2014矩阵分析试卷

合集下载

考研数学一(行列式、矩阵)历年真题试卷汇编1(题后含答案及解析)

考研数学一(行列式、矩阵)历年真题试卷汇编1(题后含答案及解析)

考研数学一(行列式、矩阵)历年真题试卷汇编1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.[2014年]行列式=( ).A.(ad-bc)2B.一(ad-bc)2C.a2d2一b2c2D.一a2d2+b2c2正确答案:B解析:令,则此为非零元素仅在主、次对角线上的行列式,即得|A|=一(ad-bc)(ad-bc)=一(ad-bc)2.仅B入选.知识模块:行列式2.设A是m×n矩阵,B是n×m矩阵,则( ).A.当m>n时,必有行列式|AB|≠0B.当m>n时,必有行列式|AB|=0C.当n>m时,必有行列式|AB|≠0D.当n>m时,必有行列式|AB|=0正确答案:B解析:利用矩阵秩和乘积矩阵秩的两不大于法则确定正确选项.因AB为m 阶矩阵,行列式|AB|是否等于零取决于其秩是否小于m.利用矩阵秩的两不大于法则得到m>n时,有秩(A)≤min{m,n}=n<m,秩(B)≤min{m,n}=n <m.再利用乘积矩阵秩的两不大于法则得到秩(AB)≤min{秩(A),秩(B)}<m,而AB为m阶矩阵,故|AB|=0.仅B入选.知识模块:行列式3.[2012年]设A为三阶矩阵,P为三阶可逆矩阵,且P-1AP=.若P=[α1,α2,α3],Q=[α1+α2,α2,α3],则Q-1AQ=( ).A.B.C.D.正确答案:B解析:因Q=[α1+α2,α2,α3]=[α1,α2,α2],故因而Q-1AQ 知识模块:矩阵4.[2008年] 设A为n阶非零矩阵,E为n阶单位矩阵,若A3=O,则( ).A.E—A不可逆,E+A不可逆B.E—A不可逆,E+A可逆C.E—A可逆,E+A可逆D.E—A可逆,E+A不可逆正确答案:C解析:由A3=O知A为幂零矩阵,故其特征值λ1=λ2=…=λn=0,因而E —A与E+A的n个特征值均为μ1=μ2=…=μn=1,故E一A与E+A没有零特征值.可知,它们均可逆.知识模块:矩阵填空题5.设n阶矩阵,则|A|=______.正确答案:(一1)n-1(n一1)解析:|A|是行和与列和都相等的行列式.将各列加到第1列,提取公因式n一1,去掉与第1列成比例的分列,化为下三角形行列式,得=(一1)n-1(n 一1).知识模块:行列式6.[2015年] n阶行列式=______.正确答案:2n+1-2解析:按第1行展开得到递推关系式:=2Dn-1+2(一1)n+1(一1)n-1=2Dn-1+2.依此递推,得到Dn=2Dn-1+2=2(2Dn-2+2)+2=22Dn-2+22+2=22(2Dn-3+2)+22+2=23Dn-3+23+22+2 =…=2n-1D1+2n-1+2n-2+…+22+2=2n-1·2+2n-1+2n-2+…+22+2=2n+2n-1+2n-2+…+22+2=2(1+2+22+…+2n-1).由等比级数求和的公式a1+a1q+a1q2+…+a1qn-1=,令a1=2,q=2,得到Dn=2(1+2+22+…+2n-1)==(一1)(2—2n+1)=2n+1-2.知识模块:行列式7.[2016年]行列式=______.正确答案:λ4+λ3+2λ2+3λ+4解析:=λ[λ·λ·(λ+1)+0·2·0+3(-1)(一1)一0·λ·3一(一1)·2·λ—(λ+1)(一1)·0]+4=λ4+λ3+2λ2+3λ+4.知识模块:行列式8.设A,B为n阶矩阵,|A|=2,|B|=一3,则|2A*B-1|=______.正确答案:一22n-1/3解析:由|kA|=kn|A|.A*=|A|A-1,|A*|=|A|n-1,|B-1|=1/|B|,有|2A*B-1|=|2A*||B-1|=2n|A*|(1/|B|)=2n|A|n-1一/|B|=2n2n-1/(一3)=一22n-1/3.知识模块:行列式9.[2005年] 设α1,α2,α3均为三维列向量,记矩阵A=[α1,α2,α3],B=[α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3].如|A|=1,那么|B|=______·正确答案:2解析:B=[α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3]=[α1,α2,α3]=AC.其中为三阶范德蒙行列式,则|C|=(2—1)×(3—1)×(3—2)=2,故|B|=|A||C|=2×1=2.知识模块:行列式10.[2006年]设矩阵,E为二阶单位矩阵,矩阵B满足BA=B+2E,则|B|=______.正确答案:2解析:由BA=B+2E得|B(A—E)|=|2E|=22=4,故|B||A—E|=4,|B|=4/|A—E|=4/2=2.知识模块:行列式11.[2004年]设矩阵,矩阵B满足ABA*=2BA*+E,其中A*为A的伴随矩阵,E是单位矩阵,则|B|=______.正确答案:1/9解析:在所给方程的两边同时右乘A,利用A*A=|A|E,得到ABA*A=2BA*A+A,即|A|AB=2|A|B+A,移项即得|A|(A一2E)B=A.两边取行列式,得到|A|(A-2E)B|=|A|,即|A|3|(A-2E)B|=|A|,|A|2|A一2E||B|=1,再由|A|=3,|A一2E|=1得到所求行列式|B|=1/|A|2=1/9.知识模块:行列式12.设三阶矩阵A的特征值为1,2,2,E为三阶单位矩阵,则|4A-1一E|=______.正确答案:3解析:所求结果应与A能否与对角矩阵相似无关,现用加强条件法求出此结果.如A与对角矩阵相似,则存在可逆矩阵P,使得P-1AP=diag(1,2,2)=Λ,即A=PΛP-1.于是A-1=PΛ-1P-1,4A-1一E=4PΛ-1P-1一PEP-1=P(4Λ-1一E)P-1.两端取行列式有|4A-1一E|=|P||4Λ-1一E||P-1|=|4Λ-1一E|=|4diag(1,1/2,1/2)一E|=3.知识模块:行列式13.[2013年] 设A=(aij)是三阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3),则|A|=______.正确答案:-1解析:由aij=一Aij,则(aij)T=一(Aij)T=一(Aji),即AT=一A*,从而|A|=|AT|=|—A*|=(一1)3|A|3-1=一|A|2.即|A|2+|A|=|A|(|A|+1)=0,故|A|=0或|A|=一1.若|A|=0,则由|A|=ai1Ai1+ai2Ai2+ai3Ai3=一(ai12+ai22+ai32)=0 (i=1,2,3)得到aij=0(i,j=1,2,3),即矩阵A为零矩阵.这与假设矛盾,故|A|=一1. 知识模块:行列式14.若齐次线性方程组只有零解,则λ应满足的条件是______.正确答案:λ≠1解析:因方程个数与未知数的个数相同,又该方程组只有零解,可知,|A|≠0.而于是当λ≠1时,|A |≠0,即该方程组只有零解.知识模块:行列式15.设α为三维列向量,αT是α的转置.若ααT=,则αTα=______.正确答案:3解析:由ααT= 知,于是αTα=3.知识模块:矩阵16.设,而n≥2为整数,则An一2An-1=______.正确答案:O解析:先求出n=2和n=3时A2,A3的表示式,然后归纳递推求出An.当n=2时,A2==2A.当n=3时,A2=A2·A=2A·A=2A2=2·2A=22A.设Ak=2k-1A,下面证Ak+1=2kA.事实上,有Ak+1=Ak·A=2k-1A·A=2k-1A2=2k-1·2A=2kA.因而对任何自然数n,有An=2n-1A,于是An一2An-1=2n-1A一2·2n-2A=O.知识模块:矩阵解答题解答应写出文字说明、证明过程或演算步骤。

沈阳工业大学2014年矩阵分析习题

沈阳工业大学2014年矩阵分析习题

沈阳工业大学2014年矩阵分析习题1、在R22⨯中,求由基(Ⅰ):A 1=⎥⎦⎤⎢⎣⎡1012,A 2=⎥⎦⎤⎢⎣⎡2210,A 3=⎥⎦⎤⎢⎣⎡-2112,A 4=⎥⎦⎤⎢⎣⎡2131改为基(Ⅱ) B1=⎥⎦⎤⎢⎣⎡-0121,B2=⎥⎦⎤⎢⎣⎡-1111,B3=⎥⎦⎤⎢⎣⎡-1121,B4=⎥⎦⎤⎢⎣⎡--1011过渡矩阵。

解法1:直接法。

为求B1在基(Ⅰ)下的坐标,设 B1=k1A1+k2A2+k3A3+k4A4比较上式等号两矩阵的对应元素,可得线性方程组⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-2221112031111202⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4321k k k k =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-0121 惟一解,即B1在基于(Ⅰ)下坐标为)1,0,1,0(-=βT。

同理可得B2,B3,B4在基(Ⅰ)下的坐标依次为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=10112β,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=10013β,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=11014β于是,由基(Ⅰ)改变为基(Ⅱ)的过渡矩阵为C=(⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=1111100000111110)4,3,2,1ββββ) 解法2 采用中介法 R22⨯的简单基E11,E12,E21,E22,直接写出简单基改变为基(Ⅰ)和基(Ⅱ)的过渡矩阵C1=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-2221112031111202C2=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----1110011112121111由基(Ⅰ)改变为基(Ⅱ)的过渡矩阵为C=C 11-C 2=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----1111100000111110 2、在实数域R 上,二维向量集合{}),(21x x V ==α,定义如下的加法运算与数乘运算:对于{}),(11b a =α,()22,b a =β,()()()2121212211,,,a a b b a a b a b a +++=⊕=⊕βα,k ⊙α=k ⊙()()⎥⎦⎤⎢⎣⎡-+=21111121,,a k k kb ka b a .证明:V 是一个线性空间。

矩阵分析考试题及答案

矩阵分析考试题及答案

矩阵分析考试题及答案一、单项选择题(每题2分,共10分)1. 矩阵A和矩阵B的乘积AB是()。

A. 可逆的B. 不可逆的C. 非方阵D. 零矩阵答案:A2. 矩阵的秩是指()。

A. 矩阵中非零元素的个数B. 矩阵中行向量的最大线性无关组的个数C. 矩阵中列向量的最大线性无关组的个数D. 矩阵中行向量和列向量的最大线性无关组的个数答案:B3. 矩阵的特征值是()。

A. 矩阵的对角线元素B. 矩阵的非对角线元素C. 矩阵的特征多项式的根D. 矩阵的行列式答案:C4. 矩阵A和矩阵B相似的条件是()。

A. A和B的行列式相等B. A和B的迹相等C. A和B有相同的特征值D. A和B的秩相等答案:C5. 矩阵A的逆矩阵记作()。

A. A'B. A^TC. A^-1D. A^*答案:C二、填空题(每题2分,共10分)1. 如果矩阵A的行列式为0,则矩阵A是不可逆的。

答案:不可逆的2. 矩阵A和矩阵B的乘积AB等于BA的条件是A和B都是方阵。

答案:方阵3. 矩阵的秩等于矩阵的。

答案:行秩或列秩4. 矩阵的特征值是矩阵的特征多项式的根。

答案:特征多项式5. 矩阵的转置记作。

答案:A^T三、计算题(每题10分,共20分)1. 计算矩阵A=\(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\)的行列式。

答案:\(\boxed{-2}\)2. 求矩阵B=\(\begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}\)的特征值。

答案:特征值为\(\boxed{1}\)和\(\boxed{5}\)四、证明题(每题15分,共30分)1. 证明如果矩阵A和B是可逆的,则它们的乘积AB也是可逆的。

答案:略2. 证明矩阵A的特征值的和等于矩阵A的迹。

答案:略。

中科大2014矩阵分析期末试卷

中科大2014矩阵分析期末试卷

矩阵试卷 2014-1-5by 苏肖龙 李德方1、判断题(20分)1)矩阵的初等行变换可以改变矩阵的列秩?2)是格的一组约化基,那么是的判别ω1,ω2,……ωn ΛLLL ‖ω1‖≤2n ‒38d (Λ)1n,其中d(Λ)Λ式?3)酉方阵的特征值的绝对值一定等于1?4)给定一个矩阵,它的广义逆矩阵不存在或者是唯一的?5)不是中的本原多项式?x 6+x 5+x 4+x 3+x 2+x 1+1F 2[x ]2、(15分)给出课堂上提到过的矩阵之间的所有的等价关系,并给出详细解释。

3、(15分)1)将如下二次型化为标准型:x 1x 2+x 2x 3+x 1x 4+x 3x 42)是如下的对称矩阵,求出一个可逆方阵,使得是对角形:A P P T AP A =(‒23631‒16‒14)4、10分) 是如下的n 阶循环矩阵A 000a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦1n-112n-1n-2....... . . 1)给出可逆的条件;A 2)在可逆的情况下,求出的你方阵。

A A 5.(20分)1)画出以 为反馈多项式的的框图;32++1x x LFSR 2)该输出序列 的周期为多少?是否为序列?如果是,给出详细的游程分布LFSR {}S=s i m (各种长度的0游程和1游程的个数)。

3)令 ,T 称为S 的一条采样序列,T 是否为m 序列?如果是,求出T 的线性递归{}M T s =方程;4)两条序列S 和T 的互相关定义为:,其中N 为和的周1S,T 0C ()(1)N S T ττττ-+==-∑S T 期,对于,求出 的值,并解释你发现的规律。

05τ≤≤,()S T C Γ6、(20分)是一个的矩阵(),是一个的对角方阵,找到和使H 0M ×K M >K D 0K ×K H 1D 1得 =,其中的行数为,列数不定,的列数为,行数不定,而且的H 0×D 0D 1×H 1D 1M H 1K D 1元素只和有关,与无关,要求:的列数(即的行数)越小越好。

2014年10月04184自学考试线性代数精彩试题(卷)与问题详解

2014年10月04184自学考试线性代数精彩试题(卷)与问题详解
对于 ,求解齐次线性方程组 ,得到基础解系
将其单位化,得 ......7分
令 ,则 为正交矩阵,
经正交变换 ,化二次型为标准形 ......9分
4、证明题(本题7分)
23.证 由于向量组 线性相关,故存在不全为零的常数 ,使得
......2分
其中必有 。否则,如果 ,则上式化为
其中 不全为零,由此推出 线性相关,与向量组中任意两个向量都线性无关的条件矛盾 ......5分
类似地,可证明 ........7分
19.设向量
,试确定当 取何值时 能由 线性表出,并写出表示式。
20.求线性方程组 的通解(要求用其一个特解和导出组的基础解系表示)。
21.设矩阵 与对角矩阵 相似,求数 与可逆矩阵 ,使得 。
22.用正交变换将二次型 化为标准形,写出标准形和所作的正交变换。
四、证明题(本题7分)
23.设向量组 线性相关,且其中任意两个向量都线性无关。证明:存在全不为零的常数 使得 。
3.设向量组 的秩为2,则 中 【 】
A.必有一个零向量
B.B.任意两个向量都线性无关
C.存在一个向量可由其余向量线性表出
D.每个向量均可由其余向量线性表出
4.设3阶矩阵 ,则下列向量中是 的属于特征值 的特征向量为 【 】
A. B. C. D.
5.二次型 的正惯性指数为 【 】
A.0 B.1 C.2 D.3
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号。错选、多选或未选均无分。
1.设3阶行列式 =2,若元素 的代数余子公式为 (i,j=1,2,3),则 【 】
A. B.0 C.1 D.2
2.设 为3阶矩阵,将 的第3行乘以 得到单位矩阵 ,

考研数学二(行列式、矩阵、向量)历年真题试卷汇编3(题后含答案及解析)

考研数学二(行列式、矩阵、向量)历年真题试卷汇编3(题后含答案及解析)

考研数学二(行列式、矩阵、向量)历年真题试卷汇编3(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.[2014年] 行列式==( ).A.(ad—bc)2B.一(ad一bc)2C.a2d2一b2c2D.b2c2一a2d2正确答案:B解析:待计算的行列式为数字型行列式,且元素排列有一定规律,应利用行列式性质将其变形化为能直接使用非零元素仅在主、次对角线上的2n阶或2n 一1阶行列式计算:=(a1a2n一b1b2n)(a2a2n-1—b2b2n-1)…(anan+1—bnbn+1),=an(an-1an+1一bn-1bn+1)(an-2an+2一bn-2bn+2)…(a2n-1a1一b2n-1一b1).解一令.此为非零元素仅在主、次对角线上的行列式,由式(2.1.1.5),即得∣A∣=一(ad—bc)(ad—bc)=一(ad—bc)2.仅(B)入选.解二将∣A∣按第1行展开,然后可利用式(2.1.1.6)直接写出结果:∣A∣=(一a)=(一a)d(ad一bc)+bc(ad —bc)=一(ad—bc)(ad—bc)=一(ad—bc)2.仅(B)入选.知识模块:行列式2.记行列式为f(x),则方程f(x)=0的根的个数为( ).A.1B.2C.3D.4正确答案:B解析:利用行列式性质将f(x)化为含零子块的四分块矩阵的行列式或三角形行列式计算.(式(2.1.1.6))=5x(x-1).由此可知f(x)=0的根有2个.仅(B)入选.知识模块:行列式3.设A是m×n矩阵,B是n×m矩阵,则( ).A.当m>n时,必有行列式∣AB∣≠0B.当m>n时,必有行列式∣AB∣=0C.当n>m时,必有行列式∣AB∣≠0D.当n>m时,必有行列式∣AB∣=0正确答案:B解析:证秩(AB)<m或证ABX=0有非零解(利用命题2.1.2.7)证之.解一利用矩阵秩和乘积矩阵秩的两不大于的法则确定正确选项.因AB为m阶矩阵,行列式∣AB∣是否等于零取决于其秩是否小于m.利用矩阵秩的两不大于法则得到:(1)当m>n时,有秩(A)≤min{m,n)=n<m,秩(B)≤min{m,n}=n <m;(2)秩(AB)≤min(秩(A),秩(B)}<m,而AB为m阶矩阵,故∣AB∣=0.仅(B)入选.解二因BX=0的解必是ABX=0的解.而BX=0是n个方程m 个未知数的齐次线性方程组.当m>n时,BX=0有非零解,从而ABX=0有非零解,故∣AB∣=0.仅(B)入选.知识模块:行列式4.[2012年] 设A为三阶矩阵,P为三阶可逆矩阵,且P-1AP=.若P=[α1,α2,α3],Q=[α1+α2,α2,α3],则Q-1AQ=( ).A.B.C.D.正确答案:B解析:注意到Q的列向量为α1,α2,α3的线性组合,首先将Q改写为P与一数字矩阵相乘的形式,再代入Q-1AQ中进行运算,即可求得正确选项.解一因Q=[α1+α2,α2,α3]=[α1,α2,α3]因而Q-1AQ=,故仅(B)入选.解二用初等矩阵表示,有Q=PE12:(1),由E12-1(1)=E12(一1)得到Q-1AQ=[PE12(1)]-1APE12(1)=E12-1(1)P-1APE12(1)=E12(一1)P-1APE12(1)=仅(B)入选.知识模块:矩阵5.[2008年] 设A为n阶非零矩阵,E为n阶单位矩阵,若A3=0,则( ).A.E—A不可逆,E+A不可逆B.E—A不可逆,E+A可逆C.E一A可逆,E+A可逆D.E—A可逆,E+A不可逆正确答案:C解析:利用命题2.2.1.4及命题2.1.2.6求之.解一易求得(E —A)(E+A+A2)=E—A3=E,(E+A)(E-A+A2)=E+A3=E.由命题2.2.1.4知E一A可逆,E+A也可逆.仅(C)入选.解二由A3=O知A为幂零矩阵,故其特征值λ1=λ2=…=λn=0,因而E—A与E+A的n个特征值均为μ1=μ2=…=μn=1,故E一A与E+A没有零特征值,由命题2.1.2.6知,它们均可逆.仅(C)入选.知识模块:矩阵6.[2005年] 设矩阵A=[aij]3×3满足A*=AT,其中A*为A的伴随矩阵,AT为A的转置矩阵,若a11,a12,a13为3个相等的正数,则a11为( ).A.√3/3B.3C.1/3D.√3正确答案:A解析:出现第l行3个相等的元素,自然想到用行列式展开定理.用a11的表达式表示∣A∣,再利用命题2.1.2.8即可求出a11解一显然矩阵A满足命题2.1.2.8中的三个条件,因而由该命题即得∣A∣=1.将∣A∣按第1行展开得到1=∣A∣=a11A11+a12A12+a13A13=a112+a122+a132=3a112,故以a11=√3/3.仅(A)入选.解二由A*=AT,即,其中Aij为∣A∣中元素aij(i,j=1,2,3)的代数余子式,得aij=Aij(i,j=l,2,3).将∣A∣按第1行展开,得∣A∣=a11A11+a12A12+a13A13=a112+a122+a132=3a112>0.又由A*=AT得到∣A*∣=∣A∣3-1=∣AT∣=∣A∣,即∣A∣(∣A∣一1)=0,而∣A∣>0,故∣A∣一1=0,即∣A∣=1,则3a112=1,因a11>0,故a11==√3/3.仅(A)入选.知识模块:矩阵填空题7.[2005年] 设α1,α2,α3均为三维列向量.记矩阵A=[α1,α2,α3],B=[α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3].如果∣A∣=1,那么∣B∣=_________.正确答案:将分块矩阵B改写为分块矩阵A右乘另一数字矩阵的形式,再在等式两边取行列式;也可利用行列式性质恒等变形找出∣A∣与∣B∣的关系,从而求出∣B∣.解一B=[α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3]=[α1,α2,α3]=AC,其中C=为三阶范德蒙行列式,则∣C∣=2,故∣B∣=∣A∣∣C∣=1×2=2.解二用行列式性质将∣B∣化为∣A∣的线性函数,找出∣A ∣与∣B∣的关系,求出∣B∣.∣B∣∣α1+α2+α3,α2+3α3,α2+5α3∣∣α1+α2+α3,α2+3α3,2α3∣∣α1+α2+α3,α2,2α3∣=2∣α1+α2+α3,α2,α3∣2∣α1,α2,α3∣=2∣A∣=2.涉及知识点:行列式8.[2006年] 设矩阵A=,E为二阶单位矩阵,矩阵B满足BA=B+2E,则∣B∣=_________.正确答案:可用上述法一或法二求之.解一由BA=B+2E得∣B(A—E)∣=∣2E∣=22=4,故∣[B∣∣A—E∣=4,∣B∣=4/∣A—E∣=4/2=2.解二由BA=B+2E得B(A—E)=2E,则B=2(A—E)-1=2,故∣B∣=2.涉及知识点:行列式9.[2003年] 设三阶方阵A,B满足A2B—A—B=E,其中E为三阶单位矩阵,若A=,则∣B∣=_________.正确答案:注意到所给矩阵方程A2B—A—B=E含单位矩阵E的加项,左端又出现矩阵A的平方,应将它们结合在一起,因式分解,将方程化成矩阵乘积形式,再取行列式求解.题设等式化为(A2一E)B=A+E,即(A+E)(A—E)B=A+E.易求得∣A+E∣=18≠0,故A+E可逆.在上式两端左乘(A+E)-1,得到(A—E)B=E.再在两边取行列式,得∣A—B∣∣B∣=1.因∣A—E∣==2,故∣B∣=/2.涉及知识点:行列式10.[2008年] 设三阶矩阵A的特征值为2,3,λ.若行列式∣2A∣=一48,则λ=________.正确答案:先利用命题2.1.2.2求出行列式∣A∣,再利用命题2.1.2.4即可求出参数λ.由命题2.1.2.2得∣2A∣=23∣A∣=一48,解得∣A ∣=一6.又由命题2.1.2.4得到∣A∣=一6=λ·2·3,故λ=一1.涉及知识点:行列式11.[2012年] 设A为三阶矩阵,∣A∣=3.A*为A的伴随矩阵,若交换A的第1行与第2行得矩阵B,则∣BA*∣=_________.正确答案:先将矩阵B用初等变换E12与A表示.为利用AA*=∣A∣E,将所得表示式右乘A*.再取行列式.计算行列式时,要正确计算出初等矩阵的行列式∣E12∣.由题设有B=E12A,两边右乘A*得到BA*=E12AA*=∣A ∣E12E=∣A∣E12,则∣BA*∣=∣∣A∣∣E12∣=∣A∣3∣E12∣=33(一1)=一27.涉及知识点:行列式12.[2013年] 设A=(aij)是三阶非零矩阵,∣A∣为A的行列式,Aij为aij的代数余子式,若aij+Aij=0(i,j=1,2,3),则∣A∣=__________.正确答案:利用A*=(Aij)及∣A∣=∣A∣3-1求之.由a=一A,则(a)=(-Aij),(aij)T=(-Aij)T=一(Aij),故AT=一A*,从而∣A∣=∣AT∣=∣—A*∣=(一1)3∣A∣3-1=一∣A∣2,即∣A∣2+∣A∣=∣A∣(∣A∣+1)=0,故∣A∣=0或∣A∣=一1.若∣A∣=0,则由∣A∣=ai1Ai1+ai1Ai2+ai3Ai3=一(ai12+ai22+ai32)=0(i=1,2,3)得到a=0(i,j=1,2,3),即矩阵A为零矩阵,这与题设矛盾,故∣A∣=一1.涉及知识点:行列式13.[20l0年] 设A,B为三阶矩阵,且∣A ∣=3,∣B∣=2,∣A-1+B∣=2,则∣A+B-1∣=_________.正确答案:∣A+B-1∣=∣A+B-1∣,常用单位矩阵E将其恒等变形为∣A+B-1∣=∣A+B-1E∣而求之,也可在A+B-1的左和(或)右边乘以适当矩阵化为其行列式已知的矩阵而求之.解一∣A+B-1∣=∣EA+B-1E∣=∣(B-1B)A+B-1(A-1A)∣=∣B-1(BA+A-1A)∣=∣B-1(B+A-1)A∣=∣B-1∣∣B+A-1∣A∣=1.2.3=3.解二A-1(B-1+A)B=A-1B-1B+A-1AB=A-1+B,故∣A-1∣∣B-1+A∣∣B∣=∣A-1+B∣=2,即∣B-1+A∣=2∣A∣/∣B ∣=6/2=3.涉及知识点:行列式14.若齐次线性方程组只有零解,则λ应满足的条件是_________.正确答案:利用命题2.1.3.1(1)寻找λ满足的条件.因方程个数与未知数的个数相等,又该方程组只有零解,由命题2.1.3.1(1)知∣A∣≠0,从而∣A∣==(λ—1)2.于是当λ≠1时,∣A∣≠0,即该方程组只有零解.涉及知识点:行列式15.[2003年] 设α为三维列向量,αT是α的转置.若ααT=则αTα=_________.正确答案:由命题2.2.1.2知,αTα为ααT的主对角线元素之和.另一种思路是利用向量运算规律求出α,再求αTα.解一由命题2.1.1.2知,αTα为ααT的主对角线上的元素之和,即αTα=1+1+1=3.解二由ααT=[1,一1,1]知α=,于是αTα=3.涉及知识点:矩阵16.设A=,而n≥2为整数,则An-2An-1=_________.正确答案:求方阵的n次幂一般要先就n=2,n=3进行计算,然后归纳其规律,得出结论.也可用相似对角化及命题2.2.1.3求之.解一先求出n=2,3时,A2,A3的表示式,然后归纳递推求出An.当n=2时,A2==2A,A3=A2.A=2A·A=2A2=2.2A=22A,设Ak=2k-1A,下面证Ak+1=2kA.事实上,有Ak+1=Ak.A=2k-1A·A=2k-1A2=2k-1.2A=2kA.因而对任何自然数,有An=2n-1A,于是An一2An-1=2n-1.A-2·2n-2A=0.解二由于A为实对称矩阵,可用相似对角化求出An.由∣λE-A∣=λ(λ-2)2得到A的特征值λ1=λ2=2,λ3=0.由于A为实对称矩阵,必存在可逆阵P,使P-1AP=diag(2,2,0)=Λ,于是A=PΛP-1,An=PΛnP-1,2An-1=P(2Λn-1)P-1=PΛnP-1,故An一2An-1=0.涉及知识点:矩阵17.设A=,其中ai≠0(i=1,2,…,n),则A-1=_________.正确答案:把A看作是A=的分块矩阵,利用分块矩阵的求逆公式(命题2.2.1.5(3))易求得A-1也可用初等行变换求之.涉及知识点:矩阵18.设A=,A*是A的伴随矩阵,则(A*)-1=_________.正确答案:直接利用式(2.2.2.1)求之.由式(2.2.2.1)得到(A*)-1= 涉及知识点:矩阵19.设四阶方阵A的秩为2,则其伴随矩阵A*的秩为________.正确答案:解一因A的秩为2,较其阶数4小2,由命题2.2.2.1知秩(A*)=0.解二由题设知A的秩为2,因而A的所有三阶子式等于0.于是A 的所有元素的代数余子式均为0,即A*=0,故秩(A*)=0.涉及知识点:矩阵解答题解答应写出文字说明、证明过程或演算步骤。

北京交通大学研究生矩阵分析期末考试试卷(7份)

北京交通大学研究生矩阵分析期末考试试卷(7份)

2004-2005学年第一学期硕士研究生矩阵分析考试试卷(A)专业 班级 学号 姓名一. (12分)3[]R x 表示由次数小于3的多项式组成的线性空间。

在3[]R x 中取两个基:21231,1,(1)x x ααα==-=-;21232,2,(2)x x βββ==-=-。

(1)求123,,βββ到123,,ααα的过度矩阵,(2) 求21x x ++ 在123,,ααα下的坐标。

二. (14分)设T 是n R 的线性映射,对任意12(,,,)T n n x x x x R=∈满足11(0,,,)n Tx x x -=。

(1)证明0n T =; (2)求T 的核()N T 及值域()R T 的基和维数。

三. (12分)设1023510224i A i i i -⎛⎫ ⎪=++ ⎪ ⎪-⎝⎭,120x i -⎛⎫⎪⎪= ⎪ ⎪ ⎪-⎝⎭,i = 。

计算11, , , Ax Ax A A ∞∞。

四.(10分)求矩阵1123101032160113A -⎛⎫⎪-- ⎪=⎪- ⎪ ⎪-⎝⎭的满秩分解。

五. (12分)求矩阵011110101A ⎛⎫⎪= ⎪ ⎪⎝⎭的正交三角分解A UR =,其中U是酉矩阵,R 是正线上三角矩阵。

六. (16分,1、2小题各5分, 3小题6分)证明题:1. 设A 是n 阶正规矩阵,且满足2320A A E -+=。

证明A 是Hermite 矩阵,并写出A 的Jordan 标准形的形式。

2.设A 是正定Hermite 矩阵,且A 是酉矩阵,证明A E =。

3.证明:若A 是Hermite 矩阵,则iA e 是酉矩阵。

七. (24分) 设100011101A ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭。

(1)求E A λ-的Smith 标准形;(2)写出A 的最小多项式, A 的初等因子和Jordan 标准形; (3)求相似变换矩阵P 使得1P AP J -=;(4)求1P -矩阵函数()f A ,并计算tA e 。

江苏省2014年高考数学(文)二轮复习专题提升训练:20 矩阵与变换

江苏省2014年高考数学(文)二轮复习专题提升训练:20 矩阵与变换

常考问题20 矩阵与变换1.求使等式⎣⎢⎡⎦⎥⎤2 43 5=⎣⎢⎡⎦⎥⎤2 00 1M ⎣⎢⎡⎦⎥⎤1 00 -1成立的矩阵M . 解 设M =⎣⎢⎡⎦⎥⎤m n p q ,则⎣⎢⎡⎦⎥⎤2435=⎣⎢⎡⎦⎥⎤2001M ⎣⎢⎡⎦⎥⎤1 00 -1 =⎣⎢⎡⎦⎥⎤2m -2n p -q ,则⎩⎨⎧ 2m =2,-2n =4,p =3,-q =5⇒⎩⎨⎧m =1,n =-2,p =3,q =-5,即M =⎣⎢⎡⎦⎥⎤1 -23 -5. 2.(2011·江苏卷)已知矩阵A =⎣⎢⎡⎦⎥⎤1121,向量β=⎣⎢⎡⎦⎥⎤12.求向量α,使得A 2α=β.解 A 2=⎣⎢⎡⎦⎥⎤1 12 1⎣⎢⎡⎦⎥⎤1 12 1=⎣⎢⎡⎦⎥⎤3 24 3,设α=⎣⎢⎡⎦⎥⎤x y ,由A 2α=β得,⎣⎢⎡⎦⎥⎤3 24 3⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤12,从而⎩⎨⎧ 3x +2y =14x +3y =2,解得⎩⎨⎧x =-1,y =2.所以α=⎣⎢⎡⎦⎥⎤-1 2.3.(2013·南京,盐城模拟)已知矩阵M =⎣⎢⎡⎦⎥⎤213 4. (1)求矩阵M 的逆矩阵;(2)求矩阵M 的特征值及特征向量. 解 (1)设M -1=⎣⎢⎡⎦⎥⎤ab cd . 则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤2 13 4=⎣⎢⎡⎦⎥⎤2a +3b a +4b 2c +3d c +4d =⎣⎢⎡⎦⎥⎤1 00 1,∴⎩⎨⎧2a +3b =1,2c +3d =0,a +4b =0,c +4d =1,解得⎩⎪⎪⎨⎪⎪⎧a =45,b =-15,c =-35,d =25,∴M -1=⎣⎢⎢⎡⎦⎥⎥⎤45 -15-35 25. (2)矩阵A 的特征多项式为f (x )=⎪⎪⎪⎪⎪⎪λ-2 -1 -3 λ-4=(λ-2)·(λ-4)-3=λ2-6λ+5,令f (λ)=0,得矩阵M 的特征值为1或5,当λ=1时,由二元一次方程⎩⎨⎧-x -y =0,-3x -3y =0,得x +y =0,令x =1,则y =-1,所以特征值λ=1对应的特征向量为α1=⎣⎢⎡⎦⎥⎤1-1;当λ=5时,由二元一次方程⎩⎨⎧3x -y =0,-3x +y =0,得3x -y =0,令x =1,则y =3,所以特征值λ=5对应的特征向量为α2=⎣⎢⎡⎦⎥⎤13.4.已知矩阵A =⎣⎢⎡⎦⎥⎤ 1 a -1 b ,A 的一个特征值λ=2,其对应的特征向量是α1=⎣⎢⎡⎦⎥⎤21.设向量β=⎣⎢⎡⎦⎥⎤74,试计算A 5β的值.解 由题设条件可得,⎣⎢⎡⎦⎥⎤ 1 a -1 b ⎣⎢⎡⎦⎥⎤21=2⎣⎢⎡⎦⎥⎤21,即⎩⎨⎧ 2+a =4,-2+b =2,解得⎩⎨⎧a =2,b =4,得矩阵A =⎣⎢⎡⎦⎥⎤1 2-1 4. 矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-1 -2 1 λ-4=λ2-5λ+6,令f (λ)=0,解得 λ1=2,λ2=3.当λ1=2时,得α1=⎣⎢⎡⎦⎥⎤21;当λ2=3时,得α2=⎣⎢⎡⎦⎥⎤11,由β=m α1+n α2,得⎩⎨⎧2m +n =7,m +n =4,得m =3,n =1,∴A 5β=A 5(3α1+α2)=3(A 5α1)+A 5α2=3(λ51α1)+λ52α2=3×25⎣⎢⎡⎦⎥⎤21+35⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤4353395.(2010·江苏卷)在平面直角坐标系xOy 中,已知点A (0,0),B (-2,0),C (-2,1).设k 为非零实数,矩阵M =⎣⎢⎡⎦⎥⎤k001,N =⎣⎢⎡⎦⎥⎤0 11 0,点A 、B 、C 在矩阵MN 对应的变换下得到点分别为A 1、B 1、C 1,△A 1B 1C 1的面积是△ABC 面积的2倍,求k 的值.解 由题设得,MN =⎣⎢⎡⎦⎥⎤k00 1⎣⎢⎡⎦⎥⎤0 110=⎣⎢⎡⎦⎥⎤0 k 10, 由⎣⎢⎡⎦⎥⎤0 k 10⎣⎢⎡⎦⎥⎤0 -2 -20 0 1=⎣⎢⎡⎦⎥⎤0 0 k 0 -2 -2,可知A 1(0,0)、B 1(0,-2)、C 1(k ,-2).计算得△ABC 的面积是1,△A 1B 1C 1的面积是|k |,则由题设知: |k |=2×1=2.所以k 的值为2或-2.6.设M 是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸压变换.(1)求矩阵M 的特征值及相应的特征向量; (2)求逆矩阵M-1以及椭圆x 24+y 29=1在M -1的作用下的新曲线的方程.解 由题意M =⎣⎢⎡⎦⎥⎤2003, (1)由|M -λE |=0得,λ1=2,λ2=3, 当λ1=2,⎩⎨⎧ (2-2)x =0,3y =0,∴y =0,取x =1; 当λ2=3,⎩⎨⎧2x =0,(3-3)y =0,∴x =0,取y =1.所以,特征值为2和3,特征值2对应的特征向量⎣⎢⎡⎦⎥⎤10,特征值3对应的特征向量⎣⎢⎡⎦⎥⎤01.(2)由逆矩阵公式得:M -1=⎣⎢⎢⎡⎦⎥⎥⎤12 00 13, 设P (x 0,y 0)是椭圆x 24+y 29=1上任意一点P 在M -1下对应P ′(x ,y ),则⎣⎢⎢⎡⎦⎥⎥⎤12 00 13⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x y , ∴⎩⎨⎧x 0=2x ,y 0=3y ,所以,椭圆x 24+y 29=1在M -1的作用下的新曲线的方程为 x 2+y 2=1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014矩阵分析试卷
一、判断题(不要求证明)(20分)
1.设n 是大于1的整数,{()|()}V f x f x n F =是次数小于的域上的多项式,V 关于多项式的加法与数乘是一个域F 上的线性空间。

( √ )
2.设a r 为XOY 面上的非零向量,V 为XOY 面内所有不平行于a r
的向量构成的集合,V 关于向量的加法与数乘是一个域R 上的线性空间。

( × ) 3.设V 是域F 上的线性空间, V α∈不是零向量,映射:,()V V ξξα→=+A A 是V 上的线性变
换。

( × )
4. 设A 是数域R 上的对称阵,映射:,()n n R R A αα→=A A 是n
R
上的对称变换。

( √ )
二、计算题 1. (1,1,1,1)T 2. 已知1
12212W
={,},W ={,}Span a a Span b b ,而
1212(0,1,1,1),(1,0,2,0);(0,3,3,1),(1,2,0,0)a a b b =-==-=。

12W W ⋂的基为(1,1,3,1)T --与维数1;
12122212W +W ={,,}={,,}span span ααβαββ的基122,,ααβ或212,,αββ与维数3
3.
23:,()R R A
ββ→=A A ,基
123(1,0,0),(0,1,0);(0,0,1)
ααα===及基
12(1,0),(0,1)ββ==下的矩阵为110=211T
B ⎛⎫ ⎪
⎝⎭。

4. (10分)设线性变换22:R R →A
,在基12(1,0),(0,1)ββ==的矩阵为12=24A ⎛⎫ ⎪⎝⎭
,求A
的核为{k(-2,1)| k}T ∀、值域的基1
2+2β
β,维数1。

6.(8分)求矩阵11010=0111123131A ⎛⎫
⎪ ⎪ ⎪⎝⎭
的满秩分解
7.(24分)设矩阵308=3-16-20-5A ⎛⎫ ⎪ ⎪
⎪⎝⎭
,求可逆矩阵P ,使得1
P AP -为约当阵。

A E -λ = ⎪⎪⎪

⎫ ⎝⎛+-+---502613803
λλλ→ ⎪⎪⎪⎭⎫ ⎝⎛++2)1(0001
0001λλ,
于是A 的初等因子是1+λ, 2
)1(+λ,故A 的若尔当标准形为
J = 100011001骣-÷ç÷ç÷ç÷-ç÷ç÷ç÷÷ç-桫。

=-1λ对对应的特征向量为()1
2
=2,0,1,=(0,1,0)T
T
ηη- ,
另3
1
1
2
2
(-k ηηη-+E A)=k ,取1
2
=1=-1k ,k ,解得()3
=1/2,0,0T
η,故201/2010100P 骣-÷ç÷ç÷ç÷=ç÷ç÷ç÷÷ç桫
三、证明题(10分) 设:V
V ℑ→是酉空间上的线性变换,证明ℑ是酉变换的充要条件是:对所有V α∈有
()αα
ℑ=。

答案
一、1.(√)2.(╳)3.(╳)4.(√) 二、计算题 1. 1
234=1e
+1e +1e +1e α,故坐标为。

=(1,111)
T X ,, (8分) 2. (8分)显然1
2,a
a 为方程组31242
2x x x x x =-⎧⎨
=⎩的基础解系,而1
W 方程组的解空间
12,b b 为方程组21434
2+3-3x x x x x =⎧⎨
=⎩的基础解系,而1
W 方程组的解空间
因而12W W ⋂为方程组2143431242
2+3-32x x x x x x x x x x =⎧⎪=⎪⎨
=-⎪⎪=⎩的的解空间,其基础解析为=(-1,1-31)T a ,,,故12W W ⋂的基为a ,维数为1。

121212121W +W ={,,,}{,,}Span a a b b Span a a b =,故12W +W 的基为121,,a a b ,维数为3。

3.(8分)设线性映射
23:,()R R A ββ→=A A ,其中110=211A ⎛⎫
⎪⎝⎭
,求
A
在基
123(1,0,0),(0,1,0);(0,0,1)ααα===及基12(1,0),(0,1)ββ==下的矩阵表示。

设线性映射
32:,()R R A αα
→=A A ,其中
110=211A ⎛⎫ ⎪⎝⎭
,求
A
在基
123(1,0,0),(0,1,0),(0,0,1)T T T ααα===及基12(1,0),(0,1)T T ββ==下的矩阵表示。

4. (10
分)设线性变换
22
:R R →A ,在基
12(1,0),(0,1)
ββ==的矩阵为
12=24A ⎛⎫ ⎪⎝⎭12=36A ⎛⎫ ⎪⎝⎭
,求A 的核、值域的基与维数。

5.(8分)求矩阵308=3-16-20-5A ⎛⎫ ⎪ ⎪ ⎪⎝⎭11-1=-3-33-2-22A ⎛⎫ ⎪ ⎪ ⎪⎝⎭的约当标准型。

6.(8分)求矩阵11010=0111123131A ⎛⎫ ⎪ ⎪ ⎪⎝⎭21-231=25-141-233-2-1A ⎛⎫
⎪ ⎪ ⎪⎝⎭的满秩分解
7.(20分)求微分方程组'112
'
2123'3
2()22()22()2x t x x x t x x x x t x
⎧=-⎪=-+-⎨⎪=-⎩的通解。

三、证明题(10分) 设:V
V ℑ→是酉空间上的线性变换,证明ℑ是酉变换的充要条件是:对所有V α∈有
()αα
ℑ=。

相关文档
最新文档