 二次齐式3.7.正定二次齐式、正定Hermite 矩阵3.8 Hermite 矩阵偶在复相合下的标准形4、矩阵分解(4学时)4.1矩阵的满秩分解4.2矩阵的正交三角分解(UR、QR分解)4.3矩阵的奇异值分解4.4矩阵的极分解4.5矩阵的谱分解5、范数、序列、级数(4学时)5.1向量范数5.2矩阵范数5.3诱导范数(算子范数)5.4矩阵序列与极限5.5矩阵幂级数6、矩阵函数(4学时)6.1矩阵多项式、最小多项式6.2矩阵函数及其Jordan表示6.3矩阵函数的多项式表示6.4矩阵函数的幂级数表示6.5矩阵指数函数与矩阵三角函数7、函数矩阵与矩阵微分方程(2学时)7.1 函数矩阵对纯量的导数与积分7.2 函数向量的线性相关性7.3 矩阵微分方程(t)()() dXA t X t dt=7.4 线性向量微分方程(t)()()() dxA t x t f t dt=+8、矩阵的广义逆(3学时)8.1 广义逆矩阵8.2 伪逆矩阵8.3 广义逆与线性方程组课时分配说明:第一章的课时根据学生的数学基础情况可以调整,最多5学时,如学生线性代数的基础普遍较高,可以分配3学时,剩余2学时可在最后讲解第九章部分内容(Kronecker 积的概念和基本性质)。
2017年全国硕士研究生入学统一考试数学三真题及答案解析

2017年全国硕士研究生入学统一考试数学三真题及答案解析一、选择题(本题共8小题,每小题4分,满分32分)(1)若函数⎪⎩⎪⎨⎧≤>-=0,,0,cos 1)(x b x axxx f 在0=x 处连续,则( ) )(A 21=ab 。
)(B 21-=ab 。
)(C 0=ab 。
D (2=ab 。
【答案】)(A【解】aax x f x 21cos 1lim)00(0=-=++→,b f f =-=)00()0(,因为)(x f 在0=x 处连续,所以)00()0()00(-==+f f f ,从而21=ab ,应选)(A 。
(2)二原函数)3(y x xy z--=的极值点为( ))(A )0,0(。
)(B )3,0(。
)(C )0,3(。
)(D )1,1(。
【答案】)(D【解】由⎪⎩⎪⎨⎧=--='=--='023,02322x xy x z y xy y z yx 得⎩⎨⎧==0,0y x ⎩⎨⎧==1,1y x ⎩⎨⎧==3,0y x ⎩⎨⎧==0,3y x y z xx 2-='',y x z xy 223--='',x z yy 2-='',当)0,0(),(=y x 时,092<-=-B AC ,则)0,0(不是极值点;当)1,1(),(=y x 时,032>=-B AC 且02<-=A ,则)1,1(为极大点,应选)(D 。
(3)设函数)(x f 可导,且0)()(>'⋅x f x f ,则( ))(A )1()1(->f f 。
)(B )1()1(-<f f 。
)(C |)1(||)1(|->f f 。
)(D |)1(||)1(|-<f f 。
【答案】)(C 【解】若0)(>x f ,则0)(>'x f ,从而0)1()1(>->f f ;若0)(<x f ,则0)(<'x f ,从而0)1()1(<-<f f ,故|)1(||)1(|->f f ,应选)(C 。
北京理工大学数据结构考研例题解析6

本资料由理硕教育整理,理硕教育是全国唯一专注于北理工考研辅导的学校,相对于其它机构理硕教育有得天独厚的优势。
丰富的理工内部资料资源与人力资源确保每个学员都受益匪浅,确保理硕教育的学员初试通过率89%以上,复试通过率接近100%,理硕教育现开设初试专业课VIP一对一,初试专业课网络小班,假期集训营,复试VIP一对一辅导,复试网络小班,考前专业课网络小班,满足学员不同的需求。
因为专一所以专业,理硕教育助您圆北理之梦。
详情请查阅理硕教育官网第 6 章图课后习题讲解1. 填空题⑴设无向图G中顶点数为n,则图G至少有()条边,至多有()条边;若G为有向图,则至少有()条边,至多有()条边。
【解答】0,n(n-1)/2,0,n(n-1)【分析】图的顶点集合是有穷非空的,而边集可以是空集;边数达到最多的图称为完全图,在完全图中,任意两个顶点之间都存在边。
⑵任何连通图的连通分量只有一个,即是()。
【解答】其自身⑶图的存储结构主要有两种,分别是()和()。
【解答】邻接矩阵,邻接表【分析】这是最常用的两种存储结构,此外,还有十字链表、邻接多重表、边集数组等。
⑷已知无向图G的顶点数为n,边数为e,其邻接表表示的空间复杂度为()。
【解答】O(n+e)【分析】在无向图的邻接表中,顶点表有n个结点,边表有2e个结点,共有n+2e个结点,其空间复杂度为O(n+2e)=O(n+e)。
⑸已知一个有向图的邻接矩阵表示,计算第j个顶点的入度的方法是()。
【解答】求第j列的所有元素之和⑹有向图G用邻接矩阵A[n][n]存储,其第i行的所有元素之和等于顶点i的()。
【解答】出度⑺图的深度优先遍历类似于树的()遍历,它所用到的数据结构是();图的广度优先遍历类似于树的()遍历,它所用到的数据结构是()。
【解答】前序,栈,层序,队列⑻对于含有n个顶点e条边的连通图,利用Prim算法求最小生成树的时间复杂度为(),利用Kruskal算法求最小生成树的时间复杂度为()。
北京理工大学数据结构考研例题解析7

北京理工大学数据结构考研例题解析7本资料由理硕教育整理,理硕教育是全国唯一专注于北理工考研辅导的学校,相对于其它机构理硕教育有得天独厚的优势。
丰富的理工内部资料资源与人力资源确保每个学员都受益匪浅,确保理硕教育的学员初试通过率89%以上,复试通过率接近100%,理硕教育现开设初试专业课VIP一对一,初试专业课网络小班,假期集训营,复试VIP一对一辅导,复试网络小班,考前专业课网络小班,满足学员不同的需求。
因为专一所以专业,理硕教育助您圆北理之梦。
详情请查阅理硕教育官网第 7 章查找技术课后习题讲解1. 填空题⑴顺序查找技术适合于存储结构为()的线性表,而折半查找技术适用于存储结构为()的线性表,并且表中的元素必须是()。
【解答】顺序存储和链接存储,顺序存储,按关键码有序⑵设有一个已按各元素值排好序的线性表,长度为125,用折半查找与给定值相等的元素,若查找成功,则至少需要比较()次,至多需比较()次。
【解答】1,7【分析】在折半查找判定树中,查找成功的情况下,和根结点的比较次数最少,为1次,最多不超过判定树的深度。
⑶对于数列{25,30,8,5,1,27,24,10,20,21,9,28,7,13,15},假定每个结点的查找概率相同,若用顺序存储结构组织该数列,则查找一个数的平均比较次数为()。
若按二叉排序树组织该数列,则查找一个数的平均比较次数为()。
【解答】8,59/15【分析】根据数列将二叉排序树画出,将二叉排序树中查找每个结点的比较次数之和除以数列中的元素个数,即为二叉排序树的平均查找长度。
⑷长度为20的有序表采用折半查找,共有()个元素的查找长度为3。
【解答】4【分析】在折半查找判定树中,第3层共有4个结点。
⑸假定一个数列{25,43,62,31,48,56},采用的散列函数为H(k)=k mod 7,则元素48的同义词是()。
【解答】62【分析】H(48)= H(62)=6⑹在散列技术中,处理冲突的两种主要方法是()和()。
北京理工大学工业设计考研十年真题汇总及简要分析

北京理工大学工业设计考研十年真题汇总及简要分析2003年设计创意:公共汽车候车亭设计要求:1、设计方案三个,每个方案可以附简单文字说明2、内容包括a、具有乘客候车座位b、遮雨功能c、站牌图文设计d、双面的广告位置(30分/方案)设计表达:自选其中一个方案,以彩色透视效果图的形式表现(工具不限)(50分)要求:效果图卷面整洁设计理论:结合你的设计创意,进行功能论述,结构合理,材料及工艺符合要求,作为你的设计理论支持。
(140分)要求:文字简洁,表述清晰,无赘文。
(10分)2004年设计创意:以正方体为基础设计一个随身携带的有用产品。
要求:1、所设计的产品要有正方体的特征。
(20分)2、正方形体大小尺寸自定3、设计草图三个(90分)4、最终确定的最佳方案一个并用图文补充说明,完成此设计方案。
(40分)设计理论结合设计创意所考内容从人因关系角度论述形态与结构的关系(150分)2005年设计创意:根据老年人室外活动的要求,设计一款老年人随身用品(150分)设计理论:结合老年人心理特征,论述老年消费者的需求设计(150分)2006年设计创意:设计一套(3件或3件以上)洗漱用品方案(150分)要求:1、构思新颖的设计方案两套;2、每件用品在造型设计方面具有成套(系列)风格;3、选出最终确定的一套方案并画出每件用品的外观三视图(标注尺寸);4、写出简要的设计说明;设计理论:通过具体的产品设计方案,论述你对<通用设计>的认识(150分)2007年设计创意设计一款能体现易用性的家用清洁工具(150)要求完成:1、构思新颖的设计方案三个;2、选出最终确定的一个方案画出外观三视图并标注尺寸;3、写出简要的设计说明;设计理论结合具体的产品设计实例,阐述亚洲与欧洲的设计思想比较。
(150分)2008年设计创意公共场所饮水器具或饮水设施设计(150)要求完成:1、画出三个设计方案,对每一个设计方案作简短的说明2、在三款设计方案中选一款自己认为比较好的方案,画出效果图和外观尺寸图设计理论列举具体实例并附图,论述产品的通用性需求和特殊性需求之间的关系(150分)2009年设计创意公共电话亭设计(150分)设计理论论述信息社会的发展对工业设计的影响(150分)2010年设计创作设计一套学生用电脑桌椅150分要求设计两套方案并简述,选取其中一套做深入设计,绘制精细效果图细节图,并附人机分析图,三视图,其它相关文字说明设计理论一、简答共80分,每题20分1、简述工艺美术运动(Arts and Crafts Movement)2、简述意大利设计风格(Italian design)3、简述可持续性设计概念(Sustainable design)4、简述设计的可用性(Usability design)二、论述题70分论述当今工业设计与消费的关系设计创作请设计一款室内垃圾桶(150分)设计要求:1、画出三种设计方案表达手法不限(60分)2、选出一个方案深入设计(50分)3、用工程图的方法画出产品的主要尺寸图(20分)4、画出两种色彩方案(20分)设计理论一、简答共80分每题20分1、说出工艺美术运动、德国工业同盟、包豪斯、孟菲斯这四个的核心人物组织。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京理工大学2017-2018学年第一学期
2017级硕士研究生〈矩阵分析〉终考试题
一、(10分)设线性变换f 在基123[1,1,1],[1,0,1],[0,1,1]
ααα=-=-=下的矩阵表示为101110123A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦
(1)求f 在基123[1,0,0],[0,1,0],[0,0,1]εεε===下的矩阵表示。
(2)求f 的核与值域。
二、(10分)求矩阵20000i A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦
的奇异值分解。
三、(10分)求矩阵111222111A -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦
的谱分解。
四、(15分)已知(1)n u R n ∈>为一个单位列向量,令T A I uu =-,证明
(1)21A =;
(2)对任意的X R ∈,如果有AX X ≠,那么22AX X <。
五、(15分)已知矩阵1212a A a ⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦
,
(1)问当a 满足什么条件时,矩阵幂级数121()k k k A ∞
=+∑绝对收敛?
(2)取a = 0,求上述矩阵幂级数的和。
七、(20分)求下列矩阵的矩阵函数2,sin ,cos tA e A A π
π
300030021
01300103123001013000301
00013()()()A A A ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢
⎥⎢⎥===⎢⎥⎢⎥⎢⎥
⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 八、(5分)已知
sin 53sin 2sin 52sin sin 5sin sin sin 5sin 2sin 52sin sin 5sin sin 5sin 2sin 52sin sin 53sin t t t t t t tA t t t t t t t t t t t t +--⎡⎤⎢⎥=-+-⎢⎥⎢⎥--+⎣⎦
求矩阵A 。
九、(5分)已知不相容线性方程组
141223341
10
x x x x x x x x +=⎧⎪+=⎪⎨+=⎪⎪+=⎩
求其最佳最小二乘解。
十、(10分)已知Hermite 二次型
12312132131(,,)f x x x ix x x x ix x x x =+-+
求酉变换X UY =将123(,,)f x x x 化为标准型。