结构力学 第17章 结构的塑性分析与极限荷载
塑性分析和极限荷载

三、基本假设 1、材料为“理想弹塑性材料” 。 、材料为“理想弹塑性材料” 2、拉压时,应力、应变关系相同。 、拉压时,应力、应变关系相同。 3、满足平截面假定。即无论弹、塑性阶段,保持平截面不变。 、满足平截面假定。即无论弹、塑性阶段,保持平截面不变。
σ
σy
卸载时有残余变形
ε
§12-2 纯弯曲梁的极限弯矩和塑 性铰
(4)极限状态 )
2、确定单跨梁极限荷载的机动法 、
q
l
qu
A
θ
xθ
Mu x
l θ 2
2θ
θ
B
dx C
Mu
Mu
临界状态时, 临界状态时,由虚功方 程: 2∫ xθ ⋅ qu dx = M u ⋅ θ + M u ⋅ θ + M u ⋅ 2θ
1 2 l θ ⋅ qu = 4 M uθ 4 16 M u qu = ∴ l2
1. 弹性阶段
b b 2 2
z h 2 h 2
M
M
σ = Eε
Ms σs = 1 2 bh 6
ε =κy
1 M s = bh 2σ s 6
κ= κs =
ε
y h/2 = 2σ s Eh
σs / E
y
σs
h 2 h 2
2.弹塑性阶段
y σ = σs y0
y
κ =
εs
y0
=
σs
Ey0
=
h κs 2 y0
p
机构4 机构
p
q = 2p
p1 = 2.5
Mu a
1.2 p
θ
Mu
Mu
θ 2θ
pu = 1.33
Mu a
结构力学(二)第4版龙驭球第17章结构的极限荷载

第17章 极限荷载【17-1】 验证:(a )工字形截面的极限弯矩为)41(212δδδσb hbh M s u +=。
(b )圆形截面的极限弯矩为63D M s u σ=。
(c )环形截面的极限弯矩为⎥⎦⎤⎢⎣⎡--=33)21(16D D M su δσ。
【解】(a )工字形截面的等面积轴位于中间。
静距计算公式:2021d xy y xy S y ==⎰考虑上半部分面积对等面积轴的静距(大矩形静距减两个小矩形静距):)41(21)4(21)2)((21)2(21211212222121122222212bhb b h h bh h h b bh hb h b S δδδδδδδδδδδδδδδδ+-+-=+-+-=---= 去除高阶小量后)41(21212δδδb h bh S +=因此极限弯矩为)41()(212δδδσσb h bh S S M s s u +=+= (b )静距计算公式:2021d xy y xy S y==⎰ 6322d 2))2(d(21)2(4d )2(43)2(023)2(0202222202222D uu u y D y D y y y D S D DDD =⋅=⋅=-⋅-=⋅-=⎰⎰⎰关/注;公,众。
号:倾听细雨因此极限弯矩为63D S M s s u σσ==(c )圆的静距为63D S =则圆环的静距为⎥⎦⎤⎢⎣⎡--=-=3333)21(166)2(-6D D D D S δδ 因此极限弯矩为⎥⎦⎤⎢⎣⎡--==33)21(16D D S M ss u δσσ 【17-2】 试求图示两角钢截面的极限弯矩u M 。
设材料的屈服应力为s σ。
【解】设等面积轴距上顶面距离为xmm 。
由面积轴两侧面积相等,也即面积轴以上面积等于总面积的一半,得405550))50(21(22⨯+⨯=-+x x x ,解得mm x 723.4=。
单个角钢上下截面面积矩:32323232233214879mm ])723.440(20)723.440(31)723.445(20)723.445(31[)723.445(521723.431723.4)723.445(21540mm 723.431723.4)723.450(21=+⨯++⨯-+⨯-+⨯-+⨯⨯+⨯-⨯-⨯==⨯+⨯-⨯=S S由此得截面极限弯矩s s s u S S M σσσ10838)4879540(2)(221=+⨯=+=【17-3】 试求图示各梁的极限荷载。
结构力学(二)第4版龙驭球第17章结构的极限荷载

第17章 极限荷载【17-1】 验证:(a )工字形截面的极限弯矩为)41(212δδδσb hbh M s u +=。
(b )圆形截面的极限弯矩为63D M s u σ=。
(c )环形截面的极限弯矩为⎥⎦⎤⎢⎣⎡--=33)21(16D D M su δσ。
【解】(a )工字形截面的等面积轴位于中间。
静距计算公式:2021d xy y xy S y ==⎰考虑上半部分面积对等面积轴的静距(大矩形静距减两个小矩形静距):)41(21)4(21)2)((21)2(21211212222121122222212bhb b h h bh h h b bh hb h b S δδδδδδδδδδδδδδδδ+-+-=+-+-=---= 去除高阶小量后)41(21212δδδb h bh S +=因此极限弯矩为)41()(212δδδσσb h bh S S M s s u +=+= (b )静距计算公式:2021d xy y xy S y==⎰ 6322d 2))2(d(21)2(4d )2(43)2(023)2(0202222202222D uu u y D y D y y y D S D DDD =⋅=⋅=-⋅-=⋅-=⎰⎰⎰关/注;公,众。
号:倾听细雨因此极限弯矩为63D S M s s u σσ==(c )圆的静距为63D S =则圆环的静距为⎥⎦⎤⎢⎣⎡--=-=3333)21(166)2(-6D D D D S δδ 因此极限弯矩为⎥⎦⎤⎢⎣⎡--==33)21(16D D S M ss u δσσ 【17-2】 试求图示两角钢截面的极限弯矩u M 。
设材料的屈服应力为s σ。
【解】设等面积轴距上顶面距离为xmm 。
由面积轴两侧面积相等,也即面积轴以上面积等于总面积的一半,得405550))50(21(22⨯+⨯=-+x x x ,解得mm x 723.4=。
单个角钢上下截面面积矩:32323232233214879mm ])723.440(20)723.440(31)723.445(20)723.445(31[)723.445(521723.431723.4)723.445(21540mm 723.431723.4)723.450(21=+⨯++⨯-+⨯-+⨯-+⨯⨯+⨯-⨯-⨯==⨯+⨯-⨯=S S由此得截面极限弯矩s s s u S S M σσσ10838)4879540(2)(221=+⨯=+=【17-3】 试求图示各梁的极限荷载。
结构力学结构的塑性分析与极限荷载 ppt课件

M
M
随着M的增大,梁截面应力的变化为:
b
s
s
h b
s
h
y0 y0
s
s
a)
b)
s c)
b
s
s
s
h
y0 y0
s
s
a)
b)
s c)
图a)弹性阶段,最外纤维处应力达到屈服极限σs ,弯矩M
为:
MS
bh2 6
s
→屈服弯矩
图b)弹塑性阶段,y0部分为弹性区,称为弹性核。
图c)塑性流动阶段,y0→0。相应的弯矩M为:
Mu
bh
s
→极限弯矩
是截面所能承受的最大弯矩。
极限弯矩的计算
Mu
bh
s
设塑性流动阶段截面上受压区和受拉区的面积分别为A1
和A2,并且此时受压区和受拉区的应力均为常量,又因为
梁是没有轴力的,所以:
sA1sA20
A1A2A/2
可见,塑性流动阶段的中性轴应等分截面面积。
【例17.1 】 图示为矩形截面简支梁在跨中承受集中荷载,试 求极限荷载。
FP
FPu
已知Mu
解:
FPul
Mu
FPu
Mu l
可破坏荷载: 对于任一单向破坏机构,用平衡条件求得的荷载值,称
为可破坏荷载,常用FP+ 表示。
基本定理:
(1)唯一性定理:极限荷载FPu值是唯一确定的。
(2)极小定理:极限荷载是可破坏荷载中的极小者。
由此,极限弯矩的计算方法: M u s(SS)
S、S分别为面 A、 积 A对等面积轴的静矩
结构的极限荷载和例题讲解

简化计算: 假设材料为理想弹塑性材料,其应力~应变关系下图所示。
§12-2 极限弯矩和塑性铰 破坏机构 静定梁的计算
一、弹塑性阶段工作情况
理想弹塑性材料T形截面梁处于纯弯曲状态时
弹性状态:
图b:截面处于弹性阶段,σ<σs (屈服极限) 图c:截面最外边缘处σ=σs (达到屈服极限) 屈服弯矩(弹性极限弯矩)MS = Wσs(W:弯曲截面系数) 图d:截面处于弹塑性阶段。 靠外部分形成塑性区,其应力为常数,σ=σs , 靠内部分仍为弹性区,称弹性核,其应力直线分布 图e:截面全部达到塑性——极限情形, 这时的弯矩是该截面所能承受的最大弯矩 ——极限弯矩,以Mu 表示。
等截面超静定梁(图a) (各截面Mu相同) 弹性——弹塑性阶段——极限状态过程:
(1)弹性阶段弯矩图:P≤Ps (2首)先弹在塑A性端阶形段成M并图扩:大荷,载然超后过CP截s,面塑也性形区成
塑性性铰区。。A端首先达到Mu并出现第一个塑
(3)极限状态M图:荷载再增加,A端弯矩 增量为零,当荷载增加到使跨中截面的弯矩达 到Mu时,在该截面形成第二个塑性铰,于是梁 即变为机构,而梁的承载力即达到极限值。此 时的荷载称为极限荷载Pu——极限状态(e)。
破坏机构——极限状态: 结构出现若干塑性铰而成为几何可变或瞬变体系时 ——结构丧失承载能力
三、静定梁的计算
静定梁由于没有多余联系,因此,出现一个塑性铰时,即 成为破坏机构。
对于等截面梁,在弯矩绝对值最大截面处达到极限弯矩, 该截面形成塑性铰。
由塑性铰处的弯矩等于极限弯矩和平衡条件,就可求出静 定梁的极限荷载。
结构的极限荷载和例题 讲解
§12-1 概述
结构设计方法:
1、容许应力法(弹性分析法):
15_结构的塑性分析与极限荷载解读

A
2M u
P
B
列虚功方程: P uy 2M u A M u D 0
A A
2M u
Pu
Mu
C
D
C
2019/2/20
3 9 Puy 2 M u y M u y 0 2l 2l 15 Pu Mu 2l
M u1 M u 2 Mu2 qu1 qu 2
结构力学
M u1
2019/2/20
Mu2
12
例16-1 如图所示设有矩形截面简支梁在跨中承受集 中荷载作用,试求极限荷载FPu。
解:由静力条件
即
静定结构无多余约束, 出现一个塑性铰即成为 破坏机构。这时结构上 的荷载即为极限荷载。
2019/2/20
可接受荷载:如果在某个荷载值的情况下,能够找 到某一内力状态与之平衡,且各截面的内力都不 超过其极限值,则此荷载值称可接受荷载,用 P表示。 可破坏荷载:对于任一单向破坏机构,用平衡条件 求得的荷载值称为可破坏荷载,用P+表示。
可破坏荷载--- 同时满足单向机构条件和平衡条件。 P 可接受荷载--- 同时满足弯矩极限条件和平衡条件。 P 极限荷载既是可破坏荷载又是可接受荷载。
2 bh h bh h bh M u s A1a1 s A2 a2 s S1 S2 s s 2 4 2 4 4
S1、S2为A1、A2对该轴的静矩。 a1、a2为A1、A2的形心到等分截面轴的 距离,
bh2 Mu s 4
2019/2/20
结构力学
2
§ 16-1 概述 16-1-1 弹性设计
结构力学第17章结构的塑性分析与极限荷载

Mu
(
l
) 0
l
得:
FPu
6M u l
[例] 求梁的极限荷载,已知极限弯矩为Mu。
q
qu
A
C
B
l/2
l/2
A Mu
Mu l
C B
2 Mu
解:计算刚体虚功:
2
瞬变体系机构
W
l
y qu dx
Mu
Mu
Mu
qu
(
l
l
)
M u
qu l
M u
虚功方程:
qu l
M u
qu
16M u l2
FPu
M
' u
3 2l
Mu
9 2l
A
M ' u
A
2l /3
FPu
DC
Mu
D
l/3
FPu
l
(M u
M u )
A
3 2l
D
3 2l
3 l
9 2l
弯矩图如图,弯矩
MB=
1 2
(M
' u
Mu )
M
u
,即M
' u
3M u
时,此破坏形态就可实现。
M' u
1 2
(M
' u
-
M
u
)
FPu D
C
A
B
Mu
综上,当M
Mu
FP增大
A
C
B
FP继续增大,第二个塑性铰出现在C 截面,梁变为机构。弯矩 增量图相应于简支梁的弯矩图(如图)。
Mu
FP达到极限值FPu
结构力学 结构塑性分析的极限荷载

max
M ym a x I
s
(a)
时,认为该截面已达到截面的弹性极限状 态,此时截面的弯矩即为该截面的弹性极 限弯矩。用Ms替换式(a)中的M,即得:
MS
y
I
m
ax
s
(b)
对图示矩形截面梁,代入 I bh3 得矩形截面弹性极限弯矩: 12
h ymax 2
MS
bh2 6
S
(c)
M
M
M =M s
第二节 极限弯矩和塑性铰
M
M
(a)纯弯曲 矩形截面梁
(b) s
(c) s
1、弹性极限弯矩Ms
由材料力学知,在线弹性范围内,处于纯 弯曲受力状态的梁的任一截面上只有与外 力偶相等的弯矩产生,截面在变形后仍保 持平截面,即截面上各层纤维沿梁轴线的 伸缩与截面高度成正比,或说截面上的应 变按截面高度线性分布,在中性轴处的应 变等于零。 按结构的弹性设计方法,当截面的最外 层纤维达到材料的屈服应力,即
3.具有一个对称轴截面的极限弯矩
形 心 轴 等 面 积 轴
(1)截面在塑性极限状态的中性轴位置 截面上的应力应满足:
dA 0
(a)
A
在塑性极限状态时截面上的轴力应满足:
S dA S dA 0
A1
A2
即 S ( dA dA) S (A1 A2 ) 0
A1
A2
上式只有在 A1 A2 0 成立时才能满足, 即受拉区的面积须等于受压区的面积。
y dA ydA ydA S1 S2
A1
A2
则极限弯矩可表示为:
Mu s (S1 S2 ) (14-2-2)
弹性极限和塑性极限之间的弹塑性阶段, 中性轴界于截面的形心轴和等面积轴之间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 4
FPul
Mu
1 2
Mu
FPu
3 2
Mu
4 l
6M u l
.
Mu
FPu
A
C
B
Mu
极限状态的弯矩图
2 虚功法
A
Mu
1 Mu l/2
FPu
C 1
2 l/2
设破坏机构
B
令机构产生虚位移,C截面竖向位移和荷载FPu同向, 大小为δ。
1l/22 l 2214 l
列出刚体虚功方程: F Pu M u M u 0
FP
FPu
l/2
l/2
Mu
①图中简支梁随着荷载的增大,梁跨中弯矩达到极限弯矩Mu。
②跨中截面达到塑性流动阶段,跨中两个无限靠近的截面可以产生有
限的相对转角,因此,当某截面弯矩达到极限弯矩Mu时,就称该截面
产生了“塑性铰”。
③这时简支梁已成为机构,这种状态称为“极限状态”,此时的荷载
称为“极限荷载”,记作FPu。
第15章 结构的塑性分析与极限荷载
第17章 结构的极限荷载
.
§17-1 概述
弹性设计方法 没有考虑材料超过屈服极限后的这一部分承载力。事实
上,由塑性材料组成的结构当某一局部的σmax达到了屈服极 限时,结构还没破坏,还能承受更大的荷载。因而弹性设计有时 不够经济合理。 塑性设计方法
塑性分析考虑材料的塑性,按照结构破坏时的极限状态 来计算结构所能承受的荷载的极限值(极限荷载)。
100mm 20mm
解: A360m0m2
A 1A2A/218m 020 m
A2
等面积轴
90mm
A1
A1的面积形心距等面积轴45mm, A2的面积形心距等面积轴:
20mm
y . m m
Mu S(SS)S[A A.] SA [ .]SA .
26.K 7N 9 m .
塑性铰、极限荷载
Mu
FP增大
A
C
B
FP继续增大,第二个塑性铰出现在C 截面,梁变为机构。弯矩 增量图相应于简支梁的弯矩图(如图)。
Mu
FP达到极限值 FPu
M .
u
[例] 求梁的极限荷载FPu,截面极限弯矩为Mu。
解:计算极限荷载只需要考虑最后的破坏机构
结构在A、C截面出现塑性铰。 A
1 静力法
FP
C
B
l/2
l/2
sA1sA20
A1A2A/2
可见,塑性流动阶段的中性轴应等分截面面积。
பைடு நூலகம்
由此,极限弯矩的计算方法: M u s(SS)
S、S分别为面 A、 积 A对等面积轴的静矩
可见,极限弯矩与外力无关,只与材料、截面几何形状 和尺寸有关。
.
[例]已知材料的屈服极限 s 240MPa,试求图示截面的
极限弯矩。
80mm
为可破坏荷载,常用FP+ 表示。
基本定理:
(1)唯一性定理:极限荷载FPu值是唯一确定的。
(2)极小定理:极限荷载是可破坏荷载中的极小者。
确定极限荷载的方法: 静力法——利用静力平衡求极限荷载的方法。 虚功法(机动法)——沿荷载方向假设单向破坏机构,
利用虚位移原理计算出极限荷载的方法。 多采用机动法。
该结构整体变为机构而破坏
结构局部变为机构而破坏。
不同结构在荷载作用下,成为机. 构,所需塑性铰的数目不同。
对于静定结构,只要一个截面出现塑性铰,结构就成为了 具有一个自由度的机构,丧失承载能力以至破坏。 超静定结构,具有多余约束,必须出现足够多的塑性铰, 结构才能成为机构,丧失承载能力以至破坏。
结构的极限受力状态应满足的条件(P273):
FPuM u(ll)0
得:
FPu
6M u l
.
[例] 求梁的极限荷载,已知极限弯矩为Mu。
q
qu
A
C
B
l/2
l/2
A Mu
Mu
l
C 2
B
Mu
解:计算刚体虚功:
2
瞬变体系机构
l
W
yqudxMu
Mu
Mu
qu
(
l
l
)Mu
qul
Mu
虚功方程: qulM . u
qu
16M l2
u
【例】 AB段极限弯矩为 M u ,BC段极限弯矩为Mu。
⑴平衡条件:结构的整体或任一局部都能维持平衡; ⑵局限条件:任一截面弯矩绝对值都不超过其极限弯矩; ⑶单向机构条件:结构成为机构能够沿荷载方向作单向运动。
.
【例17.1 】 图示为矩形截面简支梁在跨中承受集中荷载,试 求极限荷载。
FP
FPu
已知Mu
解:
FPul
Mu
FPu
Mu l
.
可破坏荷载: 对于任一单向破坏机构,用平衡条件求得的荷载值,称
.
理想弹塑性模型
在塑性设计中,假设材料为理想弹塑 性材料,其应力与应变关系:加载时
s
A
B
材料为线弹性阶段和塑性流动阶段。
残余应变
s A
CB
o
ε
理想弹塑性模型
o
D
ε εP ε s
ε
当应力达到屈服应力后在C点卸载,卸载时材料为线弹
性的。当应力减小为零时,应变为εP,εP是塑性应变,又
称残余应变。
.
塑性铰和普通铰有区别。塑性铰是单向铰,塑性铰只能沿弯矩增大 的方向发生有限的转角,卸载时消. 失。
都江堰市都江之春大厦 底层柱顶塑性铰
.
侧移机构
柱端塑. 性铰比较严重
破坏机构 结构由于出现足够多的塑性铰,成为机构(几何可变体系), 失去继续承载的能力,称为破坏机构。 破坏机构可以是整体性的,也可能是局部的。
§17-2 极限荷载、塑性铰和极限状态
屈服弯矩、极限弯矩 以理想弹塑性材料的矩形截面纯弯曲梁为例:
M
M
随着M的增大,梁截面应力的变化为:
b
s
s
h b
s
h
y0 y0
s
.
a)
s b)
s c)
b
s
s
s
h
y0 y0
s
s
a)
b)
s c)
图a)弹性阶段,最外纤维处应力达到屈服极限σs ,弯矩M
为:
MS
bh2 6
.
§17-3 超静定梁的极限荷载
一.单跨超静定梁的极限荷载
为了求得极限荷载,需要确定结构的破坏形态,确定塑性铰 的位置及数量。塑性铰首先出现在弯矩最大的截面。
FP
A
C
B
(a)
l2
C l 2
MA FPl
(b)
FP弹性阶段
MC 352FPl
弹性阶段,A截面弯矩最大。
.
塑性阶段,A截面形成第一个塑性铰。
求图示梁的极限荷载。
A
FP
B
D
C
l/3
l/3
l/3
解:出现两个塑性铰时梁成为破坏机构。
由于AB段、 BC段截面极限弯矩不同,故塑性铰不仅 可以出现在产生最大弯矩的A、D截面,也可能出现 在截面改变处B,可能的破坏机构有两种。
s
→屈服弯矩
图b)弹塑性阶段,y0部分为弹性区,称为弹性核。
图c)塑性流动阶段,y0→0。相应的弯矩M为:
Mu
bh
s
→极限弯矩
是截面所. 能承受的最大弯矩。
极限弯矩的计算
Mu
bh
s
设塑性流动阶段截面上受压区和受拉区的面积分别为A1
和A2,并且此时受压区和受拉区的应力均为常量,又因为
梁是没有轴力的,所以: