中科大2014矩阵分析期末试卷
矩阵分析复习(最终版)

3 1 1 2.求 A 0 4 0 的最小多项式,并写出 A 的 Jordan 形. 1 1 5 0 4 0 1 A J 二、 设 A 1 4 0 . (1) 求 e A (2) 求可逆矩阵 Q 和若当型 J A , 使Q e Q e 0 0 2
《矩阵分析》复习题目及参考答案
made by 寒烟
提示:参考答案为个人所做,仅供参考.
1 3 1 一、1. 设 A 4 1 5
1 3 2 4 3 5
1 3 1 . (1)求 || A ||1 和 || A || 4 1 5
(2)证明 A 的谱半径 ( A) || A ||
i
可求的 A 的特征值为 1 2 1 ,从而谱半径 考虑到端点处的收敛性,可以判定 f ( A) 是收敛的. 进一步有,
当 1 ,有 rank ( A E ) 1 ,且 可逆矩阵P,使得P AP J A ,
1
其中
- 1 1 JA= . -1
k k 1
从而,幂级数 f ( x) 的收敛半径 R 1 ,且收敛区间为 [1,1] .
再考虑矩阵幂级数 f ( A)
k
k 1
1
2
2 1 Ak ,其中 A 1 0
令 | E A |
2 1 ( 1)2 0 1
( A) max i 1 R
故最小多项式为 mA ( ) ( 4) 初等因子组为 4、 ( 4)2
2
4 4 1 从而 Jordan 标准形为 4
二、
4 0 1 0 2 (1) E A 1 4 2 0 0 2 ( 2)
中科大历年考研数学真题

直线 l1, l2 平行,且 π 与 l1 的距离是 91, 求 π 的方程。
3. 设 A : U → V 为数域 F 上的线性空间 U 到 V 上线性映射. 证明:
dim KerA + dim Im A = dim U
2 −1 1 4. 设 A = 2 2 −1 , 求方阵 P , 使得 P −1AP 为 A 的 Jordan 标准形。
··· ···
(α1, αn)
(α2, αn) ...
,
其中 (αi, αj) 是 V 的内积.
(αn, α1) (αn, α2) · · · (αn, αn)
求证:G 正定的充分必要条件是 α1, · · · , αn 线性无关。
5. 设 A 是无限维线性空间 V 的线性变换,B 是 A 在 ImA 上的限制变换. 求证:
.
a2x1 + x2 + x3 = 1
5.
使线性方程组
x1 + ax2 + x3 = a x1 + x2 + x3 =a2
有解的实数 a 的取值范围是
.
6.
已知实方阵 A 的伴随矩阵 A∗
2.
以曲线
y = x2 z=2
为准线,原点为顶点的锥面方程为
.
3. 以 xOy 平面上的权限 f (x, y) = 0 绕 x 轴旋转所得的旋转面的方程是
.如
果曲线方程是 x2 − y2 − 1 = 0, 由此得到的曲面类型是
.
4. 设 α1, α2α3α4 是线性空间 V 中 4 个线性无关的向量,
为 α1 = (1, 0, −1), α2 = (?, ?, ?), 求矩阵 A 以及使 A 对角化的矩阵 P 7. A 是复方阵,线性变换 T → AX + XA, 证明:如果 A 可对角化,那么 T 也可以对
矩阵分析习题及答案0 (1)

矩阵分析习题与解答1.名词解释:(1)单纯矩阵 (2)正规矩阵(举3例) (3)向量范数(4)矩阵A 的最大奇异值2.设有Hermite 矩阵A . 试证:A 是正定的充要条件,是存在可逆矩阵Q 使.H A Q Q =证明:必要性:设H A Q Q =, 则对0,n x x C ≠∈, 有(),0HHHx Ax x Q Qx Qx Qx ==>, 这里Q 可逆, 故正定.充分性:因为A 是Hermite 矩阵, 所以A 是正规矩阵, 因此存在酉矩阵U 使1,H n U AU λλ⎛⎫⎪= ⎪ ⎪⎝⎭O其中1n λλL ,,是A 的特征值; 又A 正定, 所以1L n λλ,,都大于0; 因此H A U U ⎫⎪= ⎪⎪ ⎝OO令H Q U ⎫⎪= ⎪ ⎝O则.HA Q Q =3.设矩阵x X y z ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 以及222()234Y f X x y z xy yz zx ==+++++,试求: (1)()()T dtr XX dX ; (2)T dY dX .解:222T x xy xz XX yxy yz zx zyz ⎛⎫⎪= ⎪ ⎪⎝⎭, 222()T T tr XX x y z X X =++= ()()()()2(22)2T TTT tr XX d tr XX tr XX x x y y z z X dX tr XX ⎛⎫∂ ⎪∂ ⎪⎛⎫⎪∂ ⎪= ⎪ ⎪∂ ⎪⎪⎝⎭⎪∂ ⎪∂⎭=⎝= ()224223234224,223,234TT T Y x x y z dY Y y x z dX y z y x Y z x y z y x z z y x ⎛⎫∂ ⎪∂++ ⎪⎛⎫∂ ⎪ ⎪==++ ⎪ ⎪∂ ⎪ ⎪++⎝⎭∂ ⎪ ⎪∂⎝⎭=++++++4.设A 为m m ⨯Jordan 块, 即1,1A λλ⎛⎫⎪⎪= ⎪ ⎪⎝⎭OO O求矩阵指数Ate .解法一: 1111λλλλ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭OO O OOO,记1,1H λλ⎛⎫⎛⎫⎪ ⎪⎪ ⎪Λ== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭OOO, 则 At t Ht =Λ+, 即Ht At t =-Λ 将x e 在t λ处展成Talor 级数,有()0!t nxn e e x t n λλ∞==-∑,因此有矩阵指数()00!!00001001!(1)!1000001!10000t nAtn t n nn m t e e At t n e H t n t t m e t λλλ∞=∞==-Λ=⎡⎤⎛⎫⎛⎫⎢⎥⎪⎛⎫ ⎪⎢⎥⎪-⎪ ⎪⎢⎥ ⎪⎪ ⎪=+++⎢⎥⎪ ⎪ ⎪⎢⎥⎪ ⎪ ⎪⎢⎥⎪⎝⎭ ⎪ ⎪⎝⎭⎢⎥⎝⎭⎣⎦∑∑L L L L O M L L O MO M M O M L故可得22122212!(m 2)!(m 1)!12!(m 2)!112!1m m m At tt t t t t tt e e t t t λ---⎡⎤⎢⎥--⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦L L O M O O .解法二:00t t t tAt t t t t λλλλ⎛⎫⎛⎫⎛⎫⎪⎪⎪⎪⎪ ⎪==+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭OO O O OOOO00t t t tt t t t At e ee eλλλλ⎛⎫⎛⎫⎛⎫⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==O O O O O OOO()()000!!!nn t t n t n t n n tt n e t en e t n λλλλλλλλ∞⎛⎫⎪ ⎪= ⎪∞⎪ ⎪⎝⎭=∞=⎛⎫⎪⎛⎫ ⎪⎪ ⎪⎛⎫⎪ ⎪ ⎪⎪⎝⎭ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎪ ⎪⎝⎭∑∑∑O OO O OO OO2212200212!(m 2)!(m 1)!12!(m 2)!112!1m m m tt t t t t t tt et t t ---⎛⎫⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎡⎤⎢⎥--⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦O O OL L O M O O 故可得22122212!(m 2)!(m 1)!12!(m 2)!112!1m m m At tt t t t t tt e e t t t λ---⎡⎤⎢⎥--⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦L L O M O O .5.求常系数线性微分方程组在初始条件下的解.解:常系数线性方程组可以写为,()()X t AX t =&, 其中0123A ⎡⎤=⎢⎥--⎣⎦, 12()()()x t X t x t ⎛⎫= ⎪⎝⎭. 对其两端取Laplace 变换, 得()(0)()sX s X AX s -=,所以1()()(0)X s sI A X -=-, 取Laplace 反变换, 得11()()(0)X t L sI A X --⎡⎤=-⎣⎦,由于()(0)At X t e X =, 所以11(())At e L sI A --=-.由于123s sI A s -⎡⎤-=⎢⎥+⎣⎦, ()131(s 1)(s 2)(s 1)(s 2)2(s 1)(s 2)(s 1)(s 2)s sI A s -+⎡⎤⎢⎥++++⎢⎥-=-⎢⎥⎢⎥++++⎣⎦2111s 1s 2s 1s 22221s 2s 1s 2s 1⎡⎤--⎢⎥++++=⎢⎥⎢⎥--⎢⎥++++⎣⎦2212221112s 1s 2s 1s 22221222s 2s 1s 2s 1t tt t At t tt t e ee e e L e e e e ---------⎡⎤--⎢⎥⎡⎤--++++==⎢⎥⎢⎥--⎢⎥⎣⎦--⎢⎥++++⎣⎦满足初始条件下的解为2222221232(0)122243t tt t t t At ttt t tt e e e e e e e x e ee e e e ------------⎡⎤⎡⎤---⎡⎤⋅==⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦6 任一方阵可以表示成两个对称矩阵乘积的形式。
研究生期末试题矩阵论a及答案

,
可得谱分解式 (10分)
六、当 时, ;当 时,存在 与 使得 ,从而有
,(4分)
对于 ,有
,(7分)
对于 ,有
所以 是 中的矩阵范数.(10分)
七、解
,
, ,
.(10分)
八、容易求出矩阵A的最小多项式为 ,所以 ,于是
由此知 的内插多项式表示为
.(6分)
将矩阵A代入上式得
.
当 时, ,故
一、(10分) 为数域,对于线性空间 中任意矩阵 ,规则 , 分别为
,问 , 是否为 上的变换,如果是,证明该变换为线性变换,并求该变换在基 , , , 下的矩阵,判断该变换是否为可逆变换.
解:因 , ,故 为 上的变换, 不是 上的变换。(4分)
又对于线性空间 中任意矩阵 , , ,故为线性变换。(6分)
七、(10分)已知函数矩阵
,
其中 ,试求 , , , .
八、(10分)已知矩阵 ,写出矩阵函数 的Lagrange-Sylvester内插多项式表示,并计算 .
.
长 春 理 工 大 学
研 究 生 期 末 考 试标准答案及评分标准
科目名称:矩阵论命题人:姜志侠
适用专业:审核人:
开课学期:2012——2013学年第 一 学期□开卷√闭卷
长 春 理 工 大 学
研 究 生 期 末 考 试试 题
科目名称:矩 阵 论命题人:姜志侠
适用专业:理 工 科审核人:
开课学期:2013 ——2014 学年第 一 学期□开卷 √闭卷
一、(10分) 为数域,对于线性空间 中任意矩阵 ,规则 , 分别为 ,问 , 是否为 上的变换,如果是,证明该变换为线性变换,并求该变换在基 , , , 下的矩阵.
中科大2014矩阵分析期末试卷

矩阵试卷 2014-1-5by 苏肖龙 李德方1、判断题(20分)1)矩阵的初等行变换可以改变矩阵的列秩?2)是格的一组约化基,那么是的判别ω1,ω2,……ωn ΛLLL ‖ω1‖≤2n ‒38d (Λ)1n,其中d(Λ)Λ式?3)酉方阵的特征值的绝对值一定等于1?4)给定一个矩阵,它的广义逆矩阵不存在或者是唯一的?5)不是中的本原多项式?x 6+x 5+x 4+x 3+x 2+x 1+1F 2[x ]2、(15分)给出课堂上提到过的矩阵之间的所有的等价关系,并给出详细解释。
3、(15分)1)将如下二次型化为标准型:x 1x 2+x 2x 3+x 1x 4+x 3x 42)是如下的对称矩阵,求出一个可逆方阵,使得是对角形:A P P T AP A =(‒23631‒16‒14)4、10分) 是如下的n 阶循环矩阵A 000a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦1n-112n-1n-2....... . . 1)给出可逆的条件;A 2)在可逆的情况下,求出的你方阵。
A A 5.(20分)1)画出以 为反馈多项式的的框图;32++1x x LFSR 2)该输出序列 的周期为多少?是否为序列?如果是,给出详细的游程分布LFSR {}S=s i m (各种长度的0游程和1游程的个数)。
3)令 ,T 称为S 的一条采样序列,T 是否为m 序列?如果是,求出T 的线性递归{}M T s =方程;4)两条序列S 和T 的互相关定义为:,其中N 为和的周1S,T 0C ()(1)N S T ττττ-+==-∑S T 期,对于,求出 的值,并解释你发现的规律。
05τ≤≤,()S T C Γ6、(20分)是一个的矩阵(),是一个的对角方阵,找到和使H 0M ×K M >K D 0K ×K H 1D 1得 =,其中的行数为,列数不定,的列数为,行数不定,而且的H 0×D 0D 1×H 1D 1M H 1K D 1元素只和有关,与无关,要求:的列数(即的行数)越小越好。
线性代数期末试卷及解析(4套全)2018科大

线性代数期末试卷一一、填空题(本题共6小题,每小题4分,满分24分,把答案填在题中横线上)(5)设矩阵210120001⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,矩阵B 满足*2=+ABA BA E ,其中*A 为A 的伴随矩阵,E 是单位矩阵,则||=B __________.解:||=B 19.显然||3=A ,在等式*2=+ABA BA E 两端右乘A 得36=+AB B A (36)-=A E B A 上式取行列式03030||3003=-B故 1||9=B . 方法二:因||3=A ,则*31||||9-==A A将**2=+ABA BA E 移项得 *(2)-=A E BA E 两端取行列式得1||91⋅⋅=B ,故1||9=B .二、选择题(本题8小题,每小题4分,满分32分. 在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项前的字母填在题后的括号内.)(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足=AQ C 的可逆矩阵Q 为(A )010100.101⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B )010101001⎛⎫ ⎪ ⎪ ⎪⎝⎭. (C )010100011⎛⎫ ⎪ ⎪ ⎪⎝⎭. (D )011100001⎛⎫ ⎪⎪ ⎪⎝⎭.解:(D )正确. 由题意12=AE B ,其中12010100001⎛⎫⎪= ⎪ ⎪⎝⎭E 为第一种类型初等矩阵,23(1)=BE C ,其中23100(1)011001⎛⎫ ⎪= ⎪ ⎪⎝⎭E 为第三种类型初等矩阵.于是有 1223(1)==AE E C AQ则 1223010100011(1)100011100001001001⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭Q E E与所给答案比较,选(D ).(12)设,A B 为满足=AB 0的任意两个非零矩阵,则必有 (A )A 的列向量组线性相关,B 的行向量组线性相关. (B )A 的列向量组线性相关,B 的列向量组线性相关. (C )A 的行向量组线性相关,B 的行向量组线性相关. (D )A 的行向量组线性相关,B 的列向量组线性相关. 解:(A )正确.设A 为m n ⨯矩阵,B 为n p ⨯矩阵,因为 =AB 0故 ()()r r n +≤A B ,其中(),()r r A B 分别表示矩阵,A B 的秩.又因为,A B 皆是非零矩阵,故()0,()0r r >>A B ,所以()r n <A ,()r n <B .因此A 的列秩数,B 的行秩数小于n ,这说明A 的列向量组线性相关,B 的行向量组线性相关,故选(A ).取101000⎛⎫= ⎪⎝⎭A ,100110⎛⎫⎪= ⎪⎪-⎝⎭B ,则0000⎛⎫= ⎪⎝⎭AB , 由B 的列向量组线性无关知(B )、(D )错误.取101010-⎛⎫= ⎪⎝⎭A ,100110⎛⎫⎪= ⎪ ⎪-⎝⎭B ,则0000⎛⎫= ⎪⎝⎭AB ,由A 的行向量组线性无关知(C )错误.三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (20)(本题满分9分) 设有齐次线性方程组121212(1)0,2(2)20,(2)()0,n nn a x x x x a x x n nx nx n a x ++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩L L L L L试问a 取何值时,该方程组有非零解,并求出其通解.解法1 对方程组的系数矩阵A 作初等行变换,有11111111222220000aa a a a n n n n a na a ++⎛⎫⎛⎫ ⎪ ⎪+- ⎪ ⎪=→= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭A B L L L L L L L L L L. 当0a =时,()1r n =<A ,故方程组有非零解,其同解方程组为120n x x x +++=L , 由此得基础解系为T T T121(1,1,0,,0),(1,0,1,,0),,(1,0,0,,1)n -=-=-=-ηηηL L L L ,于是方程组的通解为1111n n x k k --=++ηηL ,其中11,,n k k -L 为任意常数. 当0a ≠时,对矩阵B 作初等行变换,有(1)1111000221002100.001001n n a a n n +⎛⎫++⎛⎫ ⎪⎪⎪-⎪-→→⎪ ⎪⎪ ⎪ ⎪ ⎪-⎪⎝⎭-⎝⎭B L L L L L L L L LL可知(1)2n n a +=-时,()1r n n =-<A ,故方程组也有非零解,其同解方程组为 1213120,30,0,n x x x x nx x -+=⎧⎪-+=⎪⎨⎪⎪-+=⎩M由此得基础解系为T(1,2,,)n =ηL , 于是方程组的通解为x k =η,其中k 为任意常数. 解法2 方程组的系数行列式为111112222(1)||.2n aa n n a a nnn n a-+++⎛⎫==+ ⎪⎝⎭+A L L L LL当||0=A ,即0a =或(1)2n n a +=-时,方程组有非零解.当0a =时,对系数矩阵A 作初等行变换,有1111111122220000,0000n n n n ⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪=→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A L L L L L L L L L L 故方程组的同解方程组为120,n x x x +++=L 由此得基础解系为T T T121(1,1,0,,0),(1,0,1,,0),,(1,0,0,,1)n -=-=-=-ηηηL L L L ,于是方程组的通解为1111n n x k k --=++ηηL ,其中11,,n k k -L 为任意常数.当(1)2n n a +=-时,对系数矩阵A 作初等行变换,有 11111111222220000aa a a an n n n a na a ++⎛⎫⎛⎫⎪⎪+-⎪ ⎪=→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭A L L LLL L L L L L . 1111000021002100.00101a n n +⎛⎫⎛⎫⎪⎪--⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭L L LL L L L L L L 故方程组的同解方程组为1213120,30,0,n x x x x nx x -+=⎧⎪-+=⎪⎨⎪⎪-+=⎩M由此得基础解系为T(1,2,,)n =ηL , 于是方程组的通解为x k =η,其中k 为任意常数. (21)(本题满分9分)设矩阵12314315a -⎛⎫⎪=-- ⎪ ⎪⎝⎭A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化.解:A 的特征多项式为1232201431431515a aλλλλλλλ-----=-------11010(2)143(2)13315115aa λλλλλλ-=--=---------2(2)(8183)a λλλ=--++.若2λ=是特征方程的二重根,则有22161830a -++=,解得2a =-.当2a =-时,A 的特征值为2,2,6,矩阵1232123123-⎛⎫⎪-=- ⎪ ⎪--⎝⎭E A 的秩为1,故2λ=对应的线性无关的特征向量有两个,从而A 可相似对角化.若2λ=不是特征方程的二重根,则28183a λλ-++为完全平方,从而18316a +=,解得23 a=-.当23a=-时,A的特征值为2,4,4,矩阵32341032113⎛⎫⎪-⎪-= ⎪⎪--⎪⎝⎭E A的秩为2,故4λ=对应的线性我关的特征向量只有一个,从而A不可相似对角化.线性代数期末试卷二一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中的横线上.) (6)同数学(一)一、(5).二、选择题(本题共8小题,每小题4分,满分32分. 在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项目前的字母填在题后的括号内.) (13)同数学(一)二、(11). (14)同数学(一)二、(12).三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (22)(本题满分9分) 设有齐次线性方程组1234123412341234(1)0,2(2)220,33(3)30,444(4)0,a x x x x x a x x x x x a x x x x x a x ++++=⎧⎪++++=⎪⎨++++=⎪⎪++++=⎩试问a 取何值时,该方程组有非零解,并求出其通解.解法1 对方程组的系数矩阵A 作初等行变换,有111111112222200.33333004444400aa a a a a a a a a a ++⎛⎫⎛⎫ ⎪ ⎪+- ⎪ ⎪=→= ⎪ ⎪+- ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭A B 当0a =时,()14r =<A ,故方程组有非零解,其同解方程组为 12340x x x x +++=.由此得基础解系为T T T123(1,1,0,0),(1,0,1,0),(1,0,0,1)=-=-=-ηηη,于是所求方程组的通解为112233k k k =++x ηηη,其中123,,k k k 为任意常数. 当0a ≠时,11111000021002100,3010301040014001a a ++⎛⎫⎛⎫ ⎪ ⎪--⎪ ⎪→→ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭B 可知10a =-时,()34r =<A ,故方程组也有非零解,其同解方程组为12131420,30,40,x x x x x x -+=⎧⎪-+=⎨⎪-+=⎩由此得基础解系为 T(1,2,3,4)=η,于是所求方程组的通解为 k =x η,其中k 为任意常数. 解法2 方程组的系数行列式311112222||(10)33334444aa a a a a++==+++A .当||0=A ,即0a =或10a =-时,方程组有零解. 当0a =时,对系数矩阵A 作初等行变换,有11111111222200003333000044450000⎛⎫⎛⎫⎪⎪⎪ ⎪=→ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭A , 故方程组的同解方程组为12340.x x x x +++= 其基础解系为T T T123(1,1,0,0),(1,0,1,0),(1,0,0,1)=-=-=-ηηη,于是所求方程组的通解为112233k k k =++x ηηη,其中123,,k k k 为任意常数. 当10a =-时,对A 作初等行变换,有911191112822201000337330010*******0010--⎛⎫⎛⎫⎪ ⎪--⎪ ⎪=→⎪ ⎪-- ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭A91110000210021003010301040014001-⎛⎫⎛⎫⎪⎪--⎪ ⎪→→⎪ ⎪-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭, 故方程组的同解方程组为2131412,3,4,x x x x x x =⎧⎪=⎨⎪=⎩其基础解系为T(1,2,3,4)=η,于是所求方程组的通解为x k =η,其中k 为任意常数. (23)(本题满分9分) 同数学(一)三、(21).线性代数期末试卷三一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(4)二次型222123122331(,,)()()()f x x x x x x x x x =++-++的秩为_________.解:秩为 2 .222123122331(,,)()()()f x x x x x x x x x =++-++ 222123121323222222x x x x x x x x x =++++-于是二次型f 的表示矩阵为211121112⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A易求得()2r =A ,故二次型f 的秩为2.二、选择题(本题8小题,每小题4分,满分32分. 在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项前的字母填在题后的括号内.) (12)设n 阶矩阵A 与B 等价,则必有 (A )当||(0)a a =≠A 时,||a =B . (B )当||(0)a a =≠A 时,||a =-B . (C )当||0≠A 时,||0=B . (D )当||0=A 时,||0=B . 解:(D )正确.因为n 阶矩阵A 与B 等价,故存在n 阶可逆矩阵,P Q 使 =PAP B故 ||||||||=B P A Q当||0=A 时,自然有||0=B ,故(D )正确.当||0≠A 时,由||,||P Q 皆不为零,故||0≠B ,所以(C )错误.当||0a =≠A 时,||||||a =B P Q ,仅由A 与B 等价,无法推出||||1=±P Q ,故(A )、(B )不正确.当,A B 相似时,(A )才正确.(13)设n 阶矩阵A 的伴随矩阵*≠A 0,若1234,,,ξξξξ是非齐次线性方程组=Ax b 的互不相等的解,则对应的齐次线性方程组=Ax 0的基础解系.(A )不存在. (B )仅含一个非零解向量. (C )含有两个线性无关的解向量. (D )含有三个线性无关的解向量. 解:(B )正确.因*=A 0,故*A 中至少有一个非零元素. 由于*A 中元素恰为A 的1n -阶代数余子式所组成,故A 至少有一个1n -阶子式非零,这表明()1r n ≥-A .现断言()r n ≠A ,否则A 可逆,则线性方程组=Ax b 有惟一解,这与12,ξξ是非齐次线性方程组=Ax b 不同的解矛盾.由此必有()1r n =-A ,所以齐次线性方程组=Ax 0的解空间维数为(1)1n n --=,即=Ax 0的基础解仅含一个非零解向量. 可见(B )正确,(A )错误.尽管从1234,,,ξξξξ是非齐次线性方程组=Ax b 的互不相等的解,可以得出=Ax 0有三个不同的非零解,如121314,,,---ξξξξξξ但是它们是成比例的线性相关解,也就是说=Ax 0不会有两个,更不会有三个线性无关的解向量,即(C )、(D )不正确.三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (20)(本题分13分)设T T T 123(1,2,0),(1,2,3),(1,2,2)a a b a b ==+-=---+ααα,T(1,3,3)=-β. 试讨论当,a b为何值时,(I )β不能由123,,ααα线性表示;(II )β可由123,,ααα惟一地线性表示,并求出表示式;(III )β可由123,,ααα线性表示,但表示式不惟一,并求出表示式. 解:设有数123,,k k k ,使得112233k k k ++=αααβ. (*) 记123(,,)=A ααα. 对矩阵()Aβ施以初等行变换,有1111()22230323a b a a b -⎛⎫ ⎪=+-- ⎪ ⎪-+-⎝⎭A β111101000a b a b -⎛⎫ ⎪→- ⎪ ⎪-⎝⎭.(I )当0,a b =为任意常数时,有1111()0010001b -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A β.可知()()r r ≠A A β. 故方程组(*)无解,β不能由123,,ααα线性表示.(II )当0a ≠,且a b ≠时()()3r r ==A A β,故方程组(*)有惟一解 123111,,0,k k k a a=-== 则β可由123,,ααα惟一地线性表示,其表示式为1211(1)a a=-+βαα.(III )当0a b =≠时,对()A β施以初等行变换,有110011()011.0000a a ⎛⎫- ⎪ ⎪⎪=- ⎪ ⎪ ⎪ ⎪⎝⎭A β. 可知()()2r r ==A A β,故方程组(*)有无穷多解,其全部解为123111,(),k k c k c a a=-=+=,其中c 为任意常数.β可由123,,ααα线性表示,但表示式不惟一,其表示式为12311(1)()c c a a=-+++βααα. (21)(本题满分13分)111b b bb b b ⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭A L L M M M L. (I )求A 的特征值和特征向量;(II )求可逆矩阵P ,使得1-P AP 为对角矩阵. 解:(I )1º当0b ≠时,11||1b b b b bbλλλλ-------=---E A L LM M ML1[1(1)][(1)]n n b b λλ-=-----.故A 的特征值为121(1),1n n b b λλλ=+-===-L .对于11(1)/n b λ=+-,设A 的属于特征值1λ的一个特征向量为1ξ,则1111[1(1)]1b b b b n b b b ⎛⎫⎪ ⎪=+- ⎪ ⎪ ⎪⎝⎭ξξL L M M M L , 解得T1(1,1,,1)=ξL ,所以全部特征向量为T1(1,1,,1)k k =ξL (k 为任意非零常数).对于21n b λλ===-L ,解齐次线性方程组[(1)]0b --=E A x ,由111000(1)000b b b b b b b b b b ---⎛⎫⎛⎫⎪ ⎪---⎪ ⎪--=→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭E A L L LL M M M M M M L L, 解得基础解系T2(1,1,0,,0)=-ξL ,T3(1,0,1,,0)=-ξL ,… …T(1,0,0,,1)n =-ξL .故全部特征向量为2233n n k k k +++ξξξL (2,,n k k L 是不全为零的常数). 2º当0b =时,特征值11n λλ===L ,任意非零列向量均为特征向量. (II )1º当0b ≠时,A 有n 个线性无关的特征向量,令12(,,,)n =P ξξξL ,则 1diag{1(1),1,,1}.n b b b -=+---P AP L 2º当0b =时,=A E ,对任意可逆矩阵P ,均有 1-=P AP E .注:T1(1,1,,1)=ξL 也可由求解齐次线性方程组1()λ-=E A x 0得出.线性代数期末试卷四一、填空题(本题共6小题,每小4分,满分24分. 把答案填在题中横线上.)(4)设1010100,001--⎛⎫ ⎪== ⎪ ⎪-⎝⎭A B P AP ,其中P 为三阶可逆矩阵,则200422-=B A _________. 解:300030001⎛⎫ ⎪ ⎪ ⎪-⎝⎭. 由010100001-⎛⎫ ⎪= ⎪ ⎪-⎝⎭A 得2100010001-⎛⎫ ⎪=- ⎪ ⎪⎝⎭A ,故4=A E ,其中E 是3阶单位阵,所以2004=A E .由1-=B P AP 得200412004-==B P A P E于是 20042210020030022010020030001002001-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-=-=--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭BA E A . (5)设33()ij a ⨯=A 是实正交矩阵,且T 111,(1,0,0)a b ==,则线性方程组=Ax b 的解是__________.解:T (1,0,0).在方程=Ax b 两端左乘TAT T =A Ax A b 则 2131T 122232121323331311100a a a a a a a a a a ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭x A b将 12131a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭x 代回=Ax b 有2131122232121323331311100a a a a a a a a a a ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭由此得22121311a a ++=因A 为实矩阵,故12130a a ==,因此=Ax b 的解为100⎛⎫ ⎪= ⎪ ⎪⎝⎭x .二、选择题(本题共8小题,每小题4分,满分32分. 在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项前的字母填在题后的括号内.)(12)同数学(三)二、(12).三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.)(20)(本题满分13分)设线性方程组1234123412340,220,3(2)(4)41,x x x x x x x x x x x x λμλμ+++=⎧⎪+++=⎨⎪+++++=⎩已知T(1,1,1,1)--是该方程组的一个解. 试求(I )方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解; (II )该方程组满足23x x =的全部解.解:将T (1,11,1)--代入方程组,得λμ=. 对方程组的增广矩阵施以初等变换,得 1102112032441λλλλ⎛⎫ ⎪= ⎪ ⎪++⎝⎭A 102101311.002(21)2121λλλλλλ---⎛⎫ ⎪→ ⎪ ⎪---⎝⎭(I )当12λ≠时,有 1001011010.221100122⎛⎫ ⎪ ⎪ ⎪→-- ⎪ ⎪ ⎪ ⎪⎝⎭A 因()()34r r ==<A A ,故方程组有无穷多解,全部解为T T 11(0,,,0)(2,1,1,2)22k =-+--ξ, 其中k 为任意常数.当12λ=时,有 11101220131100000⎛⎫-- ⎪ ⎪→ ⎪ ⎪ ⎪⎝⎭A .因()()24r r ==<A A ,故方程组有无穷多解,全部解为T T T 121(,1,0,0)(1,3,1,0)(1,2,0,2)2k k =-+-+--ξ, 其中12,k k 为任意常数.(II )当12λ≠时,由于23x x =,即 1122k k -+=-. 解得12k =,方程组的解为T T T 111(0,,,0)(2,1,1,2)(1,0,0,1)222=-+--=-ξ. 当12λ=时,由于23x x =,即 121132k k k --=. 解得121142k k =-,故全部解为 T T 2111311(,,,0)(,,,2)444222k =-+---ξ, 其中2k 为任意常数.[注]:在题(II )中,12λ=时,解得21122k k =-时,全部解也可以表示为 T T 1(1,0,0,1)(3,1,1,4)k =-+-ξ,其中1k 为任意常数.(21)(本题满分13分)设三阶实对称矩阵A 的秩为122,6λλ==是A 的二重特征值. 若T T T 123(1,1,0),(2,1,1),(1,2,3)===--ααα都是A 的属于特征值6的特征向量. (I )求A 的另一特征值和对应的特征向量;(II )求矩阵A .解:(I )因为126λλ==是A 的二重特征值,故A 的属于特征值6的线性无关的特征向量有2个. 由题设可得123,,ααα的一个极大无关组为12,αα,故12,αα为A 的属于特征值6的线性无关的特征向量.由()2r =A 可知,||0=A ,所以A 的另一特征值30λ=. 设30λ=所对应的特征向量为T 123(,,)x x x =α,则有T T120,0==αααα,即 121230,20.x x x x x +=⎧⎨++=⎩ 解得此方程组的基础解系为T (1,1,1)=-α,即A 的属于特征值30λ=的特征向量为T (1,1,1)c c =-α,(c 为不为零的任意常数).(II )令矩阵123(,,)=P ααα,则1600060000-⎛⎫ ⎪= ⎪ ⎪⎝⎭P AP ,所以 1600060000-⎛⎫ ⎪= ⎪ ⎪⎝⎭A P P .又1011112333111333-⎛⎫ ⎪- ⎪ ⎪=- ⎪ ⎪ ⎪- ⎪⎝⎭P , 故422242.224⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A。
研究生课程-《矩阵分析》试题及答案

第一套试题答案一(10分)、证明:(1)设11k x +22k x +33k x =0, ①用σ作用式①两端,有111k x λ+222k x λ+333k x λ=0 ②1λ⨯①-②,有21223133()()0k x k x λλλλ-+-= ③再用σ作用式③两端,有2122231333()()0k x k x λλλλλλ-+-= ④ ③⨯2λ-④,有313233()()0k x λλλλ--=。
由于123,,λλλ互不相等,30x ≠,因此30k =,将其代入④,有20k =,利用①,有10k =。
故1x ,2x ,3x 是线性无关的。
(2)用反证法。
假设1x +2x +3x 是σ的属于特征值λ的特征向量,于是有123123()()x x x x x x σλ++=++即112223123()x x x x x x λλλλ++=++112223()()()0x x x λλλλλλ-+-+-=由于1x ,2x ,3x 线性无关,因此123λλλλ===,这与123,,λλλ互不相等矛盾。
所以,1x +2x +3x 不是σ的特征向量。
二(10分)、解:2312321232()()1;()(2);()(2)()1;()(2);()(2)1()(2)(2)A D D D d d d A λλλλλλλλλλλλλλλλλλλλ==-=-==-=-⎛⎫⎪- ⎪ ⎪-⎝⎭的行列式因子分别为,不变因子分别为,于是的Smith 标准形为.三(10分)、解:11121634E A λλλλ+⎛⎫ ⎪-= ⎪ ⎪---⎝⎭210001000(1)λλ⎛⎫ ⎪≅- ⎪ ⎪-⎝⎭A λλ2矩阵的初等因子为: -1, (-1),100:011001J ⎛⎫⎪= ⎪ ⎪⎝⎭故约当标准形为。
四(12分)、解:令()()()1120,E A λλλλ-=-++=得特征值123112λλλ==-=-,,,解齐次方程组()0,E A x -=()2;Tii α=1得基础解系解齐次方程组()0,E A x --=()101;Tα=-2得基础解系解齐次方程组()20,E A x --=()1;T ii α=-3得基础解系αααααα123123由于,,已两两正交,将,,单位化得()()()11121011623T T Tp i i p p i i --123=,=,= ()1,(2)1.3H U p p p U AU ⎛⎫⎪==- ⎪ ⎪⎝⎭123令分,则五(10分)、解:(){}11(1),01,()TAx o i N A span ξξ===解齐次方程组得基础解系,,;又(){}{}()232323010,,,,100,,00H H R A span o span A o i ξξξξξξ⎛⎫⎪===-= ⎪ ⎪-⎝⎭这里,; 显然(),0,iji j ξξ=≠当时;()().HN A R A ⊥故有()()()()()()()()()333(2)dim dim dim 3dim ,Q H H H H N A R A C N A R A N A R A C N A R A C ++=+==+=是的子空间且故。
中国科学技术大学考试试卷集(二)

三、证明Hausdorff-Young不等式:f 2 Lp; 1 Ä p Ä 2; p0为p的对偶指标,则kfOkp0 Ä kf kp.
四、考虑仿射群.R2C; / WD f.b; a/ W b 2 R; a > 0g赋予运算.b1; a1/ .b2; a2/ D .b1 C a1b2; a1a2/.
|
中科大2016 年复分析(H)期中试题
1、(24 分)计算下列积分。
(1)
∫ |dz|
|z|=2 z − 1
(2)
∫ dz
|z|=2 (z − 3)2(z4 − 1)
(3)
∫ +∞
ex 2
−∞ 1 + ex dx
2、(40 分)判断下列说法是否正确,说明理由。
(1)全纯函数一定有原函数;
(2)调和函数 log|z| 没有共轭调和函数;
2、(2 分)设 f (z) = z−1(1 − z)3(1 + z)−1,求 f (z) 在扩充的复平面上的所有支点,并求 f (z) 在 [0, 1] 上岸取正值的单值分支在点 z = i 的值。
3、(2 分)
叙述有界单连通区域的柯西定理,并对三角形区域给出详细证明。
4、(2 分)计算题
(1)计算留数
(4)设 f 为整函数且 Re(f ) < 0,则 f 为常数;
(5)设 f 为增长阶数有限的整函数,如果存在复数 a, b,使得对任意的 z ∈ C,都有 f (z) ̸= a,
f (z) ̸= b,则 f 为常数;
2、(20 分)计算下列积分。
(1)
∫ +∞ cosx −∞ a2 + x2 dx, where a > 0;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
by苏肖龙李德方
1、判断题(20分)
1)矩阵的初等ቤተ መጻሕፍቲ ባይዱ变换可以改变矩阵的列秩?
2) 是格 的一组 约化基,那么 是 的判别式?
3)酉方阵的特征值的绝对值一定等于1?
4)给定一个矩阵,它的广义逆矩阵不存在或者是唯一的?
5) 不是 中的本原多项式?
2、(15分)给出课堂上提到过的矩阵之间的所有的等价关系,并给出详细解释。
3、(15分)
1)将如下二次型化为标准型:
2) 是如下的对称矩阵,求出一个可逆方阵 ,使得 是对角形:
4、10分) 是如下的n阶循环矩阵
1)给出 可逆的条件;
2)在 可逆的情况下,求出 的你方阵。
5.(20分)
1)画出以 为反馈多项式的 的框图;
2)该 输出序列 的周期为多少?是否为 序列?如果是,给出详细的游程分布(各种长度的0游程和1游程的个数)。
3)令 ,T称为S的一条采样序列,T是否为m序列?如果是,求出T的线性递归方程;
4)两条序列S和T的互相关定义为: ,其中N为 和 的周期,对于 ,求出 的值,并解释你发现的规律。
6、(20分) 是一个 的矩阵( ), 是一个 的对角方阵,找到 和 使得 = ,其中 的行数为 ,列数不定, 的列数为 ,行数不定,而且 的元素只和 有关,与 无关,要求: 的列数(即 的行数)越小越好。