八年级月考数学试题卷

合集下载

湖北省襄阳市第四中学2024-2025学年八年级上9月月考数学试题(含答案)

湖北省襄阳市第四中学2024-2025学年八年级上9月月考数学试题(含答案)

2024-2025学年上学期9月阶段性训练八年级数学试卷考试时间:120分钟总分120一、选择题:(每小题3分,共36分).在每小题给出的选项中,只有一项是符合题目要求的.1. 如图所示,为估计池塘岸边A 、B 的距离,小方在池塘的一侧选取一点O ,测得米,米,A 、B 间的距离不可能是( )A. 5米 B. 15米 C. 10米 D. 20米2. 不是利用三角形稳定性是( )A. 自行车的三角形车架B. 三角形房架C. 照相机的三脚架D. 学校的栅栏门3. 如图,在中,边上的高为( )A. B. C. D.4. 在下列条件中:①,②,③,④,⑤中,能确定是直角三角形的条件有( )A. 2个 B. 3个 C. 4个 D. 5个5. 如图,在△ABC 中,∠A=60度,点D ,E 分别在AB ,AC 上,则∠1+∠2的大小为( )度.A. 140B. 190C. 320D. 240的15OA =10OB =ABC V BC BD CF AE BFA B C ∠+∠=∠::1:2:3A B C ∠∠∠=90A B ∠=︒-∠12A B C ∠=∠=∠23A B C ∠=∠=∠ABC V6. 如图,将一张三角形纸片的一角折叠,使点落在处的处,折痕为.如果,,,那么下列式子中正确的是( )A. B. C. D. 7. 如图,分别是的角平分线,,那么的度数为( )A. B. C. D. 8. 正多边形的一个外角不可能是( )A. B. C. D. 9. 如果一个多边形的每个内角都是,则它的边数为( )A. 8B. 9C. 10D. 1110. 如图,在中,点E 是的中点,,,的周长是25,则的周长是( )A 18 B. 22 C. 28D. 32ABC A ABC ∆A 'DE A α∠=CEA β∠'=BDA γ∠'=2γαβ=+2γαβ=+γαβ=+180γαβ=-- BE CF 、ABC ACB ∠∠、50A ∠=︒BDF ∠80︒65︒100︒115︒50︒40︒30︒20︒144︒ABC V BC 7AB =10AC =ACE △ABE V11. 如图,△ACE ≌△DBF ,AD =8,BC =2,则 AC =( )A. 2B. 8C. 5D. 312. 如图,已知,再添加一个条件,仍不能判定的是( )A B. C. D. 二、填空题:本题共6小题,每小题3分,共18分.13. 如图,已知AB ∥CF ,E 为AC 的中点,若FC =6cm ,DB =3cm ,则AB =________.14. 如图,小明从A 点出发,前进6m 到点B 处后向右转,再前进6m 到点C 处后又向右转,…,这样一直走下去,他第一次回到出发点A 时,一共走了 _____m .15. 已知一个边形内角和等于1980°,则__________.16. 如图,△ABC 的面积为18,BD=2DC ,AE=EC ,那么阴影部分的面积是_______.17. 如图,是的外角,平分平分,且交于点D .若,则的度数为___________.的ABC BAD ∠=∠ABC BAD ≌△△AC BD =C D ∠=∠AD BC =ABD BAC∠=∠20︒20︒n n =ACE ∠ABC V BD ,ABC CD ∠ACE ∠BD CD 、70A ∠=︒D ∠18. △ABC 中,AD 是BC 边上的高,∠BAD=50°,∠CAD=20°,则∠BAC=___________.三、解答题:本题共7小题,共66分.解答应写出文字说明,证明过程或演算步骤.19. 如图,在中,,是边上的高.求的度数.20. 如图,点上,点在上,,,求证:.21. 如图,,,,,求的度数与的长.22. 如图,,,点B 在上,点D 在上.求证:在ABC V 2C ABC A ∠=∠=∠BD AC DBC ∠D AB E AC AB AC =BD CE =B C ∠=∠ABC DEF ≌△△30B ∠=︒50A ∠=︒2BF =DFE ∠EC AB AD =BC CD =AE AF(1)(2).23. (1)阅读理解:课外兴趣小组活动时,老师提出了如下问题:在中,,,求边上的中线的的取值范围.小明在组内经过合作交流,得到了如下的解决方法(如图1):①延长到Q ,使得;②再连接,把集中在中;根据小明的方法,请直接写出图1中的取值范围是 .(2)写出图1中与的位置关系并证明.(3)如图2,在中,为中线,E 为上一点,、交于点F ,且.求证:.24. 如图(1),,,,垂足分别为A 、B ,点P 在线段上以的速度由点A 向点B 运动,同时点Q 在射线BD 上运动.它们运动的时间为(当点P 运动结束时,点Q 运动随之结束).(1)若点Q 的运动速度与点P 的运动速度相等,当时,与是否全等,并判断此时线段和线段的位置关系,请分别说明理由;(2)如图(2),若“,”改为“”,点Q 的运动速度为,其它ABC ADC△≌△12∠=∠ABC V 9AB =5AC =BC AD AD DQ AD =BQ 2AB AC AD 、、ABQ V AD AC BQ ABC V AD AB AD CE AE EF =AB CF =14cm AB =10cm AC =AC AB ⊥BD AB ⊥AB 2cm /s ()s t 2t =ACP △BPQ V PC PQ AC AB ⊥BD AB ⊥CAB DBA ∠=∠cm /s x条件不变,当点P 、Q 运动到何处时有与全等,求出相应的x 和t 的值.25. 如图,在四边形ABCD 中,AD =AB ,DC =BC ,∠DAB =60°,∠DCB =120°,E 是AD 上一点,F 是AB 延长线上一点,且DE =BF .(1)求证:CE =CF ;(2)若G 在AB 上且∠ECG =60°,试猜想DE ,EG ,BG 之间的数量关系,并证明.答案1.A2. D3.C4. C 【解析】解:①∵,则,,∴是直角三角形;②∵,设,则,,,∴是直角三角形;ACP △BPQ V A B C ∠+∠=∠2180C ∠=︒90C ∠=︒ABC V ::1:2:3A B C ∠∠∠=A x ∠=23180x x x ++=30x =︒30390C ∠=︒⨯=︒ABC V③∵,∴,则,∴是直角三角形;④∵,∴,则,∴是直角三角形;⑤∵,,,∴为钝角三角形.∴能确定是直角三角形的有①②③④共4个,故选C .5. D 【解析】分析:根据三角形外角性质可得∠1=∠A +∠ADE ,∠2=∠A +∠AED ,再根据已知和三角形内角和等于180°即可求解.详解:∵∠1=∠A +∠ADE ,∠2=∠A +∠AED∴∠1+∠2=∠A +∠ADE +∠A +∠AED=∠A +(∠ADE +∠A +∠AED )=60°+180°=240°故选D.6. A【解析】的90A B ∠=︒-∠90A B ∠+∠=︒1809090C ∠=︒-︒=︒ABC V 12A B C ∠=∠=∠1118022A B C C C C ∠+∠+∠=∠+∠+∠=︒90C ∠=︒ABC V 32C B A ∠=∠=∠1118032A B C A A A ∠+∠+∠=∠+∠+∠=︒108011A ︒∠=ABC V ABC V由折叠得:∠A =∠A ',∵∠BDA '=∠A +∠AFD ,∠AFD =∠A '+∠CEA ',∵∠A =α,∠CEA ′=β,∠BDA '=γ,∴∠BDA '=γ=α+α+β=2α+β,故选A.7. B【解析】解:∵,∴,∵分别是的角平分线,∴,∴,∴.故选:B8. A【解析】解:A 、不是整数,正多边形的一个外角不能是,符合题意;B 、,正十边形的一个外角可能是,不符合题意;C 、,正八边形的一个外角可能是,不符合题意;D 、,正十八边形的一个外角可能是,不符合题意.故选:A .9. C【解析】解:∵一个多边形的每个内角都是,∴这个多边形的每个外角都为,50A ∠=︒180130ABC ACB A ∠+∠=︒-∠=︒BE CF 、ABC ACB ∠∠、11,22CBE ABC BCF ACB ∠=∠∠=∠()11165222CBE BCF ABC ACB ABC ACB ∠+∠=∠+∠=∠+∠=︒65CBE B BDF CF ∠+∠=︒∠=360507.2︒÷︒=50︒360409︒÷︒=40︒3603012︒÷︒=30︒3602018︒÷︒=20︒144︒18014436︒-︒=︒∴它的边数为,故选:C .10. B 【解析】∵点E 是的中点,∴,∵,,∴的周长,∴,∴的周长,故选:B .11. 如图,△ACE ≌△DBF ,AD =8,BC =2,则 AC =( )A. 2B. 8C. 5D. 3【答案】C【解析】解:∵△ACE ≌△DBF ,∴AC =DB ,∴AB +BC =DC +BC ,即AB =DC ,∵AD =8,BC =2,∴AB +BC +DC =8,∴2AB +2=8,∴AB =3,∴AC =AB +BC =5,故选C .3601036︒=︒BC BE CE =7AB =10AC =ACE △2510AC CE AE CE AE =++==++15CE AE +=ABE V 771522AB BE AE CE AE =++=++=+=12. A【解析】解:A. 当添加时,且,,由“”不能证得,故选项符合题意;B. 当添加时,且,,由“”能证得,故选项不符合题意;C 当添加时,且,,由“”能证得,故选项不符合题意;D. 当添加时,且,,由“”能证得,故选项不符合题意;故选:.二、填空题:本题共6小题,每小题3分,共18分.13. 9cm【解析】AB ∥CF ,E 为AC 的中点,△ADE ≌△CFE,故答案为14. 【解析】解:由题意可知,当她第一次回到出发点A 时,所走过的图形是一个正多边形,由于正多边形的外角和是,且每一个外角为,,AC BD =ABC BAD ∠=∠AB BA =SSA ABC BAD ≌△△A C D ∠=∠ABC BAD ∠=∠AB BA =AAS ABC BAD ≌△△B AD BC =ABC BAD ∠=∠AB BA =SAS ABC BAD ≌△△C ABD BAC ∠=∠ABC BAD ∠=∠AB BA =ASA ABC BAD ≌△△D A ..A FCE ADE CFE ∴∠=∠∠=∠.AE CE ∴= 6.DA FC ∴==639.AB AD DB cm ∴=+=+=9.cm 108360︒20︒3602018︒÷︒=所以它是一个正十八边形,因此所走的路程为(m ),故答案为:.15. 13【解析】解:依题意有:(n-2)•180°=1980°,解得n=13.故答案为:13.16. 【解析】如图:作DG∥AC,交BE 于点G ,设阴影部分的面积a ,∵DG∥AC,BD=2DC ,∴GD=EC,BD=BC ,∴△BGD 的面积=△BCE 的面积,∵△ABC 的面积为18,AE=EC ,∴△BCE 的面积=△ABC 的面积=9,∴△BGD 的面积=△BCE 的面积=4,又∵△GDF∽△EAF,且=,∴△GDF 的面积=△EAF 的面积,∵BD=2DC,∴△ADC 的面积=18×=6,∴△EAF 的面积=6−a ,186108 =1082152323491249GD AE 234913∴△GDF 的面积=△EAF 的面积=(6−a),∴△BGD 的面积+△GDF 的面积+阴影部分的面积a=9,∴4+(6−a)+a=9,解得a=.故答案为.17. 【解析】解:∵平分平分,∴.∴.∵,∴.故答案为:.18. 70°或30°①如图,当AD 在△ABC 的内部时,∠BAC=∠BAD+∠CAD=50°+20°=70°.②如图,当AD 在△ABC 的外部时,∠BAC=∠BAD -∠CAD=50°-20°=30°.故答案为:70°或30°.三、解答题:本题共7小题,共66分.解答应写出文字说明,证明过程或演算步骤.19. 解:∵,∴,∴.则.又是边上的高,49494921521535︒BD ,ABC CD ∠ACE ∠2,2ABC DBC ACE DCE ∠=∠∠=∠222A ACE ABC DCE DBC ∠=∠-∠=∠-∠=()2DCE DBC D ∠-∠=∠70A ∠=︒1352D A ∠=∠=︒35︒2C ABC A ∠=∠=∠5180C A B C A A ∠+∠+∠=∠=︒36A ∠=︒272C A B C A ∠=∠=∠=︒BD AC.20. ∵,,∴,即,在和中,∵∴(SAS ),∴.21. 解:∵,∴,.∴∵,∴,∴.∴.22.(1)证明:在和中,∴(2)∵,∴.∵,,∴.23. 解:(1)延长到Q ,使得,再连接,∴9018DBC C ∠=︒-∠=︒AB AC =BD CE =AB BD AC CE -=-AD AE =ACD V ABE V AD AE A AAC AB =⎧⎪∠=∠⎨⎪=⎩ACD ABE △△≌B C ∠=∠ABC DEF ≌△△50D A ∠=∠=︒30E B ∠=∠=︒1801803050100DFE E D ∠=︒-∠-∠=︒-︒-︒=︒ABC DEF ≌△△EF BC =EF FC BC FC -=-2EC BF ==ABC V ADC △AB AD BC CDAC AC =⎧⎪=⎨⎪=⎩()SSS ABC ADC ≌△△ABC ADC △≌△ABC ADC ∠=∠1180ABC ∠+∠=︒2180ADC ∠+∠=︒12∠=∠AD DQ AD =BQ∵是的中线,∴,又∵,,∴,∴,在中,,∴,即,∴,故答案为:;(2),证明如下:由(1)知,∴,∴;(3)延长至点G ,使,连接,AD ABC V BD CD =DQ AD =BDQ CDA ∠=∠()SAS BDQ CDA ≌V V 5BQ CA ==ABQ V AB BQ AQ AB BQ -<<+9595AQ -<<+414AQ <<27AD <<27AD <<AC BQ ∥BDQ CDA V V ≌BQD CAD ∠=∠AC BQ ∥AD GD AD =CG∵为边上的中线,∴,在和中,,∴,∴,∵,∴,∴,∴,∴,∴.24. (1)解:,.理由:∵,,∴,∵,∴,∴,AD BC BD CD =ADB V GDC V BD CD ADB GDC AD GD =⎧⎪∠=∠⎨⎪=⎩()SAS V V ≌ADB GDC AB GC G BAD =∠=∠,AE EF =AFE FAE ∠=∠DAB AFE CFG ∠=∠=∠∠=∠G CFG CG CF =AB CF =ACP BPQ △≌△PC PQ ⊥AC AB ⊥BD AB ⊥90A B ∠=∠=︒224AP BQ ==⨯=14410BP AB AP =-=-=BP AC =∴,∴,∵,∴,∴,∴;(2)解:①若,则,,由可得:,∴,由可得:,∴;②若,则,,由可得:,∴,由可得:,∴,综上所述,当与全等时,x 和t 的值分别为:,或,.25.(1)证明:∵∠D +∠DAB +∠ABC +∠DCB =360°,∠DAB =60°,∠DCB =120°,∴∠D +∠ABC =360°﹣60°﹣120°=180°.又∵∠CBF +∠ABC =180°,∴∠D =∠CBF .AC BP =⎩()SAS ACP BPQ ≌△△C BPQ ∠=∠90C APC ∠+∠=︒90APC BPQ ∠+∠=︒90CPQ ∠=︒PC PQ ⊥ACP BPQ △≌△AC BP =AP BQ =AC BP =10142t =-2t =AP BQ =222x ⨯=2x =ACP BQP △≌△AC BQ =AP BP =AP BP =2142t t =-72t =AC BQ =7102x =207x =ACP △BPQ V 2x =2t =207x =72t =∴△CDE ≌△CBF (SAS ).∴CE =CF .(2)解:猜想DE 、EG 、BG 之间的数量关系为:DE +BG =EG .理由如下:连接AC ,如图所示.在△ABC 和△ADC 中, ,∴△ABC ≌△ADC (SSS ),∴∠BCA =∠DCA=∠DCB =×120°=60°.又∵∠ECG =60°,∴∠DCE =∠ACG ,∠ACE =∠BCG .由(1)可得:△CDE ≌△BDF ,∴∠DCE =∠BCF .∴∠BCG +∠BCF =60°,即∠FCG =60°.∴∠ECG =∠FCG .在△CEG 和△CFG 中, ,∴△CEG ≌△CFG (SAS ),∴EG =FG .又∵DE =BF ,FG =BF +BG ,∴DE +BG =EG .DE BF =⎩AB AD BC DC AC AC =⎧⎪=⎨⎪=⎩1212CE CF ECG FCG CG CG =⎧⎪∠=∠⎨⎪=⎩。

四川省德阳市中江县2024-2025学年八年级上学期10月月考数学试题[含答案]

四川省德阳市中江县2024-2025学年八年级上学期10月月考数学试题[含答案]

A.4
3
S V ABP ,其中正确的个数是(
2
B.3
C.2
第 II 卷

D.1
非选择题(102 分)
二、填空题(本大题共 7 个小题,每小题 4 分,本大题满分 28 分)
13.如图,在 V ABC 中, D 是 BC 边上一点, E 是边上一点.在 △ACE 中, Ð CAE 的对
边是

14.正十边形的每个外角等于
从点 B 出发,在直线 BC 上以 2cm/ s 的速度移动,过点 E 作 BC 的垂线交直线 CD 于点 F ,当
点 E 运动
s 时, CF
= AB .
19.如图,在 V ABC 中, ÐA = 20°, ÐEBC , ÐDCB 为 V ABC 的外角, ÐEBC 与 ÐDCB 的平分
线交于点 A1 , ÐEBA1 与 ÐDCA1 的平分线交于点 A2 , ¼,ÐEBAn -1 与 ÐDCAn -1 的平分线相交于点
的内角和为(
A. 1800°

B. 1440°
C. 1080°
试卷第 2 页,共 7 页
D. 720°
8.如图,在 V ABC 中,点 E 是 BC 的中点, AB = 7 , AC = 10 , △ACE 的周长是 25,则 V ABE
的周长是( )
A.18
B.22
C.28
D.32
9.如图,在 8 ´ 8 的正方形网格中, V ABC 的顶点和线段 EF 的端点都在小正方形的顶点上,

15.如图,四边形 ABCD 中,点 M、N 分别在 AB、BC 上,将 V BMN 沿 MN 翻折得 V FMN ,
若 MF∥AD,FN∥DC ,则 ÐB =

河北省邢台市信都区2024-2025学年八年级上学期月考数学试题

河北省邢台市信都区2024-2025学年八年级上学期月考数学试题

河北省邢台市信都区2024-2025学年八年级上学期月考数学试题一、单选题1.下列式子是分式的是( )A .xB .23C .2xD .3x 2.下列各组的两个图形属于全等图形的是( )A .B .C .D .3.如图,若ABC ADE △≌△,则AB 的对应边是( )A .CDB .BDC .AD D .AE4.下列分式是最简分式的是( )A .11x x --B .211x x --C .42xD .221x x - 5.春节游河南,探寻千年古韵,品味地道年味!有游客m 人,到龙门石窟游玩,需要住宿,如每n 个人住一间房,结果还有一个人无房住,则客房的间数是( )A .1m n -B .1m n -C .1m n +D .1m n+ 6.将分式ab a b-中的a b 、都扩大为原来的3倍,则分式的值( ) A .不变B .是原来的3倍C .是原来的9倍D .是原来的6倍7.如图,AC 与BD 交于点O ,若OA OD =,要用“SAS”证明AOB DOC △≌△,还需要的条件是( )A . OB OC =B . AB DC = C .AD ∠=∠ D .B C ∠=∠8.已知1313a a =□,能使等式恒成立的运算符号是( ) A .+B .-C .·D .÷ 9.若分式52x--的值为负数,则x 的取值范围是( ) A .x <2 B .x >2 C .x >5 D .x <﹣210.下列各命题的逆命题成立的是( )A .对顶角相等B .如果两个数相等,那么它们的绝对值相等C .两直线平行,同位角相等D .如果两个角都是45︒,那么这两个角相等11.若将分式2223x x y -与分式2()x x y -通分后,分式2()x x y -的分母变为2(x ﹣y )(x+y ),则分式2223x x y -的分子应变为( ) A .6x 2(x ﹣y )2 B .2(x ﹣y ) C .6x 2 D .6x 2(x+y ) 12.工人师傅常用角尺平分一个任意角,具体做法如下:如图,已知AOB ∠是一个任意角,在边OA 、OB 上分别取OM ON =,移动角尺,使角尺两边相同的刻度分别与点M 、N 重合,就可以知道射线OC 是AOB ∠的角平分线.依据的数学基本事实是( )A .两边及其夹角分别相等的两个三角形全等,B .两角及其夹边分别相等的两个三角形全等.C .两角分别相等且其中一组等角的对边相等的两个三角形全等.D .三边分别相等的两个三角形全等.13.化简分式23311x x x-+--过程中开始出现错误的步骤是( ) 23333(1)11(1)(1)(1)(1)x x x x x x x x x --++=---+-+-…………① 331(1)(1)x x x x --+=+-………② 22(2)(1)x x x --=+-…………③ 21x =--…………④ A .① B .② C .③ D .④14.如图,课本上给出了小明一个画图的过程,这个画图过程说明的事实是( )A .两个三角形的两条边和夹角对应相等,这两个三角形全等B .两个三角形的两个角和其中一角的对边对应相等,这两个三角形全等C .两个三角形的两条边和其中一边对角对应相等,这两个三角形不一定全等D .两个三角形的两个角和夹边对应相等,这两个三角形不一定全等二、填空题15.把2336a b ab-约分后,分母是22b ,分子是 16.关于x 的分式方程5222m x x+=--. (1)若方程的根为1x =,则m =;(2)若方程有增根,则m =三、解答题17.如图所示,在边长为1的正方形网格图中,点A B C D 、、、均在正方形网格格点上.(1)图中与线段AD 的长相等的线段是;(2)B D ∠+∠=︒.18.已知:如图,直线a b 、被直线c 所截,1∠与2∠互补,求证:a b P .19.如图,ADE BCF V V ≌,8cm AD =,6cm CD =,30A ∠=︒,80E ∠=︒.(1)求BD 的长.(2)求BCF ∠的度数.20.如图,小明家住在河岸边的B 处,河对岸的A 处有一棵树,他想要测得这棵树与自己家之间的距离AB .设计了下面的方案:在与B 点同侧的河岸边选择一点C ,测得75ABC ∠=o ,35ACB ∠=o ,然后在M 处立了标杆,使75MBC ∠=o ,35MCB ∠=o ,此时测得MB 的长就是A ,B两点间的距离.小明设计的方案是否正确?请说明理由.21.已知分式2x a+-(a,b为常数)满足表格中的信息:(1)则b的值是______;(2)求出c的值______.22.根据如图所示的程序,求输出D的化简结果.23.直角三角形ABC中,90ACB∠=︒,直线l过点C.(1)当AC BC =时,如图1,分别过点A 和B 作AD ⊥直线l 于点D ,BE ⊥直线l 于点E .求证:ACD CBE V V≌; (2)当8cm AC =,6cm BC =时,过B 作BP l ⊥于P 点,延长BP 到F 点,使PF BP =.点M 是AC 上一点,点N 是CF 上一点,分别过点M 、N 作MD ⊥直线l 于点D ,NE ⊥直线l 于点E .点M 从A 点出发,以每秒1cm 的速度沿A C →路径运动,终点为C .点N 从F 点出发,以每秒3cm 的速度沿F C B C F →→→→路径运动,终点为F .点M 、N 同时开始运动,各自达到相应的终点时停止运动.设运动时间为t 秒,请求出所有使MDC △与CEN V全等的t 的值.24.甲,乙两个工程队分别接到36千米的道路施工任务.以下是两个工程队的施工规划.(1)问甲工程队完成施工任务需要多少天?(2)若要尽快完成施工任务,乙工程队应采取哪种方案?说明你的理由.。

江苏省连云港市灌南县2024-2025学年八年级上学期第一次月考数学试卷(含答案)

江苏省连云港市灌南县2024-2025学年八年级上学期第一次月考数学试卷(含答案)

2024-2025学年度第一学期学业质量阶段性检测八年级数学试题(A 卷)(满分分值:150分 考试时间:100分钟)一、选择题(本大题共8小题,每小题3分,共24分。

在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填写在答题卡相应位置上)1.《国语・楚语》记载:“夫美也者,上下、内外、大小、远近皆无害焉,故曰美.”这一记载充分表明传统美的本质特征在于对称和谐。

下列四个图案中,是轴对称图形的是( )A. B. C. D.2.下列说法中正确的是( )A.面积相等的两个图形是全等图形B.周长相等的两个图形是全等图形C.所有正方形都是全等图形D.能够完全重合的两个图形是全等图形3.有下列说法:(1)线段是轴对称图形;(2)成轴对称的两个图形中,对应点的连线被对称轴垂直平分;(3)成轴对称的两个图形一定全等;(4)轴对称图形的对称点一定在对称轴的两侧。

其中正确的有( )A.1个B.2个C.3个D.44.如图,已知,那么添加下列一个条件后,不能判定的是( )A. B. C. D.5.如图,若,四个点B 、E 、C 、F 在同一直线上,,,则CF 的长是( )A.2 B.3 C.5 D.76.如图,两个三角形是全等三角形,x 的值是( )A.30B.45C.50D.857.如图,在中,,平分交边BC 于点,若,,则的面积是()AB AD =ABC ADC ≅△△CB CD=BAC DAC ∠=∠BCA DCA ∠=∠90B D ︒∠=∠=ABC DEF ≅△△7BC =5EC =ABC △90C ∠=︒AD BAC ∠D 3CD =8AB =ABD △A.36B.24C.12D.108.如图,已知,为的平分线,、、…为的平分线上的若干点.如图1,连接BD 、CD ,图中有1对全等三角形;如图2,连BD 、CD 、BE 、CE ,图中有3对全等三角形;如图3,连接BD 、CD 、BE 、CE 、BF ,CF ,图中有6对全等三角形,依此规律,第2025个图形中全等三角形的对数是( )图1 图2 图3A.2049300 B.2051325 C.2068224 D.2084520二、填空题(本大题共8小题,每小题3分,共24分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置上)9.如图,,则AD 的对应边是________。

山东日照港中学2024年八年级上学期10月月考数学试卷

山东日照港中学2024年八年级上学期10月月考数学试卷

2024-2025学年度上学期八年级单元检测数学试题第I 卷一、单项选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 我国建造的港珠澳大桥全长55公里,集桥、岛、隧于一体,是世界最长的跨海大桥.如图,这是港珠澳大桥中的斜拉索桥,那么你能推断出斜拉索大桥中运用的数学原理是( )A. 三角形不稳定性B. 三角形的稳定性C. 四边形的不稳定性D. 四边形的稳定性2. 如图,用三角板作ABC 的边AB 上的高线,下列三角板的摆放位置正确的是( )A B.C. D.3. 已知三条线段的长分别是3,7,m ,若它们能构成三角形,则整数m 的最大值是( )A. 11B. 10C. 9D. 74. 如图,在ABC 和ABD △中,已知AC AD =,则添加以下条件,仍不能判定ABC ABD △≌△的是( )的.A. BC BD =B. ABC ABD ∠=∠C. 90C D ∠=∠=°D. CAB DAB ∠=∠5. 如图,点F ,A ,D ,C 在同一直线上,EF BC ∥,且EF BC =,DE AB ∥.已知3,11,AD CF ==则AC 的长为()A. 5B. 6C. 7D. 6.56. 在下列条件中:①A B C ∠+∠=∠,②::1:2:3A B C ∠∠∠=,③90AB ∠=°−∠,④12A B C ∠=∠=∠,⑤23A B C ∠=∠=∠中,能确定ABC 是直角三角形的条件有( ) A. 2个 B. 3个 C. 4个 D. 5个7. 如图,小林从P 点向西直走 12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了96米回到点P . 则α=( )A. 30°B. 45°C. 60°D. 90°8. 窗棂是中国传统木构建筑的框架结构设计,窗棂上雕刻有线槽和各种花纹,构成种类繁多的优美图案.如图是从某窗棂样式结构图案上摘取的部分.已知//385BC DE ∠°,,则1234∠∠∠∠+++的度数是( )A. 320°B. 265°C. 245°D. 225°9. 如图,在ABC 中,延长CA 至点F ,使得AF CA =,延长AB 至点D ,使得2BD AB =,延长BC 至点E ,使得3CE CB =,连接EF 、FD 、DE ,若36DEF S =△,则ABC S ( )A. 1B. 2C. 3D. 410. 如图,在ABC ,AB AC =,D 为BC 上的一点,28BAD ∠=°,在AD 的右侧作ADE ,使得AE AD =,DAE BAC ∠=∠,连接CE 、DE ,DE 交AC 于点O ,若CE AB ∥,则DOC ∠的度数为( )A. 124°B. 102°C. 92°D. 88°二、填空题 (本题共5小题,每小题3分,共15分. )11. 如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上_____根木条.12. 如图,正八边形和正五边形按如图方式拼接在一起,则CAB ∠=______°.13. 如图,在ABC 中,AD 是高线,AE BF 、是角平分线,它们相交于点5070O BAC C EAD ∠=°∠=°∠,,,度数为_________.为14. 如图,在 3×3的方格图中,每个小方格的边长都为1,则1∠与2∠的关系是__________________.15. 如图,在平面直角坐标系中,将直角三角形的直角顶点放在点()3,3P 处,两直角边分别与坐标轴交于点A 和点B ,则OA OB +的值为___________.三、解答题:(本题共 8 小题,解答应写出文字说明、证明过程或演算步骤. 共75分) 16. 如图,经测量,B 处在A 处的南偏西57°的方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东82°方向,求C ∠的度数.17. 如图,F 、C 是AD 上两点,且AF CD =,点E 、F 、G 在同一直线上,且BC GF ,BC EF =.求证:ABC DEF ≌△△18. 如图,在ABC 和DCB △中,AC 与BD 相交于点O ,AB DC =,AC BD =.求证:ABO DCO △≌△.19. 已知一个多边形的内角和与外角和相加等于2160°.(1)求这个多边形的边数及对角线的条数.(2)这个多边形剪去一个角后,所形成的新多边形有几条边?内角和是多少?20. 在ABC 中, A B C ∠∠∠,,的对边分别为a , b , c .(1)化简代数式:a b c b a c +−+−−=; (2)若AB AC AC =,边上的中线BD 把ABC 的周长分为15和6两部分,求底边BC 的长. 21. 如图,在ABC 中.(1)如果7cm AB =,5cm AC =,BC 是能被3整除的偶数,求这个三角形的周长.(2)如果BP 、CP 分别是∠和ACB ∠的角平分线.①当50A ∠=°时,求BPC ∠的度数.②当A n ∠=°时,求BPC ∠的度数.22. 如图1,一张三角形ABC 纸片,点D 、E 分别是ABC 边上两点.研究(1):如果沿直线DE 折叠,使A 点落在CE 上,则BDA ′∠与A ∠的数量关系是 ;研究(2):如果折成图2的形状,猜想BDA ′∠、CEA ′∠和A ∠的数量关系还成立吗?若成立,请说明理由; 若不成立,直接写出他们的关系.研究(3):如果折成图3的形状,猜想BDA ′∠、CEA ′∠和A ∠的数量关系是 .23. 如图,在ABC 和CDE 中,AC BC =,CD CE =,ACB DCE ∠=∠,连接AD ,BE 交于点M .(1)如图1,当点B ,C ,D 在同一条直线上时,可以得到图中一对全等三角形,即_____≌_____; (2)当点D 不直线BC 上时,如图2位置,且ACB DCE α∠=∠=.①求证:AD BE =;②求EMD ∠的大小(用含α的代数式表示).的在。

2024-2025学年北师大版八年级数学上册第一次月考综合测试卷(含答案)

2024-2025学年北师大版八年级数学上册第一次月考综合测试卷(含答案)

八年级上学期第一次月考综合测试卷时间:100分钟 满分:120分 考试范围:北师大版八年级上册第一章~第二章一、选择题(每小题3分,共30分)1.下列是无理数的是( )A.-13B.4C.3.141 592 6D.-π2.下列几组数中,是勾股数的是( )A.1,2,3B.0.3,0.4,0.5C.15,8,17D.35,45,13.下列各式中正确的是( )A.16=±4B.3-27=-9C.(-3)2=-3D.94=324.已知下列各式:23,0.1,35,12,6,其中不是最简二次根式的有( )A.2个B.3个C.4个D.5个5.在如图所示的数轴上,表示数3-7的点应在( )A.A ,O 之间B.O ,B 之间C.B ,C 之间D.C ,D 之间6.国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A 处出发先往东走8 km,又往北走2 km,遇到障碍后又往西走3 km,再向北走到6km 处往东拐,仅走了1 km,就找到了宝藏,则门口A 到藏宝点B 的直线距离是( )A.20 kmB.14 kmC.11 kmD.10 km7.如图,一场暴雨过后,垂直于地面的一棵大树在距地面5米的C 处折断,树尖B 恰好碰到地面,经测量树尖B 与树桩A 相距12米,则大树折断前高为( )A.13米 B.17米 C.18米 D.22米8.如图,是一种筷子的收纳盒,长、宽、高分别为4 cm,3 cm,12 cm,现有一长为16 cm 的筷子插入到盒的底部,则筷子露在盒外的部分h (cm)的取值范围( )A.3<h<4 B.3≤h ≤4 C.2≤h ≤4 D.5≤h ≤69.把两块同样大小的含45°角的直角三角尺按如图所示放置,其中一块的锐角顶点与另一块的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上,若AC=22,则CD的长是( )A.3B.5C.25+2D.23+210.如图,有一根高为2.1 m的木柱,它的底面周长为40 cm,在准备元旦联欢晚会时,为了营造喜庆的氛围,小明将一根彩带从柱底向柱顶均匀地缠绕7圈,一直缠到起点的正上方为止,小明需要准备的这根彩带的长至少为( ) A.1 400 cm B.350 cm C.840 cm D.300 cm二、填空题(每小题3分,共15分)11. 写出一个在3和4之间的无理数:12.如图,每个小正方形的边长为1,可通过“剪一剪”“拼一拼”,将五个小正方形拼成一个面积一样的大正方形,则这个大正方形的边长是 .13.若m,n为实数,且m=1―n+n-1+8,则mn的立方根为 .14 .如图,有一块一边长为24 m的长方形绿地,在绿地旁边B处有健身器材.由于居住在A处的居民践踏了绿地,小颖想在A处立一个标牌“少走 步,踏草何忍”,但小颖不知应填什么数,请你帮她填上.(假设2步为1 m)15.有一个边长为1的正方形,经过一次“生长”后,在它的左右肩上生出两个小正方形,且这3个正方形所围成的三角形是直角三角形.再经过一次“生长”后,变成了如图,如果继续“生长”下去,它将变得“枝繁叶茂”.请你算出“生长”了2 021次后形成的图形中所有的正方形的面积和是 .三、解答题(共8小题,共75分)16.(8分)把下列各数填入相应的集合内:227,π5,0,3.14,-5,0.313 131…,38,-64,7.151 551…(相邻两个1之间5的个数逐次加1).有理数集合{ …};无理数集合{ …};正数集合{ …};负数集合{ …}.17.(每小题3分,共12分)解答下列各题.(1)(x+5)2=16(2)8(x-1)3=-1258(3)48-27+13 (4)(-2+6)(-2-6)-(3-13)2.18.(8分)如图,一个梯子AB,顶端A 靠在墙AC 上,这时梯子的顶端距地面的垂直高度为24米,若梯子的顶端下滑4米到E 点,底端则水平滑动8米到D 点,求滑动前梯子底端与墙的距离CB 是多少.19.(8分)如图,在四边形ABDC中,∠A=90°,AB=6,AC=8,BD=5,CD2=125.(1)连接BC,求BC的长;(2)求△BCD的面积.20.(8分)已知a-2的平方根是±2,a-3b-3的立方根是3,整数c满足c<12<c+1.(1)求a,b,c的值;(2)求a2+b2+c3+17的算术平方根.21.(10分)为了积极响应国家新农村建设,某镇政府采用了移动宣讲的广播形式进行宣传.如图,笔直公路MN的一侧有一报亭A,报亭A到公路MN的距离AB 为600米,且宣讲车P周围1 000米以内能听到广播宣传,宣讲车P在公路MN 上沿PN方向行驶.(1)请问报亭的人能否听到广播宣传,并说明理由;(2)如果能听到广播宣传,已知宣讲车的速度是200米/分,那么报亭的人总共能听到多长时间的广播宣传?22.(10分)八年级某班开展了手工制作比赛,每个同学都在规定时间内完成一件手工作品.陈莉同学制作手工作品的前两个步骤如下:①如图,先裁下一张长20 cm,宽16 cm 的长方形纸片ABCD;②将纸片沿着AE 所在的直线折叠,点D 恰好落在BC 边上的F 处.请你根据①②步骤分别计算FC,EC 的长.23.(11分)小明在解决问题:已知a=12+3,求2a 2-8a+1的值.他是这样分析与解答的:因为a=12+3=2―3(2+3)(2-3)=2-3,所以a-2=-3.所以(a-2)2=3,即a 2-4a+4=3.所以a 2-4a=-1.所以2a 2-8a+1=2(a 2-4a)+1=2×(-1)+1=-1.请你根据小明的分析过程,解决如下问题:(1)计算:12+1= .(2)计算:12+1+13+2+14+3+…+1100+99.(3)若a=12-1,求4a 2-8a+1的值.参考答案12345678910DCDBBDCB DB11.1112.513.214.1615.2022解析:6.D 如图,过点B 作BC⊥AC ,垂足为C,过点N 作NM⊥AC ,垂足为M.由题意可知AC=AF-MF+MC=8-3+1=6(km),BC=2+6=8(km),在Rt△ACB中,AB=AC 2+BC 2=62+82=10(km).解析:9.D 如图,作AF⊥BC 于点F,∵△AED 和△ACB 是一样的等腰直角三角形,AC=22,∴BC=AD=4,∴AF=12BC=2,BF=CF=2,∴DF=AD 2-AF 2=42-22=23,∴CD=DF+CF=23+2.三、解答题16.有理数集合{227,0,3.14,0.313 131…,38,-64,…};无理数集合{π5,-5,7.151 551…(相邻两个1之间5的个数逐次加1),…};正数集合{227,π5,3.14,0.313 131…,38,7.151 551…(相邻两个1之间5的个数逐次加1),…};负数集合{-5,-64,…}.17.(1)x=-1或x=-9.(2)因为8(x-1)3=-1258,所以(x-1)3=-12564,所以x-1=-54,所以x=1-54,所以x=-14(3)原式=43-33+33=433.(4)原式=4-6-(3-2+13)=-2-43=-103.18.∵AC⊥BC ,∴AC 2+CB 2=AB 2,CE 2+CD 2=DE 2,由题意知AB=DE ,AC=24米,AE=4米,BD=8米,∴CE=24-4=20(米),CD=CB+8,∴242+CB 2=202+(CB+8)2,解得CB=7(米).答:滑动前梯子底端与墙的距离CB 是7米.19.(1)∵在△ABC 中,∠A=90°,AB=6,AC=8,∴BC 2=AB 2+AC 2=100,∴BC=10.(2)在△BCD 中,BC=10,BD=5,CD 2=125,∵BC 2+BD 2=102+52=125=CD 2,∴△BCD 是直角三角形,且∠CBD=90°,∴△BCD 的面积为12BD·BC=12×5×10=25. 20.(1)根据题意,得a-2=4,a-3b-3=27,所以a=6,b=-8.12=23≈3.46,所以3<12<4,所以c=3.(2)由(1)知a=6,b=-8,c=3,所以a 2+b 2+c 3+17=62+(-8)2+33+17=144.因为122=144,所以a 2+b 2+c 3+17的算术平方根为12.21.(1)报亭的人能听到广播宣传.理由:∵600米<1 000米,∴报亭的人能听到广播宣传.(2)如图,假设当宣讲车P 行驶到P 1点时,报亭的人开始听到广播宣传,当宣讲车P 行驶过P 2点时,报亭的人开始听不到广播宣传,连接AP 1,AP 2.易知AP 1=AP 2=1 000米,AB=600米,AB ⊥MN ,∴BP 1=BP 2=1 0002-6002=800(米),∴P 1P 2=1 600米.∵1 600÷200=8(分),∴报亭的人总共能听到8分钟的广播宣传.22.∵ 将纸片沿着AE 所在的直线折叠,点D 恰好落在BC 边上的F 处,∴DE=FE ,AF=AD.在Rt△ABF 中,由勾股定理,得BF 2=AF 2-AB 2=202-162=144,∴BF=12 cm .∴FC=20-12=8(cm).设CE=x cm,则EF=DE=(16-x )cm .在Rt△CEF 中,由勾股定理,得EF 2=FC 2+CE 2,即(16-x )2=82+x 2,解得x=6,∴EC=6 cm .23.(1)2-1 解法提示:12+1=2-1(2+1)(2-1)=2-1.(2)原式=(2-1)+(3-2)+(4-3)+…+(100-99)=100-1=10-1=9.(3)因为a=12-1=2+1(2-1)(2+1)=2+1,所以a-1=2.所以(a-1)2=2,即a 2-2a +1=2.所以a 2-2a=1.所以4a 2-8a +1=4(a 2-2a )+1=4×1+1=5.。

江西2024-2025学年八年级上学期第一次月考数学试题(解析版)

江西2024-2025学年八年级上学期第一次月考数学试题(解析版)

江西省2024-2025学年八年级上学期第一次月考数学试题一、单选题1. 在ABC 中,已知3AC =,4BC =,则AB 的取值范围是( )A. 68AB <<B. 17AB <<C. 214AB <<D. 114AB <<【答案】B【解析】【分析】根据三角形三边关系求解.【详解】解: 在ABC 中,3AC =,4BC =, ∴BC AC AB BC AC −<<+,∴4343AB −<<+,即17AB <<.故选B .【点睛】本题考查三角形三边关系的应用,解题的关键是掌握三角形两边之和大于第三边,两边之差小于第三边.2. 如图,△ABC ≌△ABD ,若∠ABC =30°,∠ADB =100°,则∠BAC 的度数是( ).A. 30°B. 100°C. 50°D. 80°【答案】C【解析】 【分析】根据全等三角形的性质得到∠C 的度数,然后利用三角形内角和定理计算即可.【详解】解:∵△ABC ≌△ABD ,∴∠C =∠ADB =100°,∴∠BAC =180°-100°-30°=50°,故选C.【点睛】本题考查了全等三角形的性质和三角形内角和定理,熟知全等三角形的对应边相等,对应角相等是解题关键.3. 如图,在ABC 中,AB AC =,AE AF =,AD BC ⊥,垂足为D .则全等三角形有( )A. 2组B. 3组C. 4组D. 5组【答案】C【解析】 【分析】本题主要考查了全等三角形的性质和判定,先根据HL 证明Rt ADE ≌Rt ADF ,可得DE DF =,进而得出Rt ABD △≌Rt ACD △,可得BD CD =,即可得出BE CF =,再根据SSS 证明ABE ≌ACF △,ACE △≌ABF △,可得答案.【详解】∵AE AF =,AD AD =,∴Rt ADE ≌Rt ADF ,∴DE DF =.∵AB AC =,AD AD =,∴Rt ADB △≌Rt ADC ,∴BD CD =,∴B D D E C D D F −=−,即BE CF =.∵AB AC =,AE AF =,∴ABE ≌ACF △.∵B D D F C D D E +=+,即BF CE =.∵AB AC =,AE AF =,∴ABF △≌ACE △.全等三角形有4组.故选:C .4. 如图,在ABC 中,,ABC ACB ∠∠的平分线交于点O ,连接AO ,过点O 作,,OD BC OE AB ABC ⊥⊥△的面积是16,周长是8,则OD 的长是( )A. 1B. 2C. 3D. 4【答案】D【解析】 【分析】本题主要考查了角平分线的性质,先过点O 作OF AC ⊥于点F ,然后根据角平分线的性质,证明OE OF OD ==,然后根据ABC 的面积AOB =△的面积BOC +△的面积AOC +△的面积,求出答案即可.【详解】如图所示:过点O 作OF AC ⊥于点F ,OB ,OC 分别是ABC ∠和ACB ∠角平分线,OD BC ⊥,OE AB ⊥,OF AC ⊥,OE OD OF ∴==,16ABC AOB BOC AOC S S S S =++= , ∴11116222AB OE BC OD AC OF ⋅+⋅+⋅=, 11116222AB OD BC OD AC OD ⋅+⋅+⋅=, 1()162OD AB BC AC ++=, 8++= AB BC AC ,4OD ∴=,故选:D .5. 如图,ABC ∆中,AB BC =,点D 在AC 上,BD BC ⊥.设BDC α∠=,ABD β∠=,则( )的A. 3180αβ+°B. 2180αβ+°C. 390αβ−=°D. 290αβ−=°【答案】D【解析】 【分析】根据三角形外角等于不相邻两个内角的和,直角三角形两锐互余解答【详解】解:AB BC = ,A C ∴∠=∠,A αβ−∠= ,90C α+∠=°,290αβ∴=°+,290αβ∴−=°,故选:D .【点睛】本题考查了三角形外角,直角三角形,熟练掌握三角形外角性质,直角三角形两锐角性质,是解决此类问题的关键6. 下列条件,不能判定两个直角三角形全等的是( )A. 两个锐角对应相等B. 一个锐角和斜边对应相等C. 两条直角边对应相等D. 一条直角边和斜边对应相等【答案】A【解析】【分析】本题主要考查全等的判定方法,熟练掌握判定方法是解题的关键.根据判定方法依次进行判断即可.【详解】解:A 、两个锐角对应相等,不能判定两个直角三角形全等,故A 符合题意;B 、一个锐角和斜边对应相等,利用AAS 可以判定两个直角三角形全等,故B 不符合题意;C 、两条直角边对应相等,利用SAS 可以判定两个直角三角形全等,故C 不符合题意;D 、一条直角边和斜边对应相等,利用HL 可以判定两个直角三角形全等,故D 不符合题意;故选:A .7. 如图,在ACD 和BCE 中,,,,,AC BC AD BE CD CE ACE m BCD n ===∠=∠= ,AD 与BE 相交于点P ,则BPA ∠的度数为( )A. n m −B. 2n m −C. 12n m −D. 1()2n m − 【答案】D【解析】 【分析】由条件可证明△ACD ≌△BCE ,根据全等三角形的性质得到∠ACB 的度数,利用三角形内角和可求得∠APB=∠ACB ,即可解答.【详解】在△ACD 和△BCE 中AC BC AD BE CD CE===∴△ACD ≌△BCE (SSS ),∴∠ACD=∠BCE ,∠A=∠B ,∴∠BCA+∠ACE=∠ACE+∠ECD ,∴∠ACB=∠ECD=12(∠BCD-∠ACE )=12×(n-m ) ∵∠B+∠ACB=∠A+∠BPA ,∴BPA ∠=∠ACB=1()2n m −. 故选D .【点睛】此题考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.8. 如图,EB 交AC 于M ,交FC 于D ,AB 交FC 于N ,90E F ∠=∠=°,B C ∠=∠,AE AF =,给出下列结论:①12∠=∠;②BE CF =;③ACN ABM ≌;④CD DN =.其中正确的结论有( )A. 4个B. 3个C. 2个D. 1个【答案】B【解析】 【分析】根据90E F ∠=∠=°,B C ∠=∠,AE AF =,可得ABE ACF ≌,三角形全等的性质BE CF =;BAE CAF ∠=∠可得①12∠=∠;由ASA 可得ACN ABM ≌,④CD DN =不成立.【详解】解:∵90E F ∠=∠=°,B C ∠=∠,AE AF =,∴ABE ACF ≌,∴BE CF =;BAE CAF ∠=∠,故②符合题意;∵BAE BAC CAF BAC ∠−∠=∠−∠,∴12∠=∠;故①符合题意;∵ABE ACF ≌∴B C ∠=∠,AB AC =,又∵BAC CAB ∠=∠∴ACN ABM ≌,故③符合题意;∴AM AN =,∴MC BN =,∵,B C MDC BDN ∠=∠∠=∠, ∴MDC NDB ≌,∴CD DB =,∴CD DN =不能证明成立,故④不符合题意.故选:B .【点睛】本题考查三角形全等的判定方法和三角形全等的性质,难度适中.9. 已知AOB ∠,下面是“作一个角等于已知角,即作A O B AOB ′′′=∠∠”的尺规作图痕迹.该尺规作图的依据是( )A. SASB. SSSC. AASD. ASA【答案】B【解析】 【分析】本题主要考查了尺规作图作一个角等于已知角、全等三角形判定等知识点,掌握尺规作图作一个角等于已知角的作法成为解题的关键.根据“作一个角等于已知角,即作A O B AOB ′′′=∠∠”的尺规作图痕迹,结合全等三角形的判定定理即可解答.【详解】解:由题意可知,“作一个角等于已知角,即作A O B AOB ′′′=∠∠”的尺规作图的依据是SSS .故选:B .10. 如图,在四边形ABCD 中,对角线AC 平分BAD ∠,AB AC >,下列结论正确的是( )A. AB AD CB CD −>−B. AB AD CB CD −=−C. AB AD CB CD −<−D. AB AD −与CB CD −的大小关系不确定【答案】A【解析】 【分析】先通过在AB 上截取AE =AD ,得到一对全等三角形,利用全等三角形的性质得到对应边相等,再利用三角形的三边关系和等量代换即可得到A 选项正确.【详解】解:如图,在AB 上取AE AD =,对角线AC 平分BAD ∠,BAC DAC ∴∠=∠,在ACD ∆和ACE ∆中,的AD AE BAC DAC AC AC = ∠=∠ =, ()ACD ACE SAS ∴∆≅∆,CD CE ∴=,BE CB CE >− ,AB AD CB CD ∴−>−.故选:A .【点睛】本题考查了全等三角形的判定与性质、角平分线的定义和三角形的三边关系,要求学生能根据已知条件做出辅助线构造全等三角形,并能根据全等三角形的性质得到不同线段之间的关系,利用三角形三边关系判断大小,解决本题的关键是牢记概念和公式,正确作辅助线构造全等三角形等.二、填空题11. 若正多边形的一个外角为60°,则这个正多边形的边数是______.【答案】六##6【解析】【分析】本题考查了多边形的外角和,熟练掌握任意多边形的外角和都是360度是解答本题的关键.根据任意多边形的外角和都是360度求解即可.【详解】解:360606°÷°=.故答案为:六.12. 四条长度分别为2cm ,5cm ,8cm ,9cm 的线段,任选三条组成一个三角形,可以组成的三角形的个数是___________个.【答案】2【解析】【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【详解】解:四条木棒的所有组合:2,5,8和2,5,9和5,8,9和2,8,9;∵2+5=7<8,∴2,5,8不能组成三角形;∵2+5=7<9,∴2,5,9不能组成三角形;∵5+8=13>9,∴5,8,9能组成三角形;∵2+8=10>9,∴2,8,9能组成三角形.∴ 5,8,9和2,8,9能组成三角形.只有2个三角形.故答案是:2.【点睛】此题主要考查了三角形三边关系,三角形的三边关系:任意两边之和>第三边,任意两边之差<第三边;注意情况的多解和取舍.13. 如图,在ABC 中,AD BC ⊥,AE 平分BAC ∠,若140∠=°,230∠=°,则B ∠=______.【答案】40°##40度【解析】【分析】本题考查了三角形的角平分线,高线的定义;由AE 平分BAC ∠,可得角相等,由140∠=°,230∠=°,可求得EAD ∠的度数,在直角三角形ABD 在利用两锐角互余可求得答案.【详解】解:AE 平分BAC ∠12EAD ∴∠=∠+∠,12403010EAD ∴∠=∠−∠=°−°=°,Rt ABD 中,9090401040BBAD ∠=°−∠=°−°−°=°. 故答案为:40°.14. 如图,BE 平分∠ABC ,CE 平分外角∠ACD ,若∠A =52°,则∠E 的度数为_____.【答案】26°【解析】【分析】根据三角形的外角等于和它不相邻的两个内角的和即可得答案.【详解】∵BE 平分∠ABC ,CE 平分外角∠ACD ,∴∠EBC =12∠ABC ,∠ECD =12∠ACD , ∴∠E =∠ECD ﹣∠EBC =12(∠ACD ﹣∠ABC ) ∵∠ACD-∠ABC=∠A ,∴∠E =12∠A =12×52°=26° 故答案为26°【点睛】本题考查三角形外角性质,三角形的一个外角,等于和它不相邻的两个内角的和;熟练掌握外角性质是解题关键.15. 如图1,123456∠+∠+∠+∠+∠+∠为m 度,如图2,123456∠+∠+∠+∠+∠+∠为n 度,则m n −=__________.【答案】0【解析】【分析】将图1原六边形分成两个三角形和一个四边形可得到m 的值,将图2原六边形分成四个三角形可得到n 的值,从而得到答案.【详解】解:如图1,将原六边形分成两个三角形和一个四边形,,1234562180360720m ∴°=∠+∠+∠+∠+∠+∠=×°+°=°,如图2,将原六边形分成四个三角形,,∴°=∠+∠+∠+∠+∠+∠=×°=°,1234564180720n∴==,m n720∴−=,m n故答案为:0.【点睛】本题考查了多边形的内角和,此类问题通常连接多边形的顶点,将多边形分割成四边形和三角形,通过计算四边形和三角形的内角和,求得多边形的内角和.16. 如图,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③ ACN≌ ABM;④CD=DN.其中符合题意结论的序号是_____.【答案】①②③【解析】【分析】此题考查的是全等三角形的判定和性质的应用,只要先找出图中的全等三角形就可判断题中结论是否正确.【详解】∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF(AAS),∴AC=AB,BE=CF,即结论②正确;∵AC=AB,∠B=∠C,∠CAN=∠BAM,∴△ACN≌△ABM(ASA),即结论③正确;∵∠BAE=∠CAF,∵∠1=∠BAE-∠BAC,∠2=∠CAF-∠BAC,∴∠1=∠2,即结论①正确;∴△AEM ≌△AFN (ASA ),∴AM =AN ,∴CM =BN ,∵∠CDM =∠BDN ,∠C =∠B ,∴△CDM ≌△BDN ,∴CD =BD ,无法判断CD =DN ,故④错误,∴题中正确的结论应该是①②③.故答案为:①②③.【点睛】此题考查了三角形全等的判定和性质;对图中的全等三角形作出正确判断是正确解答本题的关键.三、解答题17. 如图,已知点D ,E 分别AB ,AC 上,B C ∠=∠,DC BE =,求证:ABE ACD △△≌.【答案】见解析【解析】【分析】本题考查了全等三角形的判定,根据已知条件选择恰当的判定方法是解题的关键.【详解】解:在ABE 和ACD 中,B C A A BE DC ∠=∠ ∠=∠ =, ∴()AAS ABE ACD ≌.18. 如图,请你仅用无刻度直尺作图.在(1)在图①中,画出三角形AB 边上的中线CD ;(2)在图②中,找一格点D ,使得ABC CDA △△≌.【答案】(1)见解析 (2)见解析【解析】【分析】(1)如图,连接CD 即可;(2)按如图所示,找到点D ,连接AD CD ,即可.【小问1详解】【小问2详解】如图,CDA 即为所求;【点睛】本题考查了作图,三角形中线的性质、全等三角形的判定方法,掌握中线的性质及全等三角形判定的方法是关键.19. (1)在ABC 中,ABC ∠的角平分线和ACB ∠的角平分线交于点P ,如图1,试猜想P ∠与A ∠的关系,直接写出结论___________:(不必写过程)(2)在ABC 中,一个外角ACE ∠的角平分线和一个内角ABC ∠的角平分线交于点P ,如图2,试猜想P ∠与A ∠的关系,直接写出结论____________;(不必写过程) (3)在ABC 中,两个外角EBC ∠的角平分线和FCB ∠的角平分线交于点P ,如图3,试猜想P ∠与A ∠的关系,直接写出结论_________,并予以证明.【答案】(1)1902P A∠=°+∠;(2)12P A∠=∠;(3)1902P A∠=°−∠【解析】【分析】(1)根据三角形的内角和定理表示出∠ABC+∠ACB,再根据角平分线的定义求出∠PBC+∠PCB,然后根据三角形的内角和定理列式整理即可;(2)根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACE=∠A+∠ABC,∠PCE=∠P+∠PBC,再根据角平分线的定义可得∠PBC=12∠ABC,∠PCE=12∠ACE,然后整理即可得证;(3)根据三角形的一个外角等于与它不相邻的两个内角的和与角平分线的定义表示出∠PBC+∠PCB,然后利用三角形的内角和定理列式整理即可得解.【详解】解:(1)1902P A ∠=°+∠;理由:在△ABC中,∠ABC+∠ACB=180°-∠A,∵点P为角平分线的交点,∴1=2PBC ABC∠∠,1=2PCB ACB∠∠,∴∠PBC+∠PCB=12(∠ABC+∠ACB)=12(180°-∠A)=90°-12∠A,在△PBC中,∠P=180°-(90°-12∠A)=90°+12∠A;故答案为:1902P A ∠=°+∠;(2)12P A ∠=∠.理由:由三角形的外角性质得,∠ACE=∠A+∠ABC,∠PCE=∠P+∠PBC,∵外角∠ACE的角平分线和内角∠ABC的角平分线交于点P,∴∠PBC=12∠ABC,∠PCE=12∠ACE,∴12(∠A+∠ABC)=∠P+12∠ABC,∴∠P=12∠A;(3)1902P A ∠=°−∠; 证明: 外角EBC ∠的角平分线和FCB ∠的角平分线交于点P ,11()()22PBC PCB A ACB A ABC ∴∠+∠=∠+∠+∠+∠ 111()90222A A ABC ACB A =∠+∠+∠+∠=∠+° 在PBC ∆中,11180909022P A A ∠=°−∠+°=°−∠. 故答案为:1902P A ∠=°−∠; 【点睛】本题考查的是三角形内角和定理,角平分线的定义和三角形外角的性质,熟记性质与概念是解题的关键,要注意整体思想的利用.20. 如图,在ABC 中,AE 为边BC 上的高,点D 为边BC 上的一点,连接AD .(1)当AD 为边BC 上的中线时,若6AE =,ABC 的面积为30,求CD 的长;(2)当AD 为BAC ∠的角平分线时,若6636C B ∠=°∠=°,,求DAE ∠的度数.【答案】(1)5 (2)15°【解析】【分析】本题考查了用三角形中线求三角形面积、三角形外角性质、直角三角形性质.(1)利用三角形中线定义及三角形面积求出CD 长;(2)利用三角形内角和先求BAC ∠,再用外角性质和直角三角形性质求出DAE ∠.【小问1详解】∵AD 为边BC 上的中线, ∴1152ADC ABC S S == , ∵AE 为边BC 上的高, ∴1152DC AE ××=, ∴5CD =.【小问2详解】∵6636C B ∠=°∠=°,∴18078BAC B C =°−−=°∠∠∠,∵AD 为BAC ∠的角平分线,∴39BAD DAC ∠=∠=°,∴393675ADC BAD B ∠=∠+∠=°+°=°,∵AE BC ⊥,∴90AED ∠=°,∴9015DAE ADC ∠=°−∠=°21. 如图,点A ,D ,B ,E 在同一直线上,AC =DF ,AD =BE ,BC =EF .求证:AC ∥DF .【答案】详见解析【解析】【分析】根据等式的性质得出AB =DE ,利用SSS 证明△ABC 与△DEF 全等,进而解答即可.【详解】证明:∵AD =BE ,∴AD +DB =BE +DB ,∴AB =DE ,在△ABC 与△DEF 中,AB DE AC DF BC EF = = =,∴△ABC ≌△DEF (SSS ),∴∠A =∠FDE ,∴AC ∥DF .【点睛】此题主要考查了平行线的性质和判定,全等三角形的判定和性质,做题的关键是找出证三角形全等的条件.22. 如图,在ACB △中,90ACB ∠=°,CD AB ⊥于D .(1)求证:ACD B ∠=∠;(2)若AF 平分CAB ∠分别交CD 、BC 于E 、F ,求证:CEF CFE ∠=∠.【答案】(1)见解析 (2)见解析【解析】【分析】本题考查了直角三角形的性质,三角形角平分线的定义,对顶角的性质,余角的性质,难度适中. (1)由于ACD ∠与B ∠都是BCD ∠的余角,根据同角的余角相等即可得证;(2)根据直角三角形两锐角互余得出9090CFA CAF AED DAE ∠=°−∠∠=°−∠,,再根据角平分线的定义得出CAF DAE ∠=∠,然后由对顶角相等的性质,等量代换即可证明CEF CFE ∠=∠.【小问1详解】证明:90ACB ∠=° ,CD AB ⊥于D ,90ACD BCD ∴∠+∠=°,90B BCD ∠+∠=°,ACD B ∴∠=∠;【小问2详解】证明:在Rt AFC △中,90CFA CAF ∠=°−∠,同理Rt AED △中,90AED DAE ∠=°−∠.又AF 平分CAB ∠,CAF DAE ∴∠=∠,AED CFE ∴∠=∠,又CEF AED ∠=∠ ,CEF CFE ∴∠=∠.23. 如图,AC ,BD 相交于点O ,OB OD =,A C ∠=∠,求证:△≌△AOB COD .在【答案】见解答【解析】【分析】本题主要考查全等三角形的判定,熟练掌握判定方法是解题的关键.根据全等三角形的判定方法证明即可.【详解】证明:AOB 和COD △中,A C AOB COD OB OD∠=∠ ∠=∠ = , (AAS)AOB COD ∴≌△△.24. 材料阅读:如图①所示的图形,像我们常见的学习用品—— 圆规.我们不妨把这样图形叫做 “规形图 ”.解决问题:(1)观察“规形图 ”,试探究BDC 与A B C ∠∠∠,,之间的数量关系,并说明理由;(2)请你直接利用以上结论,解决以下两个问题:Ⅰ.如图② ,把一块三角尺 DEF 放置在ABC 上,使三角尺的两条直角边DE DF ,恰好经过点B C ,,若40A ∠=°,则ABD ACD +=∠∠ ° . Ⅱ.如图③ ,BD 平分ABP CD ∠,平分ACP ∠,若40130A BPC ∠=°∠=°,,求BDC ∠的度数.【答案】(1) BDC A B C ∠=∠+∠+∠,理由见解析(2)Ⅰ.50;Ⅱ. 85°【解析】【分析】本题考查的是三角形内角和定理,三角形外角性质以及角平分线的定义得运用.根据题意连接AD 并延长至点 F ,利用三角形外角性质即可得出答案.Ⅰ.由(1)可知BDC A B C ∠=∠+∠+∠,因为40A ∠=°,90D ∠=︒,所以904050ABD ACD ∠+∠=°−°=°;Ⅱ.由(1)的已知条件,由于BD 平分ABP CD ∠,平分ACP ∠,即可得出在1452ABD ACD ABP ACP ∠+∠=∠+∠=°(),因此4540=85BDC ∠=°+°°. 【小问1详解】 解:如图连接AD 并延长至点 F , 根据外角的性质,可得 BDF BAD B ∠=∠+∠, CDF C CAD ∠=∠+∠, 又∵BDC BDF CDF BAC BAD CAD ∠=∠+∠∠=∠+∠,, ∴BDC BAC B C ∠=∠+∠+∠;【小问2详解】解:Ⅰ. 由(1)可得,BDC ABD ACD A ∠=∠+∠+∠; 又∵4090A D ∠=°∠=°,, ∴9040=50ABD ACD ∠+∠=°−°°, 故答案为:50; Ⅱ.由(1),可得BPC ABP ACP BDC BAC ABD ACD ∠=∠+∠+∠∠=∠+∠+∠,, ∴1304090ABP ACP BPC BAC ∠+∠=∠−∠=°−°=°, 又∵BD 平分ABP CD ∠,平分ACP ∠, ∴1452ABD ACD ABP ACP ∠+∠=∠+∠=°(), ∴4540=85BDC ∠=°+°°.。

2023-2024学年八年级上学期第三次月考数学试题(原卷版)

2023-2024学年八年级上学期第三次月考数学试题(原卷版)

2023-2024学年八年级上学期12月份质量监测数学(本试卷共6页,25题,全卷满分:120分,考试用时:120分钟)1.答题前,先将自己的姓名、准考证号写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上相应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,将答题卡上交.一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)1.体育是一个锻炼身体,增强体质,培养道德和意志品质的教育过程,是培养全面发展的人的一个重要方面,下列体育图标是轴对称图形的是()A. B. C. D.2.如图,空调安装在墙上时,一般都会采用如图所示的方法固定,这种方法应用的几何原理是()A.三角形两边之差小于第三边B.三角形两边之和大于第三边C.垂线段最短D.三角形的稳定性3.用下列长度的三条线段能组成三角形的是()A.2cm,3cm,5cmB.8cm,12cm,2cmC.5cm,10cm,4cmD.3cm,3cm,5cm4.2023年9月9日,上海微电子研发的28nm浸没式光刻机的成功问世,标志着我国在光刻机领域迈出了坚实的一步.已知28nm为0.000000028米,数据0.000000028用科学记数法表示为()A.102.810-⨯ B.82.810-⨯ C.62.810-⨯ D.92.810-⨯5.下列运算正确的是()A.()1432a a = B.236a a a ⋅= C.()32626a a -=- D.842a a a ÷=6.一个多边形的内角和是外角和的2倍,则这个多边形的边数为()A.4B.5C.6D.77.下列等式成立的是()A.22(1)1x x -=- B.22(1)1x x x +=++C.2(1)(1)1x x x +-+=- D.2(1)(1)1x x x -+--=--8.下列说法:①三角形的外角等于两个内角之和;②三角形的重心是三条垂直平分线的交点;③有一个角等于60︒的等腰三角形是等边三角形;④分式的分子与分母乘(或除以)同一个整式,分式的值不变,其中正确的个数有()A.0个 B.1个 C.2个 D.3个9.如图,在ABC 中,AB AC =,点D ,P 分别是图中所作直线和射线与AB ,CD 的交点.根据图中尺规作图的痕迹推断,以下结论错误的是()A.PBC ACD ∠=∠B.ABP CBP ∠=∠C.A ACD ∠=∠D.AD CD=10.如图,在ABC 中,90BAC ︒∠=,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,给出以下结论:①BE BCE S S =△A △;②AFG AGF ∠=∠;③2FAG ACF ∠=∠;④BH CH =;⑤::AC AF BC BF =.其中结论正确的有()A.2个B.3个C.4个D.5个二、填空题(本大题共6个小题,每小题3分,共18分)11.因式分解:316y y -=______.12.在平面直角坐标系中,点P (3,﹣2)关于y 轴对称的点的坐标是____.13.若分式211x x --的值为0,则x 的值为______.14.如图,PA OA ⊥,PB OB ⊥,PA PB =,26POB ∠=︒,则APO ∠=________°.15.如图,等边ABC 中,D 为AB 的中点,过点D 作DFAC ⊥于点F ,过点F 作FE BC ⊥于点E ,若4AF =,则线段BE 的长为________.16.如图,在平面直角坐标系中,点()7,0A ,()0,12B ,点C 在AB 的垂直平分线上,且90ACB ∠=︒,则点C 的坐标为________.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题8分,第22、23题每小逪9分,第24、25题每小题10分,共72分,解答应写出必要的文字说明,证明过程或演算步骤)17.计算:()2202301|3|120243-⎛⎫-+-+- ⎪⎝⎭.18.先化简,再求代数式221122x x x x ⎡⎤-⎛⎫-÷⎢⎥ ⎪++⎝⎭⎢⎥⎣⎦的值,其中2x =.19.如图,在ABC 中,DE 是线段AB 的垂直平分线.(1)若35B ∠=︒.求ADC ∠的度数:(2)若AD CD =.求证:AC AB ⊥.20.如图,在正方形网格中,点A 、B 、C 、M 、N 都在格点上.(1)作△ABC 关于直线MN 对称的图形△A'B'C';(2)若网格中最小正方形的边长为1,则△ABC 的面积为;(3)点P 在直线MN 上,当△PAC 周长最小时,P 点在什么位置,在图中标出P 点.21.如图,在四边形ABCD 中,AB CD ,连接BD ,点E 在BD 上,连接CE ,若12∠=∠,AB ED =.(1)求证:BD CD =.(2)若13555A BCE ∠=︒∠=︒,,求DBC ∠的度数.22.【阅读理解】若x 满足(32)(12)100x x --=.求()()223212x x -+-的值.解:设32x a -=,12x b -=.则()()3212100x x a b --=⋅=,()()321220a b x x +=-+-=.()()()22222232122202100200x x a b a b ab -+-=+=+-=-⨯=.我们把这种方法叫做换元法.利用换元法达到简化方程的目的.体现了转化的数学思想.【解决问题】(1)若x 满足()()1025x x --=.则()()22102x x -+-=________;(2)若x 满足()()222025202266x x -+-=.求()()20252022x x --的值;(3)如图,在长方形ABCD 中,25cm AB =,点E ,F 是边BC ,CD 上的点,13cm EC =,且cm BE DF x ==.分别以FC ,CB 为边在长方形ABCD 外侧作正方形CFGH 和CBMN ,若长方形CBQF 的面积为2300cm ,求图中阴影部分的面积之和.23.ABC 中,AB AC =,点D 是边AB 上一点,BCD A ∠=∠.(1)如图1,试说明CD CB =的理由;(2)如图2,过点B 作BE AC ⊥,垂足为点E ,BE 与CD 相交于点F .①试说明2BCD CBE ∠=∠的理由;②如果BDF V 是等腰三角形,求A ∠的度数.24.如图,在平面直角坐标系中,A 点在第二象限、坐标为(,)m m -.(1)若关于x 的多项式24x x m ++是完全平方式,直接写出点A 的坐标:________;(2)如图1,ABO 为等腰直角三角形.分别以AB 和OB 为边作等边ABC 和等边OBD ,连接OC ,AD ;①若4=AD ,求OC 的长;②求COB ∠的度数.(3)如图2,过点A 作AM y ⊥轴于点M ,点E 为x 轴正半轴上一点,K 为ME 延长线上一点,以MK 为直角边作等腰直角三角形MKJ ,90MKJ ∠=︒,过点A 作AN x ⊥轴交MJ 于点N ,连接EN .试猜想线段AN ,OE 和NE 的数量关系,并证明你的猜想.25.定义:若分式A 与分式B 的差等于它们的积.即A B AB -=,则称分式B 是分式A 的“可存异分式”.如11x +与12x +.因为()()1111212x x x x -=++++,11112(1)(2)x x x x ⨯=++++.所以12x +是11x +的“可存异分式”.(1)填空:分式12x +________分式13x +的“可存异分式”(填“是”或“不是”;)(2)分式4x x -的“可存异分式”是________;(3)已知分式2333x x ++是分式A 的“可存异分式”.①求分式A 的表达式;②若整数x 使得分式A 的值是正整数,直接写出分式A 的值;(4)若关于x 的分式22n mx m n +++是关于x 的分式21m mx n-+的“可存异分式”,求2619534n n ++的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
B
C
F D
E
瑶琳初级中学第一学期第二次月考考试
八年级数学试题卷
班级 姓名 座位号
一、精心选一选:(本题共36分,每小题3分)
1、如右图,AB ∥CD ,如果∠1是∠2的2倍,那么∠1等于( ) (A)60° (B)90° (C)120°
(D) 150°
2、等腰三角形的两边分别为1和2,则其周长为( )
A.4
B.5
C.4或5 D 、无法确定
3、一架2.5米长的梯子斜靠在一竖直的墙上,这时梯子的顶端距墙脚2.4米.那么梯足离墙脚的 距离是( )米.
A .0.7
B .0.9
C .1.5
D .2.4 4、点P (-1,-3)关于x 轴的对称点在第( ) 象限 A .一 B. 二 C. 三 D.四 5、下列条件中,不能判定两个直角三角形全等的是 ( ) A.两个锐角对应相等 B.一条直角边和一个锐角对应相等
C.两条直角边对应相等
D.一条直角边和一条斜边对应相等 6、下列各图中能折成正方体的是( )。

7、分析下列说法中正确的有( )种 ①长方体、正方体都是棱柱 ②球体的三种视图均为同样大小图形 ③三棱柱的侧面是三角形
④直六棱柱有六个侧面,侧面为长方形
⑤圆柱的三视图中,主视图、左视图是长方形,俯视图是圆 (A)2
(B)3
(C)4
(D)5
8、关于x 的方程x m x --=-425的解在2与10之间,则m 的取值范围是( )
A 、8>m
B 、32<m
C 、328<<m
D 、8<m 或32>m 9、某种导火线的燃烧速度是0.81厘米/秒,爆破员跑开的速度是5米/秒,为在点火后使爆破员
跑到150米以外的安全地区,导火线的长至少为( )
A 、22厘米
B 、23厘米
C 、24厘米
D 、25厘米
10、如图,在Rt △ABC 中,AB =AC ,AD ⊥BC ,垂足为D .E 、F 分 别是CD 、AD 上的点,且CE =AF .如果∠AED =62º,那么 ∠DBF =( )。

A 、62º
B 、38º
C 、28º
D 、26º
11、规定正整数n 的“H 运算”是:①当n 为奇数时,H=3n+13;②当n 为偶数时,
⨯⨯⨯=2
1
21n H (其中达到H为奇数为止)如:数5经过一次“H 运算”的结果是28,经过2次“H
运算”的结果是7,经过3次“H 运算”的结果是34。

那么数257经过257次“H 运算”得到的结果是( ) A .28 B.34 C.64 D.16
12.如图,P (x ,y )是以坐标原点为圆心、5为 半径的圆周上的点,若x ,y 都是整数,则这样
的点共有( ) A .4个 B .8个 C .12个 D .16个
二、认真填一填:(本题共32分,每小题4分) 13、不等式的02
4>-
x
自然数解有 个 14、求使代数式的整数值有意义的x x x -++312
15、如图,在三角形ABC 中,AB =AC ,D 为BC 边上的一点,且AB =BD ,AD =CD ,则ABC ∠=____ 16、为了了解甲型H1N1流感的性质,疾控中心的医务人员对某地区的感染人群进行检测,任意抽取了
其中的20名感染者,此种方式属 调查,样本容量是 。

17、已知点A 的坐标为(a,b ),若把该点先向左平移2个单位,再向上平移3个单位,则所得点的坐标 是 18、一个底面为正方形的直棱柱的侧面展开图是边长为8的正方形,则它的表面积是
19、某射击运动爱好者在一次比赛中共射击10次,前6次射击共中53环(环数均是整数,最高10环),如果他想取得不低于89环的成绩,那么第7次射击不能少于 环。

20、如图是一个三级台阶,它的每一级的长、宽、高分别为55寸、10寸和6寸,A 和B 是这个台阶的两个相对端点,A 点上有一只蚂蚁想到B 点去吃可口的食物,则它所走的最短路线长度是 寸
A
B
C
D
E F
1
2
A
A B C D
(15题图)
三、用心答一答:(下面每小题必须有解题过程,本题共52分)
21、解下列不等式及不等式组,并把解在数轴上表示上出来(本题共8分,每题4分)
(1)x x
x 2323)1(2+-- (2) ()②
①⎪⎩⎪⎨⎧-+≤+32
1234x x x x
22、(本题8分)
如图,已知点B ,F ,C ,E 在同一直线上,AB ⊥BE ,垂足为B ,DE ⊥BE ,垂足为E ,且AB =DE .请你添
加一个条件,使AC=DF (不再添加其它线段,不再标注或使用其他字母),并给出证明.
添加的条件是: ▲ .
证明:
23、(6分).如图是由8个相同的小立方体组成的几何体,请画出它的三视图.
24、(8分)下表是两个商场1至6月份销售“椰树牌天然椰子汁”的情况(单位:箱)
1月 2月 3月 4月 5月 6月 甲商场 450 440 480 420 576 550 乙商场
480
440
470
490
520
516
根据以上提供的信息回答下列问题
(1)甲、乙两个商场月平均销售量哪个大?(2)甲、乙两个商场的销售哪个稳定?
25、(10分)如图所示的直角坐标系中,四边形ABCD 各顶点的坐标分别为A(0,0)、B (9,0)、C (7,5)、D (2,7).求
四边形ABCD
的面积.
26、(12分)我市某化工厂现有甲种原料290千克,乙种原料212千克,计划利用这两种原料生产A 、B 两种产品80件,生产一件产A 产品,需要甲种原料5千克,乙种原料1.5千克;生产一件B 产品需要甲种原料2.5千克,乙种原料3.5千克。

问:该化工厂现有的原料能否保证生产?若能,请你设计出来。

出卷人:吴火桂 核对人:蒋来友瑶琳初级中学2009学年第一学期月考考试答案 一、选择题:(本题共36分,每小题3分)
E
A
B D
C F 俯视方向
1----5 C B A B A 6-----10 D C C D C 11----12 D C 二、填空题:(本题共32分,每小题4分)
13、8 14、0、1、2、3 15、36 16、抽样 20 17、(a-2,b+3) 18、72 19、6 20、73
三、用心答一答:(下面每小题必须有解题过程,本题共52分) 21、 (本题共8分,每题4分)
(1)X<4.5 (3分)数轴1分 (2) 由(1)得x ≥-1由(2)得x<3(各1分) 解在数轴上表示1分
原不等式组的解为-1≤x<3(1分)
22、添加的条件例举:BC =EF ,∠A =∠D ,∠ACB =∠DFE ,BF =CE 等.……4分(写出一个即可) 证明例举(以添加条件BC=EF 为例):
∵ AB ⊥BE ,DE ⊥BE ,
∴∠ABC =∠DEF =90°.………………………………………………………………1分 ∵BC =EF ,AB =DE ,
∴△ABC ≌△DEF (SAS ). ………………………………………………………2分
∴AC =DF .……………………………………………………………………………1分 注:只要证明正确给4分。

23、每图2分共6分
主视图 左视图 俯视图
24、(8分)
(1)486=甲x ,486=乙x ,所以甲、乙两个商场月平均销售量一样大.(3分) (2)3.33332
=甲S ,7.7462
=乙S ,因为2甲S >2
乙S ,所以乙商场的销售稳定. 25、(10分)42(只写一个答案得1分)
26、(12分)设安排生产A 种产品x 件,则生产B 种产品)80(x -件,(1分) 根据题意得:解得5x+2.5(80-x)≤290 (4分)
1.5x+3.5(80-x) ≤212解得34≤x ≤36 ( 2分)
因为x 是整数,所以x 只能取34或35或36。

该厂现有的原料能保证生产,有三种生产方案。

(2分) 第一种:A 产品34件,B 产品46件(1分) 第二种:A 产品35件,B 产品45件(1分)
第三种:A 产品36件,B 产品44件。

(1分)。

相关文档
最新文档