自动控制原理之伯德图
自动控制原理3第三节典型环节的频率特性

左图是不同阻尼系数情况下的 对数幅频特性和对数相频特性 图。上图是不同阻尼系数情况 下的对数幅频特性实际曲线与 渐近线之间的误差曲线。
1 2T 1 T 2 T 5 T 10 T
1 5T
Saturday, November 05, 2016
15
微分环节的频率特性
⒌ 微分环节的频率特性: 微分环节有三种:纯微分、一阶微分和二阶微分。传递函 数分别为: G( s) s
05, 2016
12
振荡环节的波德图
2 T ( ) tg 相频特性: 1 T 2 2
1
几个特征点: 0, ( ) 0;
1 , ( ) ; , ( ) 。 T 2
由图可见:
K 10, T 1, 0.3 10 G ( j ) 2 s 0.6s 1 1 o T
1
幅频特性为: 相频特性为:
A( )
(1 T 2 2 )2 (2T )2 2 T ( ) tg 1 1 T 2 2
L( ) 20 log A( ) 20 log (1 T 2 2 ) 2 (2 T ) 2 对数幅频特性为:
低频段渐近线: T 1时,L( ) 0 高频段渐近线: T 1时, L( ) 20 log (T 2 2 ) 2 40 log T 1 两渐进线的交点 o 称为转折频率。斜率为-40dB/Dec。 T Saturday, November
1 2
T
时,无谐振峰值。当
M p A( p )
1 2
1 0.707时, p 0 。 2
时,有谐振峰值。
1 2 1 2
1 当 0 , A(0 ) , 。 L ( ) 20 lg 2 0 2
典型环节伯德图ppt课件

节相比是以
为对称,相角的变化范围是 至 。
Bode如图5-22所示
编辑版pppt
20
八滞后环节
滞后环节的频率特性是: 其对数幅频特性和相频特性分别为:
滞后环节伯德图如图5-23
所示。其对数幅频特性与
ω无关,是一条与ω轴重合
的零分贝线。滞后相角由
式(5-92)计算,分别与
滞后时间常数τ和角频率ω
成正比。
积分环节的相频特性是:
(5-69)
是一条与ω无关,值为-900 且平行于ω轴的直线。积分环节 的对数幅频特性和相频特性如图
5-12所示。
编辑版pppt
(5-68)
6
当有n个积分环节串联时,即:
其对数幅频特性为:
是一条斜率为-n×20dB/dec ,且在ω=1(弧度/秒)处过 零分贝线(ω轴)的直线。
相频特性是一条与ω无关, 值为-n×900 且与ω轴平行 的直线。两个积分环节串联 的Bode图如图5-13所示。
图5-13 两个积分环编节辑版串p联pp的t Bode图
7
三惯性环节 惯性环节的频率特性是:
其对数幅频特性是:
用两条直线近似描述惯性环节的对数幅频特性, 即在
的低频段时,
在
的高频段时
,与零分贝线重合; 是一条斜率为
(5-62)
幅值的总分贝数为:
(5-63)
放大环节的相频特性是:
(5-64)
如图5-11所示,它是一条与角频率ω无 关且与ω轴重合的直线。
编辑版pppt
4
二积分环节 积分环节的频率特性是: 其幅频特性为:
对数幅频特性是:
编辑版pppt
5
设
,则有:
自动控制原理知识点汇总

自动控制原理总结第一章 绪 论技术术语1. 被控对象:是指要求实现自动控制的机器、设备或生产过程。
2. 被控量:表征被控对象工作状态的物理参量(或状态参量),如转速、压力、温度、电压、位移等。
3. 控制器:又称调节器、控制装置,由控制元件组成,它接受指令信号,输出控制作用信号于被控对象。
4. 给定值或指令信号r(t):要求控制系统按一定规律变化的信号,是系统的输入信号。
5. 干扰信号n(t):又称扰动值,是一种对系统的被控量起破坏作用的信号。
6. 反馈信号b(t):是指被控量经测量元件检测后回馈送到系统输入端的信号。
7. 偏差信号e(t):是指给定值和被控量的差值,或指令信号和反馈信号的差值。
闭环控制的主要优点:控制精度高,抗干扰能力强。
缺点:使用的元件多,线路复杂,系统的分析和设计都比较麻烦。
对控制系统的性能要求 :稳定性 快速性 准确性稳定性和快速性反映了系统的过渡过程的性能。
准确性是衡量系统稳态精度的指标,反映了动态过程后期的性能。
第二章 控制系统的数学模型拉氏变换的定义:-0()()e d st F s f t t +∞=⎰几种典型函数的拉氏变换1.单位阶跃函数1(t)2.单位斜坡函数3.等加速函数4.指数函数e -at5.正弦函数sin ωt6.余弦函数cos ωt7.单位脉冲函数(δ函数) 拉氏变换的基本法则 1.线性法则 2.微分法则 3.积分法则1()d ()f t t F s s ⎡⎤=⎣⎦⎰L4.终值定理()lim ()lim ()t s e e t sE s →∞→∞==5.位移定理00()e()sf t F s ττ--=⎡⎤⎣⎦Le ()()atf t F s a ⎡⎤=-⎣⎦L传递函数:线性定常系统在零初始条件下,输出信号的拉氏变换和输入信号的拉氏变换之比称为系统(或元部件)的传递函数。
动态结构图及其等效变换 1.串联变换法则 2.并联变换法则 3.反馈变换法则4.比较点前移“加倒数”;比较点后移“加本身”。
第五章5_2 Bode图 自动控制原理 浙江大学考研资料

5
Bode plots (Logarithmic plots )
Bode图(对数坐标图)
Bode图(对数频率特性曲线): 对数频率特性曲线由对数幅频曲线和对数相频曲线组成 对数频率特性曲线的横坐标:按logω分度,单位为弧度/秒(rad/s) 对数幅频曲线的纵坐标:按LmG(jω)=20log|G(jω)|线性分度,单位是分贝 对数相频曲线的纵坐标:按Φ(ω)线性分度,单位为度
Lm j 20 log j 20 log
dB
Angle 90º jω
对数幅频曲线为一条斜线,其斜率为 6dB/octave 或者 20dB/decade. 相角恒等于 +90º.
-90º (jω)-1
ω
10
Bode plots (Logarithmic plots )
2 1 1 1 2 Lm 1 j 2 j Lm Lm n 1 jT1 1 jT2 n
1
(1+j (1 jωT1)-1 (1 (1+j jωT2)-1
1
Angle 1/T1 -90º -180º
17
1/T2 ω
2 1 1 1 2 Angle1 j 2 j Angle Angle n 1 jT1 1 jT2 n
Wintersweet
2
Bode plots (Logarithmic plots )
Bode图(对数坐标图)
对数坐标图的优点 1) 将乘积和除法的数学操作转化为加法和减法; 2) 传递函数的获取大多采用图表法,而不是分析法; 3) 半对数坐标扩展了低频段 首先运用直线近似的方法来获得系统的近似特性,然后修正直线, 提高精度. 对数坐标图 足够多的数据 极坐标图
典型环节传递函数及伯德图

1 T
10 T
L( )(dB)
0 0.01
( ) G( j ) 90
0.1 1 10
20
20dB / dec
j
40
( )()
0 90 60 30 0 0.01 0.1 1 10
4.惯性环节 (一阶积分环节,是一个相位滞后环节)
惯性环节的特点:当输入量突变时,输出量不会突变,只能按指数 规律逐渐变化,即具有惯性。 惯性环节的微分方程:
比例环节功能框图
1.比例环节(放大环节)
G( j ) K , L( ) 20lg G( j ) 20lg K G( s) K G( j ) K G( j ) K 0 ( ) G( j ) 0
L( )(dB)
20lgK j 0 K 0 0.1 1 10
1
转折频率
1 T
渐近线 1
10 T
0
0 -20
实际幅相曲线
( )()
0 .1 1 T
20dB / dec
0.707
1 T
0 -45
1 T
10
1 T
5 一阶微分环节
特点:此环节的输出量不仅与输入量本身有关,而且与输 入量的变化率有关。
方块图为:
R( s )
τs + 1
C (s)
6.振荡环节
G jω 1 2 2 L ω 20lg 1 T ω 2 2 T jω 2ζ T jω 1
2ζ Tω
2
2
ω t g1
2ζ Tω 2 2 1 T ω
自动控制原理第五章频域分析法

谐振峰值
Am(m) 2
1
12
振荡环节的对数频率特性
L ()2l0 oG g (j) 2l0 o(g 1 n 2 2)24 2 n 2 2
n L()0低频渐近线是零分贝线。
n L ( ) 4 0lo g (/ n) 4 0lo g (T ) n 1 /T
高频段是一条斜率为- 40/dB的直线,和零分
幅频特性的谐振峰值和谐振角频率:
G(ju)
1
(1u2)242u2
d G d (j) u u 0 ,u r 1 22 ( 1 /2 0 .7)0
r n12 2 ( 1/ 20 .7) 0
幅频特性的谐振角频率和谐振峰值:
rn1 22, M r G (jr) 1 /21 2
谐振频率
1 / T , L () 2l0 o1 g2 T 2 2l0 o 1 0 g ( d)B
在频率很低时,对数幅频曲线可用0分贝线近似。
1 / T , L ( ) 2l0 o1 g 2 T 2 2l0 o T g
当频率很高时,对数幅频曲线可用一条直线近似,直
线斜率为-20dB/dec,与零分贝线相交的角频率为 1/T 。
( )
0 0.1 1 10
0 o 0.1 1 10
45o
20
90o
对数坐标刻度图
注意:
➢纵坐标是以幅值对数分贝数刻度的,是均匀的;横 ➢ 坐标按频率对数标尺刻度,但标出的是实际的值, ➢ 是不均匀的。 ——这种坐标系称为半对数坐标系。 ➢在横轴上,对应于频率每增大10倍的范围,称为十 ➢ 倍频程(dec),如1-10,5-50,而轴上所有十倍频 程 ➢ 的长度都是相等的。 ➢为了说明对数幅频特性的特点,引进斜率的概念, ➢ 即横坐标每变化十倍频程〔即变化〕所对应的纵 坐
自动控制原理:第六章频域分析法——伯特图及稳定性分析

0.1
0.05
0.05
0.1 0.3
(1 T 2 2
j2T)1
0.7
1
1
10
/ n
(ω) arctan[(2ζωT)/ (1 ωT2 )] 相角:0°~-180°
6.4 系统开环频率特性-典型环节的伯德图特性:
令
dA ( ) d
0,得
谐振
20
10
Bode Diagram 转折频率
0 K 0
90
K 0 180
101
100
101
102
/(rad/sec)
6.4 系统开环频率特性-典型环节的伯德图
2) 积分环节( j )1,微分环节( j )
Bode Diagram 20
1 j
L() /(dB)
积分
A( ω ) 1 ,( ω ) 90
ω
0 j
20
微分 A(ω) ω,(ω) 90
6.3 频率特性图示法-对数幅相频率特性曲线
6.3.3 对数幅相特性曲线(尼科尔斯(N.B.Nichols)曲线)
横坐标为相位()
纵坐标为对数幅值L()=20lgA()
绘制过程:
0
L() /(dB)
从伯德图中分别读取各频率 10 下L()和()的值,
20
在尼科尔斯坐标系中确定相
应的点并将频率作为参变 30 量标于各点旁,
r n 1 2 2
A(r ) Am 2
1
1 2
L() /(dB)
0
-10 -20
(1 T 22
j2T)1
0.05 0.1 0.3
-30
0.7
1 -40
自动控制原理第五章

•表5-1 RC网络的幅频特性和相频特性数据
A( )
( )
0 1 0
1 0.707
45
2 0.45
5 0.196
0
63.4 78.69 90
图5-2 RC网络的幅频和相频特性
图5-3 RC网络频率特性的幅相曲线
对数频率特性图又称伯德图(Bode图),包 括对数幅频特性和对数相频特性两条曲线, 其中,幅频特性曲线可以表示一个线性系 统或环节对不同频率正弦输入信号的稳态 增益;而相频特性曲线则可以表示一个线 性系统或环节对不同频率正弦输入信号的 相位差。对数频率特性图通常绘制在半对 数坐标纸上,也称单对数坐标纸。
图5-20控制系统结构图
将系统的开环频率特性函数按典型环节划分, 可以分解为: ( j 1) ( ( j ) 2 ( j ) 1) k
m1 m2
G ( j ) H ( j )
k
2 l
2
l l
( j )
0
k 1 n1
( i s 1) ( 2 ( j ) 2 2 j j ( j ) 1) j
图5-19 Ⅱ型三阶系统幅相频率特性图
讨论更一般的情况,对于如图5-20所示的闭 环控制系统结构图,其开环传递函数为 G( s) H ( s) ,可以把系统的开环频率特性写作如 下的极坐标形式或直角坐标形式:
G( j)H ( j) G( j)H ( j) e j () P() jQ()
•图5-6积分环节频率特性的极坐标图
在伯德图上,积分环节的对数频率特性为
L( ) lg A( ) lg G( j ) lg ( ) 2
图5-7积分环节的伯德图
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020 12:43:14 AM00:43:142020/12/12
• 11、自己要先看得起自己,别人才会看得起你。12/12/
谢 谢 大 家 2020 12:43 AM12/12/2020 12:43 AM20.12.1220.12.12
• 12、这一秒不放弃,下一秒就会有希望。12-Dec-2012 December 202020.12.12
• 13、无论才能知识多么卓著,如果缺乏热情,则无异 纸上画饼充饥,无补于事。Saturday, December 12, 2020
12-Dec-2020.12.12
• 14、我只是自己不放过自己而已,现在我不会再逼自 己眷恋了。20.12.1200:43:1412 December 202000:43
斜率增加-40dB/十倍频。
5.4 系统开环频率特性的绘制
⑤ 绘出用渐近线表示的对数幅频特性以后,如果需要,可以进
行修正。通常只需修正交接频率处以及交接频率的二倍频和 1/2倍频处的幅值就可以了。
对于一阶项,在交接频率处的修正值为±3dB;
在交接频率的二倍频和1/2倍频处的修正值为±1dB。
对于二阶项,在交接频率处的修正值可由公式 20lg 1
•
8、业余生活要有意义,不要越轨。20 20年12 月12日 星期六 12时43 分14秒 00:43:1 412 December 2020
•
9、一个人即使已登上顶峰,也仍要自 强不息 。上午 12时43 分14秒 上午12 时43分 00:43:1 420.12. 12
• 10、你要做多大的事情,就该承受多大的压力。12/12/
5.4 系统开环频率特性的绘制
二、绘制系统开环频率特性伯德图的步骤
① 确定交接频率w1、w2、w3……,标在角频率w轴上。
② 在w=1处,量出幅值20lgK,其中K为系统开环放大系数。 (在图中标出相应的字母,如A点)
③ 通过A点作一条-20NdB/十倍频的直线,其中N为系统的 无差阶数,直到第一个交接频率w1。如果w1<1,则低频渐 近线的延长线经过A点。
5.4 系统开环频率特性的绘制
④ 以后每遇到一个交接频率,就改变一次渐近线斜率。 每当遇到 1 环节的交接频率时,渐近线斜率 jT j 1 增加-20dB/十倍频;
每当遇到 ( jTi 1) 环节的交接频率时,斜率增加
+20dB/十倍频;
每当遇到
( j)2
2 n
2 n
j
2 n
环节的交接频率时,
求出。
2
系统开环对数幅频特性L(ω)通过0分贝线,即 L(c ) 0 或 A(c ) 1
时的频率c 称为穿越频率。穿越频率c 是开环对数相频
特性的一个很重要的参量。
5.4 系统开环频率特性的绘制
⑥ 画出各串联典型环节相频特性,将它们相加后得到 系统开环相频特性。
绘制开环系统对数相频特性时,可分环节绘 出各分量的对数相频特性,然后将各分量的纵坐 标相加,就可以得到系统的开环对数相频特性。
•
6、意志坚强的人能把世界放在手中像 泥块一 样任意 揉捏。 2020年 12月12 日星期 六上午 12时43 分14秒 00:43:1 420.12. 12
•
7、最具挑战性的挑战莫过于提升自我 。。20 20年12 月上午 12时43 分20.1 2.1200: 43Dece mber 12, 2020
40dB / dec
20dB / dec
20dB / dec
D
开环系统对数幅频特性图 60dB / dec
•
1、有时候读书是一种巧妙地避开思考 的方法 。20.1 2.1220. 12.12Sa turday, December 12, 2020
•
2、阅读一切好书如同和过去最杰出的 人谈话 。00:4 3:1400: 43:1400 :4312/ 12/2020 12:43:14 AM
例5-12 已知系统的开环传递函数为
G(s)H (s)
K (1 s) 1 1
LL( )
s T1s 1 T2 s 2
1
2T2 s 1 (T1
T2 )
dB ()
AB
20dB / dec
20 log K
渐近特性
20dB /
40dB / dec
1
T2
C
•
3、越是没有本领的就越加自命不凡。 20.12.1 200:43: 1400:4 3Dec-20 12-Dec-20
•
4、越是无能的人,越喜欢挑剔别人的 错儿。 00:43:1 400:43: 1400:4 3Saturday, December 12, 2020
•
5、知人者智,自知者明。胜人者有力 ,自胜 者强。 20.12.1 220.12. 1200:4 3:1400: 43:14D ecembe r 12, 2020