八年级下册数学试题(附答案)
八年级下册数学试题(附答案)

春季八年级期末调考数 学 试 题说明:1. 本试卷分为第Ⅰ卷和第Ⅱ卷. 第Ⅰ卷1~2页,第Ⅱ卷3~8页. 第Ⅰ卷的答案选项用2B 铅笔填涂在机读卡上;第Ⅱ卷用蓝、黑色钢笔或圆珠笔直接答在试卷上.2. 本试卷满分120分,答题时间为120分钟. 交卷时只交第Ⅱ卷,第Ⅰ卷由学生自己保存.第Ⅰ卷 选择题(36分)一、选择题(本大题共12个小题,每小题3分,共36分) 在每小题给出的四个选项中,有且仅有一项是符合题目要求的. 1. 如图,Rt △ABC 沿直角边BC 所在的直线向右平移得到△DEF ,下列结论中错误的是A. △ABC ≌△DEFB. ∠DEF =90°C. EC =CFD. AC =DF2. 函数中自变量x 的取值范围为A. x ≥2B. x >-2C. x <-2D. x ≥-23. 边长为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形. 设穿过的时间为t ,大正方形内除去小正方形部分的面积为S (阴影部分). S 随t 变化而变化的大致图象为A B C D4. 已知正比例函数y =kx (k ≠0)中,y 随x 的增大而增大. 反比例函数y =-xk过点(3,y 1),(2,y 2)和(-3,y 3),则y 1,y 2,y 3的大小关系为A .y 1<y 2<y 3B .y 1>y 2>y 3C .y 1>y 3>y 2D .y 3>y 1>y 25. 如图是学校小卖部“六一”儿童节期间儿童玩具、糖果、其它421+=x y物品等的销售额的扇形统计图. 若玩具的销售额为1800元,那么 糖果的销售额是A. 3000元B. 300元C. 30%D. 900元 6. 下列命题错误的是 A . 有三条边相等的三角形全等 B . 有两条边和一个角对应相等的三角形全等C. 有一条边和一个角对应相等的等腰三角形全等D. 有一条边和一锐角对应相等的直角三角形全等7. 如图△ABC 是等腰三角形,以两腰AB 、AC 为边向外作正方 形ABDE 和正方形ACFG ,则图中全等三角形有( )对.A. 2B. 3C. 4D. 58. 如果把分式ba ab+2中的a 和b 都扩大到原来的9倍,那么分式的值A. 扩大到原来的9倍B. 缩小9倍C. 是原来的91D. 不变9. 如图,ABCD 的周长为18cm ,点O 是对角线AC 的中点,过点O 作EF 垂直于AC ,分别交DC 、AB 于E 、F , 连结AE ,则△ADE 的周长为 A. 5cm B. 8cm C. 9cm D. 10cm10. 下列命题中,能判断四边形ABCD 是矩形的命题有 ①AC =BD ,AC ⊥BD ;②OA =OB =OC =OD ;③∠A =∠B =∠C =90°;④AB CD ,∠A =90°.A. 1个 B .2个 C .3个 D .4个11. 函数y =-kx +k (k ≠0)与y =xk的大致图象可能是A B C D12. 某服装厂准备加工300套演出服装. 在加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务. 设该厂原来每天加工x 套演出服装,则可列方程A.9260300=-x B.9602300=+x x C.960260300=+-x x D.960260300=--xx2009年春季八年级期末考试数 学 试 题全卷总分表第Ⅱ卷 非选择题(84分)二、填空题(本大题共8个小题,每小题3分,共24分)将解答结果直接填在题中的横线上.13. 在四边形ABCD 中,∠A:∠:B:∠C:∠D =1:2:1:2,则四边形ABCD 是 . 14. 一个纳米粒子的直径是0.000 000 035米,用科学记数 法表示为 米.15. 如图,在正方形ABCD 中,E 在BC 的延长线上,且 EC =AC ,AE 交CD 于点F ,则∠AFC = 度.16. 已知一组数据1,3,2,5,x 的平均数为3. 则样本的标准差为 . 17. 关于x 的方程32322=--+-xmx x 有增根,则m =. 18.已知点A(2,3)和点B (m ,-3)关于原点对称,则m = ;若点C 与点B 关于y 轴对称,则点C 的坐标为 . 19. 如图是甲、乙两地5月上旬的 日平均气温统计图,则甲、乙两地 这10天的日平均气温的方差大小 关系为:S 2甲 S 2乙.20. 已知等腰三角形的周长为10,底边为y ,腰为x. 请写出y 与x 的函数关系式及自变量x的取值范围 . 三、解答题(每题6分,共24分)21. 计算:20090-2)21(--+|-2008 |.22. 先化简,再求值:1311222+-+-+-x xx x x ,其中x =2.23. 解分式方程:93132-=--x x x .24. 作图题:在△ABC 中,∠C =90°,按下列 要求作图.(尺规作图,保留痕迹,不写作法)①作AB 边的垂直平分线,交AC 于点E ,交AB 于点F ;②连结CF ,作∠CFB 的平分线,交BC于点G . 四、几何证明题(本大题满分8分)25. 如图,在梯形ABCD 中,AB ∥DC ,AC 平分∠BCD ,AE ∥BC. 求证:四边形AECB 是菱形.五、几何证明题(本大题共9分)26. 如图,在等边△DAC 和等边△EBC 中,AE 、BD 分别与CD 、CE 交于点M 、N ,且A 、C 、B 三点在同一条直线上.求证:(1)AE =BD ;(2)CM =CN.六、解答题(本大题共9分)27. 如图,反比例函数y =xm(x >0)的图象经过A 、B 两点,且A 点的坐标为(2,-4),点B 的横坐标为4. 请根据图象的信息解答:(1)求反比例函数的解析式; (2)若AB 所在的直线的解析式为 y =kx +b (k ≠0),求出k 和b 的值.(3)求△ABO 的面积.七、(本大题共10分)28. 甲、乙两同学本期十次数学测验成绩如下表:(1)甲同学十次数学测验成绩的众数是;乙同学十次数学测验成绩的中位数是 .(2)甲同学本期数学测验成绩的平均分是 ;乙同学本期数学测验成绩的平均分是 ;乙同学本期数学测验成绩的极差是 .(3)你认为甲、乙两位同学,谁的成绩更稳定?通过计算加以说明.2009年春季八年级期末调考数学试题参考答案一、选择题(本大题共12个小题,每小题3分,共36分)1.C2.B3.A4.D5.D6.B7.D8.A9.C 10.B 11.C 12.C二、填空题(本大题共8个小题,每小题3分,共24分) 13. 平行四边形 14. 3.5×10-8 15. 112.5 16.217. -1 18. -2;(2,-3) 19. < 20. y =10-2x (25<x <5)注:18题第一空1分,第二空2分. 20题的函数关系式1分,x 的取值范围2分.三、解答题(每题6分,共24分)21.(共6分)解:20090-2)21(--+|-2008 |=1-4+2008 ……………………(每项算对,各给1分)……4分 =2005 …………………………………………………………………2分22.(共6分)解:原式=13)1)(1(122+-+-++-x x x x x x ……………………………………1分 =)1)(1()1)(3()1)(1(122-+--+-++-x x x x x x x x …………………………1分 =)1)(1(34122-+-++-x x x x x=)1)(1(22-+-x x x =)1)(1()1(2-+-x x x …………………………1分=12+x ………………………………………………………1分 当x =2时,12+x =122+=32………………………………………2分另解:原式=13)1)(1()1(2+-+-+-x xx x x ………………………………………2分 =1311+-++-x xx x ………………………………………………1分 =12+x …………………………………………………………1分 当x =2时,12+x =122+=32………………………………………2分23.(共6分)解:方程两边同乘以(x +3)(x -3),约去分母,得 ……………1分 x (x +3)-(x 2-9)=3. ………………………………………2分 解这个整式方程,得x =-2. ………………………………………………………………1分 检验:把x =-2代入x 2-9,得(-2)2-9≠0,所以,x =-2是原方程的解. ………………………………………………2分 24.(共6分)作出了AB 边的垂直平分线给3分; 作出了∠CFB 的平分线给3分. 注:若未标明字母扣1分.四、几何证明题(本大题满分8分)25. 证明:∵AB ∥DC ,AE ∥BC ,∴四边形ABCD 是平行四边形. …………2分∵AC 平分∠BCD ,∴∠ACB =∠ACE. …………………………………………………………1分 又AB ∥CD ,∴∠BAC =∠ACE (两直线平行,内错角相等), ……………………1分 ∴∠ACB =∠BAC (等量代换), …………………………………………1分 ∴BA =BC (等角对等边), ………………………………………………1分∴四边形ABCE 是菱形(有一组邻边相等的平行四边形是菱形). ……2分注:①若证得AE =EC ,或证得四边相等得菱形参照给分;②未批理由可不扣分. 五、几何证明题(本大题共9分)26.(1)(5分)证明:∵△ACD 和△BCE 是等边三角形,∴∠ACD =∠BCE =60°,∴∠ACD +∠DCE =∠BCE +∠DCE , 即∠ACE =∠DCB. …………………2分 在△ACE 和△DCB 中,AC =DC ,EC =BC (等边三角形三边相等),八年级期末考试数学试题(第Ⅱ卷) 第11页(共8页)∠ACE =∠DCB (已证),∴△ACE ≌△DCB (S.A.S.), ………………………………………………2分∴AE =BD (全等三角形的对应边相等). ………………………………1分(2)(4分)证明:∵△ACE ≌△DCB (已证),∴∠EAC =∠BDC ,即∠MAC =∠NDC. ……………………………………………………1分∵∠ACD =∠BCE =60°(已证),A 、C 、B 三点共线,∴∠ACD +∠BCE +∠DCN =180°,∴∠MCN =60°,即∠ACM =∠DCN =60°. ………………………………………………1分又AC =DC ,∴△ACM ≌△DCN (A.S.A.), …………………………………………1分∴CM =CN. ……………………………………………………………1分六、解答题(本大题共9分)27. 解:(1)(2分)把A 点的坐标(2,-4)代入y =xm 得-4=2m ,m =-8, ∴反比例函数的解析式为y =x 8-(x >0).……2分 注:若解析式未标明x >0,则只给1分.(2)(3分)当x =4时,y =x8-=-2,∴B (4,-2). ………………………………1分 ∵A (2,-4),B (4,-2)在直线y =kx +b 上,∴⎩⎨⎧+=-+=-b k b k 4224 ………………………………………………………………………1分 解之得k =1,b =-6. ………………………………………………………………1分(3)(4分)解一:作辅助线如图,则C (4,-4). …………………………………1分 S △ABO =S 正方形ODCE -S △ODA -S △OEB -S △ABC ………………………………………2分 =4×4-21×2×4-21×4×2-21×2×2 =16-4-4-2=6. ……………………………………………………………………………1分解二:如图,取AB 中点M ,连结OM ,(或作OM ⊥AB )∵OA =OB =2224+=25,∴OM ⊥AB (或AM =BM ) ………………1分而AB =22BN AN +=2222+=22 …1分八年级期末考试数学试题(第Ⅱ卷) 第12页(共8页) ∴AM =21AB =2 ∴OM =22AM OA -=22)2()52(-=32 ……………………1分∴S △AOB =21AB ·OM =21×22×32=6. …………………………1分 解三:S △ABO =S 矩形ACOD +S梯ABED -S △AOC -S △BOE ……2分 =2×4+21(2+4)×2-21×4×2-21×4×2 =8+6-4-4=6. ……………………………………2分解四:延长AB 交x 轴、y 轴于M 、N ,则M (6,0),N (0,6).S △AOB =S △MON -S △AOM -S △BON= … =6. 按解一的给分方法给分.七、(本大题共10分)28.(1)、(2)小题每空1分,共5分;(3)小题共5分.(1)98;98.(2)99;99;24.(3)1012=甲S [()()()()()2222299979998999999979998-+-+-+-+- ()()()()()22222999999989910799999998-+-+-+-+-+][]01640141041101+++++++++= 6.776101=⨯= ……………………………………………………………2分 ()()()[]222299110998999108101-+⋯+-+-=乙S []222222222211)2(9)13()1(1)1()3()10(9101+-++-+-++-+-+-+= []121481169111910081101+++++++++= 8.56568101=⨯= …………………………………………………………2分 ∵22<乙甲S S ,∴甲的成绩更稳定. ………………………………………………………1分注:①若第(3)小题,不是通过计算而得出正确结论,只给2分;若计算2甲S 正确,2乙S不正确而得出正确结论共给3分.②此题旨在考查学生计算能力,引起教师对培养学生计算能力的高度重视八年级期末考试数学试题(第Ⅱ卷)第13页(共8页)。
人教版初中数学八年级下册期末测试题、答案

人教版初中数学八年级下册期末测试题一、选择题(本大题共小题,每小题分,共分)在每小题给出的四个选项中,只有一项是正确的,每小题选对得分,选错、不选或多选均得零分.)A B C D 如图,O A B 为直角三角形,O A =,A B =,则点A 的坐标为()A()B ()C ()D ()如图,矩形A B C D 的对角线A C =,B O C Ð=°,则A B 的长为()A B C D 一次函数()y kx k =-¹的函数值y 随x 的增大而减小,它的图象不经过的象限是()A 第一象限B 第二象限C 第三象限D 第四象限如图,直线y x =和y k x b =+相交于点()P ,则不等式x k x b £+的解集为()A.x ³B.x £C.x ³D.x £一组数据:n a a a ×××的平均数为P ,众数为Z ,中位数为W ,则以下判断正确的是()A P 一定出现在n a a a ×××中B Z 一定出现在n a a a ×××中C W 一定出现在n a a a ×××中D P ,Z ,W 都不会出现在n a a a ×××中二、填空题(本大题共小题,每小题分,共分)将函数y x =的图象向下平移个单位,所得图象的函数解析式为______如图,点P 是正方形A B C D 内位于对角线A C 下方的一点,已知:P C A P B C Ð=Ð,则B P C Ð的度数为______.南吕是国家历史文化名城,其名源于“昌大南疆,南方昌盛”之意,市内的滕王阁、八一起义纪念馆、海昏候遗址、绳金塔、八大山人纪念馆等都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学,人数分别为:,,,,(单位:人),这组数据的中位数是______.一组数据,,,x 的众数只有一个,则x 的值不能为______.如图,在A B C 中,已知:A C B Ð=°,c m A B =,c m A C =,动点P 从点B 出发,沿射线B C 以c m s 的速度运动,设运动的时间为t 秒,连接P A ,当A B P △为等腰三角形时,t 的值为______.三、解答题(本大题共小题,每小题分,共分)()计算:+-()求x =.如图,点C为线段A B上一点且不与A,B两点重合,分别以A C,B C为边向A B的同侧做锐角为°的菱形.请仅用无刻度的直尺分别按下列要求作图.(保留作图痕迹)=,作出线段D F的中点M;()在图中,连接D F,若A C B C()在图中,连接D F,若A C B C¹,作出线段D F的中点N.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图、(图为图的平面示意图),推开双门,双门间隙C D的距离为寸,点C和点D距离门槛A B都为尺(尺寸),则A B 的长是多少?某种子站销售一种玉米种子,单价为元千克,为惠民促销,推出以下销售方案:付款金额y(元)与购买种子数量x(千克)之间的函数关系如图所示.()当x³时,求y与x之间的的函数关系式:()徐大爷付款元能购买这种玉米种子多少千克?已知:①,,,,的平均数是,方差是;②,,,,的平均数是,方差是;③,,,,的平均数是,方差是;④,,,,的平均数是,方差是;请按要求填空:()n,n+,n+,n+,n+的平均数是,方差是;()n,n+,n+,n+,n+的平均数是,方差是;()n,n,n,n,n的平均数是,方差是.四、解答题(本大题共小题,每小题分,共分)下表是某公司员工月收入的资料.职位总经理财务总监部门经理技术人员前台保安保洁人数月收入元()这家公司员工月收入的平均数是元,中位数是和众数是;()在()中的平均数,中位数和众数哪些统计量能反映该公司全体员工收入水平?说明理由;()为了避免技术人员流失,该公司决定给他们每人每月加薪x元至公司员工月收入的平均数,求x的值.已知:一次函数()()y m x m m =+-¹与x 轴、y 轴交于A点,B 点()当m =时,求O A B 的面积;()请选择你喜欢的两个不同的()m m ¹的值,求得到的两个一次函数的交点坐标;()m 为何值时,O A B 是等腰直角三角形?如图,若D E 是A B C 的中位线,则A B C A D E S S =△△,解答下列问题:()如图,点P 是B C 边上一点,连接P D 、P E ①若P D E S =△,则A B CS=;②若P D B S =△,P C E S =△,连接A P ,则A P DS =,A P E S =△,A B CS=.()如图,点P 是A B C 外一点,连接P D 、P E ,已知:P D BS=,P C E S =△,P D E S =△,求A B CS的值;()如图,点P 是正六边形F G H I J K 内一点,连接P G 、P F 、P K ,已知:P G F S =△,P K J S =△,P F K S =△,求F G H I J K S 六边形的值.五、综合题(本大题共小题,共分)已知直线y x =-+分别与x 轴、y 轴交于A 点,B 点,点()n n Q x y 为这条直线上的点,Q P x ^轴于点P ,Q R y ^轴于点R .()①将下表中的空格填写完整:nn x --ny --n nx y +②根据表格中的数据,下列判断正确的是.A .x y =,B .x yS S =,C .x y S +=.()当点Q 在第一象限时,解答下列问题:①求证:矩形O P Q R 的周长是一个定值,并求这个定值;②设矩形O P Q R 的面积为S ,求证:S £.()当点Q 在第四象限时,直接写出Q P ,Q R 满足的等式关系.参考答案B C B A D By x﹣°或或()解:()原式(=+-=(=,∴x-=,∴x=解:()如图点M为D F的中点()如图点N为D F的中点解:取A B的中点O,过D作D E⊥A B于E,如图所示:由题意得:O A O B A D B C,设O A O B A D B C r寸,则A B r(寸),D E寸,O E C D寸,∴A E(r-)寸,在R t△A D E中,A E D E A D,即(r-)r,解得:r,∴r(寸),∴A B寸.解:()当x³时,设y与x之间的的函数关系式为y k x b=+,将点(),()带入解析式得k b k b+=ìí+=î解得k b=ìí=î∴y x=+.()将y=时,带入y x=+中解得x=千克.答:徐大爷付款元能购买这种玉米种子千克.解:()∵数据n,n+,n+,n+,n+是在数据,,,,的基础上每个数据均加上(n E)所得,∴数据n,n+,n+,n+,n+的平均数+n E=n+,方差依然是,()∵数据n,n+,n+,n+,n+是在数据,,,,的基础上每个数据均加上(n E)所得,∴n,n+,n+,n+,n+的平均数是+n E=n+,方差依然是,()数据n,n,n,n,n是将,,,,分别乘以n所得,∴数据n,n,n,n,n的平均数为n,方差为n,解:()∵一共有++++++=(人),∴这组数据的中位数是第、个数据的平均数,而第、个数据分别为、,∴中位数是+=(元),∵数据出现次数最多,∴这组数据的众数为元,故答案为:元,元;()中位数和众数能反映该公司全体员工收入水平,该公司员工月收入的平均数为,在这名员工中只有名员工的收入在元以上,有名员工的收入在元以下,因此用平均数不能反映所有员工的收入水平,中位数和众数为元能反映多数员工的收入水平.()由题意列方程:x x +=+,解得x =元∴技术人员需要加薪元.解:()当m =时,y x =-,当x =时,y =-,∴()B -,∴O B =当y =时,x =,∴A æöç÷èø,∴O A =,O A B S O A O B =×=△;()取m =,y x =+,取m =,y x=,∴y x y x =+ìí=î解得x y=ìí=î∴两个一次函数的交点坐标为()()当x =时,y m =-,∴O B m =-;当y =时,m x m-=,∴m O A m -=,∵O A B 是等腰直角三角形,∴O A O B =,即m m m--=;∵m -¹,∴m =±.解:()如图,连接B E ,∵D E 是△A B C 的中位线,∴D E ∥B C ,A E =E C ,A D =B D ,∴S △P D E =S △B D E =,∴S △A B E =,∴S △A B C =,②∵D E 是△A B C 的中位线,∴D E ∥B C ,A E =E C ,A D =B D ,∴S △P B D =S △A P D =,S △A P E =S △P E C =,∴S △A B C =;()如图,连接A P ,∵D E 是△A B C 的中位线,∴D E ∥B C ,A E =E C ,A D =B D ,S △A B C =S △A D E ,∴S △P B D =S △A P D =,S △A P E =S △P E C =,∴S △A D E =S △A P D S △A P E ﹣S △P D E =,∴S △A B C =S △A D E =;()如图,延长G F ,J K 交于点N ,连接G J ,连接P N ,∵六边形F G H I J K 是正六边形,∴F G =F K =K J ,∠G F K =∠J K F =°,S 六边形F G H I J K =S 四边形F G J K ,∴∠N F K =∠N K F =°,∴△N F K 是等边三角形,∴N F =N K =F K =F G =K J ,∴S △P G F =S △P F N =,S △P K J =S △P K N =,F K 是△N G J 的中位线,∴S △N F K =S △P F N S △P K N ﹣S △P F K =,∵F K 是△N G J 的中位线,∴S △N G J =S △N F K =;∴S 四边形F G J K =﹣=,∴S 六边形F G H I J K =.()①填表如下:n n x --n y --n nx y +②x y ==´--+++++++,故A 正确;[]x S =--+--+-+-+-+-+-+-+-=[]y S =--+--+-+-+-+-+-+-+-=∴x y S S =,故B 正确;∵x y +=∴x y S +=故C 正确;故答案为:A 、B 、C()①设()Q x x -+,∵点Q 在第一象限,∴O P x =,P Q x =-+,∴()O P Q R C O P P Q ==矩形+,∴矩形O P Q R 的周长是一个定值,周长为;②∵()()S x x x x x -=--+=+-=-³∴S £.()设点Q 的坐标为()xx -+,∵点Q 在第四象限,∴Q R x =,Q P x =-,∴Q R Q P -=.。
人教版八年级数学下册单元测试题全套(含答案)

人教版八年级数学下册单元测试题全套(含答案)(含期中期末试题,共7套)第十六章达标检测卷(100分 90分钟)一、判断题:(每小题1分,共5分)1…………………( )222.( )3=2.…( )413…( )5都不是最简二次根式.( ) 二、填空题:(每小题2分,共20分)6.当78.a 9.当101112131415.x 16(A )17.若x<y<0………………………()(A)2x(B)2y(C)-2x(D)-2y18.若0<x<1………………………()(A)2x(B)-2x(C)-2x(D)2x19(a<0)得………………………………………………………………()(A(B(C(D20.当a<0,b<0时,-a+b可变形为………………………………………()(A)2(B)-2(C)2(D)2四、计算题:(每小题6分,共24分)21.;2223)÷)(a≠b).24五、求值:25.已知x26.当x=六、解答题:(共20分)+…).27.(8分)计算(+1)28参考答案(一)判断题:(每小题1分,共5分)1、|-2|=2.【答案】×.2、2).【答案】×.3、=|x -1|,2=x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×.4、【提示】13【答案】√.5是最简二次根式.【答案】×. (二)填空题:(每小题2分,共20分)6、7、89、x -410、11、12、13、(7-14、【答案】40.0时,x+1=0,y-3=0.15、【提示】∵34,∴_______<8__________.[4,5].由于84与5之间,则其整数部分x=?小数部分y=?[x=4,y=4【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题3分,共15分)16、【答案】D.【点评】本题考查积的算术平方根性质成立的条件,(A)、(C)不正确是因为只考虑了其中一个算术平方根的意义.17、【提示】∵x<y<0,∴x-y<0,x+y<0.∴|x-y|=y-x.18、19、20、21、【解】原式=2-2=5-3-2=6- 22、【提示】先分别分母有理化,再合并同类二次根式.=431.23、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a abmnm ·221a b=21b 1mab+22n ma b =21b -1ab +221a b=2221a ab a b -+. 24、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.25、26、∴ x 2=1x.当x=1=-1【点评】本题如果将前两个“分式”分拆成两个“分式”=-1)x1x.六、解答题:(共22分)27、(8分)28、(14分)又∵∴ 原式=x y y x +-y x x y +=2x y 当x =14,y =12时, 原式=21412=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.第十七章达标检测卷(120分 120分钟)一、选择题(每小题3分,共30分)1. 已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A .25B .14C .7D .7或252.直角三角形的一条直角边长是另一条直角边长的13,斜边长为10,则它的面积为( ) A.10 B.15 C.20 D.303. 如图,已知正方形B 的面积为144,正方形C 的面积为169,那么正方形A 的面积是( ) A.313 B.144 C.169 D.254、下列说法中正确的是( )A.已知c b a ,,是三角形的三边,则222c b a =+ B.在直角三角形中,两边的平方和等于第三边的平方C.在Rt △ABC 中,90C ︒∠=,所以222c b a =+ D.在Rt △ABC 中,90B ︒∠=,所以222c b a =+5.如果将长为6 cm,宽为5 cm 的长方形纸片折叠一次,那么这条折痕的长不可能是( ) A.8 cm B.52cm C.5.5 cm D.1 cm6.在Rt △ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是( )ABC第3题图A.365B.1225 C.94D.3347. 如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上, ∠ADC=2∠B ,AD=5,则BC 的长为( ) A.3-1 B.3+1 C.5-1 D.5+18. 如图,一圆柱高8 cm ,底面半径为π6cm ,一只蚂蚁从点爬到点处吃食,要爬行的最短路程是( )cm.A.6B.8C.10D.129.三角形三边长分别是6,8,10,则它的最短边上的高为( ) A.6 B.14C.2D.810.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE,且D 点落在对角线上D'处.若AB=3,AD=4,则ED 的长为( )A. B.3 C.1 D. 二、填空题(每题4分,共20分) 11. 在△中,cm ,cm ,⊥于点,则_______.12.在△中,若三边长分别为9、12、15,则以两个这样的三角形拼成的长方形的面积为__________.13.如果一梯子底端离建筑物9 m 远,那么15 m 长的梯子可达到建筑物的高度是_______m.14.三角形一边长为10,另两边长是方程x 2-14x+48=0的两实根,则这是一个________三角形,面积为________. 15. 如图,从点A(0,2)发出的一束光,经x 轴反射,过点B(4,3),则这束光从点A 到点B 所经过路径的长为__________.三、解答题(共7题,共70分)16. (6分)如图,台风过后,一希望小学的旗杆在某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?17.(8分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.18.(8分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿河岸向前走30 m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.19.(10分)如图,折叠长方形的一边,使点落在边上的点处,cm,cm,求:(1)的长;(2)的长.20.(12分)如图,将竖直放置的长方形砖块ABCD推倒至长方形A'B'C'D'的位置,长方形ABCD的长和宽分别为a,b,AC的长为c.(1)你能用只含a,b的代数式表示S△ABC,S△C'A'D'和S直角梯形A'D'BA吗?能用只含c的代数式表示S△ACA'吗?(2)利用(1)的结论,你能验证勾股定理吗?21.(12分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知点C周围200 m范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600 m到达B处,测得C在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区?为什么?(参考数据:≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?22.(14分)如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为_________,点E的坐标为_________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.参考答案一、1.C2.B3.A4.A5.A6.C7.C8.D9.D10.A二、11.37012.直角;24 分析:解方程得x 1=6,x 2=8.∵2212x x =36+64=100=102,∴这个三角形为直角三角形,从而求出面积.13.43 cm 分析:过点A 作AE ⊥BC 于点E,AF ⊥CD 交CD 的延长线于点F.易得△ABE ≌△ADF,所以AE=AF,进一步证明四边形AECF 是正方形,且正方形AECF 与四边形ABCD 的面积相等,则AE=24=26(cm),所以AC=2AE=2×26=43(cm).14.略15. 分析:如图,设这一束光与x 轴交于点C,作点B 关于x 轴的对称点B',过B'作B'D ⊥y 轴于点D,连接B'C.易知A,C,B'这三点在同一条直线上,再由轴对称的性质知B'C=BC,则AC+CB=AC+CB'=AB'.由题意得AD=5,B'D=4,由勾股定理,得AB'=.所以AC+CB=.三、16.解:如图,过点A作AD⊥BC于点D.在Rt△ABD中,由勾股定理得AD2=AB2-BD2.在Rt△ACD中,由勾股定理得AD2=AC2-CD2.所以AB2-BD2=AC2-CD2.设BD=x,则82-x2=62-(7-x)2,解得x=5.5,即BD=5.5.所以AD==≈5.8.所以S△ABC=·BC·AD≈×7×5.8=20.3≈20.17.解:如图,过B点作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=60°,∴∠ABC=30°,∴AB=2AC=20,∴BC===10 .∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC=5,∴CM===15.在△EFD中,∵∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.18.解:过点C作CE⊥AD于点E,由题意得AB=30m,∠CAD=30°,∠CBD=60°,故可得∠ACB=∠CAB=∠BCE=30°,即可得AB=BC=30 m,∴BE=15 m.在Rt△BCE中,根据勾股定理可得CE===15(m).答:小丽自家门前小河的宽度为15m.19.略20.解:(1)易知△ABC,△C'A'D'和△ACA'都是直角三角形,所以S△ABC=ab,S△C'A'D'=ab,S直角梯形A'D'BA=(a+b)(a+b)= (a+b)2,S△ACA'=c2.(2)由题意可知S△ACA'=S直角梯形-S△ABC-S△C'A'D'=(a+b)2-ab-ab=(a2+b2),而S△ACA'=c2.所以A'D'BAa2+b2=c2.21.解:(1)MN不会穿过原始森林保护区.理由如下:过点C作CH⊥AB于点H.设CH=x m.由题意知∠EAC=45°,∠FBC=60°,则∠CAH=45°,∠CBA=30°.在Rt△ACH中,AH=CH=x m,在Rt△HBC中,BC=2x m.由勾股定理,得HB==x m.∵AH+HB=AB=600 m,∴x+x=600.解得x=≈220>200.∴MN不会穿过原始森林保护区.(2)设原计划完成这项工程需要y天,则实际完成这项工程需要(y-5)天.根据题意,得=(1+25%)×.解得y=25.经检验,y=25是原方程的根.∴原计划完成这项工程需要25天.22.解:(1)(3,4);(0,1)(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为长方形,∴BC=OA=4,∠AOC=∠DCE=90°,由折叠的性质可得DE=BD=BC-CD=4-1=3,AE=AB=OC=m.如图,假设点E恰好落在x轴上.在Rt△CDE中,由勾股定理可得EC===2,则有OE=OC-CE=m-2.在Rt△AOE中,OA2+OE2=AE2,即42+(m-2)2=m2,解得m=3.第十八章达标检测卷(120分120分钟)一、选择题(每题4分,共40分)1.不能判定四边形ABCD为平行四边形的题设是()(A)AB平行且等于CD (B)∠A=∠C,∠B=∠D(C)AB=AD,BC=CD (D)AB=CD,AD=BC2.正方形具有而菱形不一定具有的性质是()(A)四条边相等(B)对角线互相垂直平分(C)对角线平分一组对角(D)对角线相等3、顺次连结任意四边形四边中点所得的四边形一定是()A、平行四边形B、矩形C、菱形D、正方形4.正多边形的一个内角是120°,则这个正多边形的边数为()A.4B.8C.6D.125.如图,□ABCD中,∠C=108°,BE平分∠ABC,则∠ABE等于( )A.18°B.36°C.72°D.108°6.下列命题中,真命题是()A、有两边相等的平行四边形是菱形B、对角线垂直的四边形是菱形C、四个角相等的菱形是正方形D、两条对角线相等的四边形是矩形7.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形分割成6个三角形,则n 的值是()A.6B.7C.8D.98.菱形的周长是它的高的倍,则菱形中较大的一个角是()A.100°B.120°C.135°D.150°9.如图,菱形ABCD中,AB=5,∠BCD=120°,则对角线AC的长是()A.20B.15C.10D.510.如图,梯形ABCD中,AB∥CD,点E,F,G分别是BD,AC,DC的中点.已知两底之差是6,两腰之和是12,则△EFG 的周长是()A.8B.9C.10D.12二、填空题(每题4分,共24分)11、菱形ABCD的周长为36,其相邻两内角的度数比为1:5,则此菱形的面积为_________。
数学八年级下册数学期末试卷测试卷附答案

数学八年级下册数学期末试卷测试卷附答案数学八年级下册数学期末试卷及答案一、选择题1.下列各式中,一定是二次根式的是()A。
aB。
1/a^2C。
-a^2D。
a^2+12.下列数组中,能构成直角三角形的是()A。
1.1.3B。
2.3.5C。
0.2.0.3.0.5D。
1/11.1/45.1/33.如图,在ABCD中,点E,F分别在边BC,AD上。
若从下列条件中只选择一个添加到图中的条件中,那么不能使四边形AECF是平行四边形的条件是()A。
AE//CFB。
AE=CFC。
BE=DFD。
∠BAE=∠DCF4.某次数学趣味竞赛共有10组题目,某班得分情况如下表。
全班40名学生成绩的众数是人数。
成绩(分)5.1370.6080.7390.100A。
75B。
70C。
80D。
905.如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A。
AB//DCB。
AC=BDC。
AC⊥BDD。
AB=DC6.如图,在菱形ABCD中,AB=4,∠BAD=120°,O是对角线BD的中点,过点O作OE⊥CD于点E,连结OA。
则四边形AOED的周长为()A。
9+√23B。
9+√3C。
7+√23D。
87.如图,在ABC中,D,E分别是AB,AC的中点,AC=20,F是DE上一点,连接AF,CF,DF=4.若∠AFC=90°,则BC的长度为()A。
24B。
28C。
20D。
128.一个内有进水管和出水管,开始4min内只进水不出水,在随后的8min内既进水又出水,第12min后只出水不进水。
进水管每分钟的进水量和出水量每分钟的出水量始终不变,内水量y(单位:L)与时间x(单位:min)之间的关系如图所示。
根据图象有下列说法:①进水管每分钟的进水量为5L;②4≤x≤12时,y=x+15;③当x=12时,y=30;④当y=15时,x=3,或x=17.其中正确说法的个数是()A。
1个B。
人教版数学八年级下册期末考试试题带答案

人教版数学八年级下册期末考试试卷一、选择题(本大题10小题,每小题3分,共30分),每小题只有一个正确答案。
1.下列各式是最简二次根式的是( )A.B.C.D.2.要使式子有意义,则x的取值范围是( )A.x>0B.x≥﹣3C.x≥3D.x≤33.数据2,4,3,4,5,3,4的众数是( )A.5B.4C.3D.24.一次函数y=﹣2x+1的图象不经过下列哪个象限( )A.第一象限B.第二象限C.第三象限D.第四象限5.如图,在菱形ABCD中,对角线AC,BD相交于点O,下列结论中不一定成立的是( )A.AB∥DC B.AC=BD C.AC⊥BD D.OA=OC6.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB′=60°,则矩形ABCD的面积是( )A.12B.24C.12D.167.如图,在△ABC中,AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为( )A.2B.3C.4D.28.由线段a,b,c组成的三角形不是直角三角形的是( )A.a=3,b=4,c=5B.a=12,b=13,c=5C.a=15,b=8,c=17D.a=13,b=14,c=159.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长为( )A.4B.16C.D.4或10.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是( )A.y1>y2B.y1=y2C.y1<y2D.不能比较二、填空题(本大题6小题,每小题4分,共24分)。
11.求值:= .12.某招聘考试分笔试和面试两种.其中笔试按60%、面试按40%计算加权平均数作为总成绩.小明笔试成绩为90分.面试成绩为85分,那么小明的总成绩为 分.13.将直线y=2x向上平移1个单位后所得的图象对应的函数解析式为 .14.如图,字母A所代表的正方形面积为 .15.函数y=kx与y=6﹣x的图象如图所示,则k= .16.已知,如图,正方形ABCD的边长是8,M在DC上,且DM=2,N是AC边上的一动点,则DN+MN的最小值是 .三、解答题(一)(本大题3小题,每小题6分,共18分)17.计算:÷+×﹣.18.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,BC=2,AC=2,求AB、CD的长.19.如图,在▱ABCD中,点E、F分别是AD、BC的中点,求证:AF=CE.四、解答题(二)(本大题3小题,每小题7分,共21分)20.先化简,再求值:﹣,其中x=1+2,y=1﹣2.21.已知一次函数图象经过(3,5)和(﹣4,﹣9)两点(1)求此一次函数的解析式;(2)若点(m,2)在函数图象上,求m的值.22.国家规定“中小学生每天在校体育活动时间不低于1h”,为此,某市就“每天在校体育活动”时间的问题随机调查了辖区内320名初中学生,根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5h;B组:0.5h≤t<1h;C组:1h≤t<1.5h;D组:t≥1.5h请根据上述信息解答下列问题:(1)C组的人数是 ;(2)本次调查数据的中位数落在 组内;(3)若该市辖区内约有32000名初中学生,请你估计其中达国家规定体育活动时间的人约有多少?五、解答题(三)(本大题3小题,每小题9分,共27分)23.小红星期天从家里出发骑车去舅舅家做客,当她骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,以下是她本次去舅舅家所用的时间与路程的关系式示意图.根据图中提供的信息回答下列问题:(1)小红家到舅舅家的路程是 米,小红在商店停留了 分钟;(2)在整个去舅舅家的途中哪个时间段小红骑车速度最快,最快的速度是多少米/分?(3)本次去舅舅家的行程中,小红一共行驶了多少米?一共用了多少分钟?24.在△ABC中,∠C=90°,AC=6,BC=8,D、E分别是斜边AB和直角边CB上的点,把△ABC 沿着直线DE折叠,顶点B的对应点是B′.(1)如图(1),如果点B′和顶点A重合,求CE的长;(2)如图(2),如果点B′和落在AC的中点上,求CE的长.25.如图,在△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交△BCA的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在AC运动到什么位置,四边形AECF是矩形,请说明理由.参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一项是符合题目要求的,请把答题卡上对应题目所选的选项涂黑1.【分析】根据最简二次根式的定义对各选项分析判断利用排除法求解.【解答】解:A、不是最简二次根式,错误;B、不是最简二次根式,错误;C、是最简二次根式,正确;D、不是最简二次根式,错误;故选:C.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得3﹣x≥0,解得x≤3,故选:D.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.3.【分析】根据众数的定义:一组数据中出现次数最多的数据求解即可.【解答】解:这组数据的众数为:4.故选:B.【点评】本题考查了众数的知识,属于基础题,解答本题的关键是掌握一组数据中出现次数最多的数据叫做众数.4.【分析】先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.【解答】解:∵解析式y=﹣2x+1中,k=﹣2<0,b=1>0,∴图象过第一、二、四象限,∴图象不经过第三象限.故选:C.【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,函数图象经过第二、四象限,当b>0时,函数图象与y轴相交于正半轴.5.【分析】直接利用菱形的性质对边互相平行、对角线互相垂直且平分进而分析即可.【解答】解:∵四边形ABCD是菱形,∴AB∥DC,故选项A正确,不合题意;无法得出AC=BD,故选项B错误,符合题意;AC⊥BD,故选项C正确,不合题意;OA=OC,故选项D正确,不合题意;故选:B.【点评】此题主要考查了菱形的性质,正确把握菱形对角线之间关系是解题关键.6.【分析】由折叠可得AE=A'E=2,∠EFB=∠EFB'=60°,根据平行线性质可得∠A'EF=120°,∠B'EF=60°,解直角三角形A'E'B'可得A'B'的长度,则可求矩形ABCD面积.【解答】解:∵折叠∴∠BFE=∠EFB'=60°,AB=A'B'∠A=∠A'=90°,AE=A'E=2∵ABCD是矩形∴AD∥BC∴∠DEF=∠EFB=60°∵A'E∥B'F∴∠A'EF+∠EFB'=180°∴∠A'EF=120°∴∠A'EB'=60°且∠A'=90°∴∠A'B'E=30°,且A'E=2∴B'E=4,A'B'=2=AB∵AE=2,DE=6∴AD=8∴S矩形ABCD=AB×AD=2×8=16故选:D.【点评】本题考查了折叠问题,等边三角形的性质,矩形的性质,关键灵活运用折叠的性质解决问题.7.【分析】先由含30°角的直角三角形的性质,得出BC的长,再由三角形的中位线定理得出DE的长即可.【解答】解:∵∠C=90°,∠A=30°,∴BC=AB=4,又∵DE是中位线,∴DE=BC=2.故选:A.【点评】本题考查了三角形的中位线定理,解答本题的关键是掌握含30°角的直角三角形的性质及三角形的中位线定理.8.【分析】根据判断三条线段是否能构成直角三角形的三边,需验证两小边的平方和是否等于最长边的平方,分别对每一项进行分析,即可得出答案.【解答】解:A、32+42=52,符合勾股定理的逆定理,是直角三角形;B、52+122=132,符合勾股定理的逆定理,是直角三角形;C、152+82=172,符合勾股定理的逆定理,是直角三角形;D、132+142≠152,不符合勾股定理的逆定理,不是直角三角形.故选:D.【点评】本题主要考查了勾股定理的逆定理:用到的知识点是已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.9.【分析】此题要分两种情况:当3和5都是直角边时;当5是斜边长时;分别利用勾股定理计算出第三边长即可.【解答】解:当3和5都是直角边时,第三边长为:=;当5是斜边长时,第三边长为:=4.故选:D.【点评】此题主要考查了利用勾股定理,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.10.【分析】先根据一次函数的解析式判断出函数的增减性,再根据两点横坐标的大小即可得出结论.【解答】解:∵k=﹣<0,∴y随x的增大而减小.∵﹣4<2,∴y1>y2.故选:A.【点评】本题考查的是一次函数图象上点的坐标特点,先根据题意判断出一次函数的增减性是解答此题的关键.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题正确答案填写在答题卷相应的位置上11.【分析】根据二次根式的性质,求出算术平方根即可.【解答】解:原式=.故答案为:.【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.12.【分析】根据笔试和面试所占的权重以及笔试成绩和面试成绩,列出算式,进行计算即可.【解答】解:∵笔试按60%、面试按40%,∴总成绩是(90×60%+85×40%)=88(分);故答案为:88.【点评】此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.13.【分析】根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1.故答案为:y=2x+1.【点评】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.14.【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即为所求正方形的面积.【解答】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故答案为:64.【点评】此题考查了勾股定理以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.15.【分析】首先根据一次函数y=6﹣x与y=kx图象的交点横坐标为2,代入一次函数y=6﹣x求得交点坐标为(2,4),然后代入y=kx求得k值即可.【解答】解:∵一次函数y=6﹣x与y=kx图象的交点横坐标为2,∴4=6﹣2,解得:y=4,∴交点坐标为(2,4),代入y=kx,2k=4,解得k=2.故答案为:2【点评】本题考查了两条直线平行或相交问题,解题的关键是交点坐标适合y=6﹣x与y=kx两个解析式.16.【分析】要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解.【解答】解:∵正方形是轴对称图形,点B与点D是关于直线AC为对称轴的对称点,∴连接BNBD,则直线AC即为BD的垂直平分线,∴BN=ND∴DN+MN=BN+MN连接BM交AC于点P,∵点N为AC上的动点,由三角形两边和大于第三边,知当点N运动到点P时,BN+MN=BP+PM=BM,BN+MN的最小值为BM的长度,∵四边形ABCD为正方形,∴BC=CD=8,CM=8﹣2=6,BCM=90°,∴BM==10,∴DN+MN的最小值是10.故答案为10.【点评】考查正方形的性质和轴对称及勾股定理等知识的综合应用.三、解答题(一)(本大题3小题,每小题6分,共18分)17.【分析】直接利用二次根式混合运算法则计算得出答案.【解答】解:原式=+﹣2=4+﹣2=4﹣.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.18.【分析】根据勾股定理可求出AB的长度,然后利用三角形的面积即可求出CD的长度.【解答】解:在Rt△ABC中,∠ACB=90°根据勾股定理,得AB2=AC2+BC2=16,∴AB=4,又CD⊥AB∴AB•CD=AC•BC∴4CD=2×2即CD=【点评】本题考查勾股定理,解题的关键是熟练运用勾股定理,本题属于基础题型.19.【分析】根据“平行四边形ABCD的对边平行且相等的性质”证得四边形AECF为平行四边形,然后由“平行四边形的对边相等”的性质证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC;又∵点E、F分别是AD、BC的中点,∴AE∥CF,AE=AD,CF=BC,∴AE=CF,∴四边形AECF为平行四边形(对边平行且相等的四边形为平行四边形),∴AF=CE(平行四边形的对边相等).【点评】本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.四、解答题(二)(本大题3小题,每小题7分,共21分)20.【分析】根据分式的减法可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:﹣===x+y,当x=1+2,y=1﹣2时,原式=1+2+1﹣2=2.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21.【分析】(1)设一次函数解析式为y=kx+b(k≠0),再把点(3,5)和(﹣4,﹣9)代入即可求出k,b的值,进而得出一次函数的解析式;(2)把点(m,2)代入一次函数的解析式,求出m的值即可.【解答】解:(1)设一次函数的解析式为y=kx+b,则有,解得:,∴一次函数的解析式为y=2x﹣1;(2)∵点(m,2)在一次函数y=2x﹣1图象上∴2m﹣1=2,∴m=.【点评】本题考查的是用待定系数法求正比例函数的解析式,此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.22.【分析】(1)根据直方图可得总人数以及各小组的已知人数,进而根据其间的关系可计算C组的人数;(2)根据中位数的概念,中位数应是第160、161人时间的平均数,分析可得答案;(3)首先计算样本中达国家规定体育活动时间的频率,再进一步估计总体达国家规定体育活动时间的人数.【解答】解:(1)根据题意有:C组的人数为320﹣20﹣100﹣60=140;(2)根据中位数的概念,中位数应是第160、161人时间的平均数,分析可得其均在C组,故调查数据的中位数落在C组;(3)达国家规定体育活动时间的人数约占×100%=62.5%.所以,达国家规定体育活动时间的人约有32000×62.5%=20000(人).【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.五、解答题(三)(本大题3小题,每小题9分,共27分)23.【分析】(1)根据图象,路程的最大值即为小红家到舅舅家的路程;读图,对应题意找到其在商店停留的时间段,进而可得其在书店停留的时间;(2)分析图象,找函数变化最快的一段,可得小明骑车速度最快的时间段,进而可得其速度;(3)分开始行驶的路程,折回商店行驶的路程以及从商店到舅舅家行驶的路程三段相加即可求得小红一共行驶路程;读图即可求得本次去舅舅家的行程中,小红一共用的时间.【解答】解:(1)根据图象舅舅家纵坐标为1500,小红家的纵坐标为0,故小红家到舅舅家的路程是1500米;据题意,小红在商店停留的时间为从8分到12分,故小红在商店停留了4分钟.故答案为:1500,4;(2)根据图象,12≤x≤14时,直线最陡,故小红在12﹣14分钟最快,速度为=450米/分.(3)读图可得:小红共行驶了1200+600+900=2700米,共用了14分钟.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.24.【分析】(1)如图(1),设CE=x,则BE=8﹣x;根据勾股定理列出关于x的方程,解方程即可解决问题.(2)如图(2),首先求出CB′=3;类比(1)中的解法,设出未知数,列出方程即可解决问题.【解答】解:(1)如图(1),设CE=x,则BE=8﹣x;由题意得:AE=BE=8﹣x,由勾股定理得:x2+62=(8﹣x)2,解得:x=,即CE的长为:.(2)如图(2),∵点B′落在AC的中点,∴CB′=AC=3;设CE=x,类比(1)中的解法,可列出方程:x2+32=(8﹣x)2解得:x=.即CE的长为:.【点评】该题主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用翻折变换的性质,找出图形中隐含的等量关系;借助勾股定理等几何知识点来分析、判断、推理或解答.25.【分析】(1)由题意可证OE=OC,OF=OC,即可得OE=OF;(2)根据三角形内角和定理可求∠ECF=90°,根据勾股定理可求EF的长,根据直角三角形斜边上中线等于斜边的一半,可得OC的长;(3)当点O在AC的中点时,且OE=OF可证四边形AECF是平行四边形,再根据∠ECF=90°,可证四边形AECF是矩形.【解答】证明:(1)∵CF平分∠ACD,且MN∥BD∴∠ACF=∠FCD=∠CFO∴OF=OC同理可证:OC=OE∴OE=OF(2)由(1)知:OF=OC=OE∴∠OCF=∠OFC,∠OCE=∠OEC∴∠OCF+∠OCE=∠OFC+∠OEC而∠OCF+∠OCE+∠OFC+∠OEC=180°∴∠ECF=∠OCF+∠OCE=90°∴∴(3)当点O移动到AC中点时,四边形AECF为矩形理由如下:∵当点O移动到AC中点时∴OA=OC且OE=OF∴四边形AECF为平行四边形又∵∠ECF=90°∴四边形AECF为矩形【点评】本题考查了矩形的性质判定,等腰三角形的性质和判定,勾股定理,熟练运用这些性质解决问题是本题的关键.。
2023年人教版八年级数学下册期末考试题及答案【完美版】

2023年人教版八年级数学下册期末考试题及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>2.已知平行四边形ABCD ,下列条件中,不能判定这个平行四边形为矩形的是( )A .∠A=∠B B .∠A=∠C C .AC=BD D .AB ⊥BC3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .108°B .90°C .72°D .60°4. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A .523220x y x y +=⎧⎨+=⎩B .522320x y x y +=⎧⎨+=⎩C .202352x y x y +=⎧⎨+=⎩D .203252x y x y +=⎧⎨+=⎩5.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( )A .4B .16C .34D .4或346.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③8.已知直线a ∥b ,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为( )A .80°B .70°C .85°D .75°9.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD .设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A .y=-2x+24(0<x<12)B .y=-x +12(0<x<24)C .y=2x -24(0<x<12)D .y=x -12(0<x<24)10.如图,直线,a b 被,c d 所截,且//a b ,则下列结论中正确的是( )A .12∠=∠B .34∠=∠C .24180∠+∠=D .14180∠+∠=二、填空题(本大题共6小题,每小题3分,共18分)1.如图,数轴上点A表示的数为a,化简:a244a a+-+=________.2.已知三角形ABC的三边长为a,b,c满足a+b=10,ab=18,c=8,则此三角形为__________三角形.3.分解因式6xy2-9x2y-y3 = _____________.4.如图是一个三级台阶,它的每一级的长、宽和高分别为20 dm,3 dm,2 dm ,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是__________dm.5.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为___________cm(杯壁厚度不计).6.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC =8,则EF的长为______.三、解答题(本大题共6小题,共72分)2.解方程组(1)43524x yx y+=⎧⎨-=⎩(2)12163213x yx y--⎧-=⎪⎨⎪+=⎩2.先化简,后求值:(a+5)(a ﹣5)﹣a(a﹣2),其中a=12+2.3.解不等式组20{5121123xx x->+-+≥①②,并把解集在数轴上表示出来.4.如图,A(4,3)是反比例函数y=kx在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=kx的图象于点P.(1)求反比例函数y=kx的表达式;(2)求点B的坐标;(3)求△OAP的面积.5.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.6.某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、D5、D6、A7、C8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、直角3、-y(3x-y)24、255、206、1三、解答题(本大题共6小题,共72分)1、(1)21xy=⎧⎨=-⎩;(2)53xy=⎧⎨=⎩.2、224-3、﹣1≤x<2.4、(1)反比例函数解析式为y=12x;(2)点B的坐标为(9,3);(3)△OAP的面积=5.5、(1)2.5小时;(2)y=﹣100x+550;(3)175千米.6、(1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)略.。
八年级数学下册期末试卷(附含答案)精选全文完整版

可编辑修改精选全文完整版八年级数学下册期末试卷(附含答案)(满分:120分;考试时间:120分)一、选择题(共10小题,每小题3分,满分30分) 1、使1x -有意义的x 的取值范围是( )A x >1B x >-1C x ≥1D x ≥-1 2、在根式xy 、12、2ab 、x y -、2x y 中,最简二次根式有( )A 1个B 2个C 3个D 4个 3、下列计算正确的是( )A 20210=B 5630⨯=C 2236⨯=D 2(3)3-=- 4、一元二次方程x (x-2)=2-x 的根式( )A -1B 2C 1和2D -1和2 5、下列命题中,真命题的个数有( )①对角线互相平分的四边形是平行四边形; ②两组对角分别相等的四边形是平行四边形; ③一组对边平行,另一组对边相等的四边形是平行四边形;A 3个B 2个C 1个D 0个 6、在△ABC 中,三边长分别为a 、b 、c ,且a+c=2b ,c-a=12b ,则△ABC 是( )A 直角三角形B 等边三角形C 等腰三角形D 等腰直角三角形 7、某公司为了解职工参加体育锻炼情况,对职工某一周平均每天锻炼 (跑步或快走)的里程进行统计(保留整数),并将他们平均每天锻炼 的里程数据绘制成扇形统计图,关于他们平均每天锻炼里程数据 下列说法不正确的是( )A 平均每天锻炼里程数据的中位数是2B 平均每天锻炼里程数据的众数是2C 平均每天锻炼里程数据的平均数是2.34D 平均每天锻炼里程数不少于4km 的人数占调查职工的20% 8、疫情期间居民为了减少外出时间,更愿意使用APP 在线上购物,某购物APP 今年二月份用户比一月份增加了44%,三月份用户比二月份增加了21%,则二、三两个月用户的平均每月增长率是( )A 28%B 30%C 32%D 32.5% 9、有两个一元二次方程:M :ax 2+bx+c=0,N :cx 2+bx+a=0,以下四个结论中,错误的是( ) A 如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根 B 如果方程M 有两根符号相同,那么方程N 也有两根符号相同 C 如果5是方程M 的一个根,那么15是方程N 的一个根D 如果方程M和方程N有一个相同的实数根,那么这个跟必是x=110、△ABC中,∠C=30°,AC=6,BD是△ABC的中线,∠ADB=45°,则AB=()二、填空题(共6小题,每小题3分,满分18分)11的结果是12、已知关于x的一元二次方程x2-bx+8=0,一个根为2,则另一个根是13、有一棵9米高的大树,如果大树距离地面4米处这段(没有断开),则小孩至少离开大树米之处才是安全的。
人教版八年级数学下册精品习题(含答案)

第十八章平行四边形单元测试题第一卷选择题一、选择题(每小题3分,共24分)1.在平行四边形ABCD中,∠B=60°,那么下列各式中,不能成立的是( C )A.∠D=60° B.∠A=120° C.∠C+∠D=180°D.∠C+∠A=180°2.矩形,菱形,正方形都具有的性质是( B )A.对角线相等 B.对角线互相平分 C.对角线平分一组对角 D.对角线互相垂直3.如图,▱ABCD的周长是28cm,△ABC的周长是22cm,则AC的长为( B )A. 6cm B. 12cm C. 4cm D. 8cm第3题第4题第5题第7题4.如图所示,平行四边形ABCD中,对角线AC和BD相交于点O,如果AC=12,BD=10,AB=m,则m的取值范围是()A.10<m<12 B.2<m<22 C. 1<m<11 D.5<m<65.如图,如果平行四边形ABCD的对角线AC和BD相交于点O,那么图中的全等三角形共有()A. 1对B. 2对C. 3对D. 4对6.已知菱形的边长为6cm,一个内角为60°,则菱形较短的对角线长是()A. 6cm B.cm C. 3cm D.cm7.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°8.菱形的周长为20cm,两邻角的比为.1:2,则较长的对角线长为()A. 4.5cm B. 4cm C. 5cm D. 4cm9.矩形的四个内角平分线围成的四边形()A.一定是正方形 B.是矩形 C.菱形 D.只能是平行四边形10.在△ABC中,AB=12,AC=10,BC=9,AD是BC边上的高.将△ABC按如图所示的方式折叠,使点A与点D重合,折痕为EF,则△DEF的周长为()A. 9.5 B.10.5 C. 11 D. 15.5第二卷非选择题二、填空题(每小题3分,共24分)11.已知正方形的一条对角线长为4cm,则它的面积是cm2.12.菱形的两条对角线分别是6cm,8cm,则菱形的边长为cm,面积为cm2.13.如图,菱形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AB和CD于点E、F,BD=6,AC=4,则图中阴影部分的面积和为.14.如图:菱形ABCD中,AB=2,∠B=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.bnnnn第13题第14题第15题第16题15.如图,在△ABC中,点D、E、F分别是AB、AC、BC的中点,若△ABC的周长为12cm,则△DEF的周长是cm.16.如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是S1S2;(填“>”或“<”或“=”)17.已知Rt△ABC的周长是4+4,斜边上的中线长是2,则S△ABC= .18.将七个边长都为1的正方形如图所示摆放,点A1、A2、A3、A4、A5、A6分别是六个正方形的中心,则这七个正方形重叠形成的重叠部分的面积是.第19题图第20题图三、解答题(共7小题,共66分)19.如图,在△ABC中,D、E、F分别为边AB、BC、CA的中点.证明:四边形DECF是平行四边形.(6分)20.已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.(8分)21.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM 的平分线,CE⊥AN,垂足为点E,(8分)(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.22.如图所示,已知AD是△ABC的角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F,(10分)求证:AD⊥EF.23.已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交于BE的延长线于点F,且AF=DC,连接CF.(10分)(1)求证:D是BC的中点;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.24.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(12分)(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.25.如图,△ABC中,MN∥BD交AC于P,∠ACB、∠ACD的平分线分别交MN于E、F.(12分)(1)求证:PE=PF;(2)当MN与AC的交点P在什么位置时,四边形AECF是矩形,说明理由;(3)当△ABC满足什么条件时,四边形AECF是正方形.(不需要证明)第十六章二次根式一、选择题(每小题3分,共24分)1.在下列各式中,不是二次根式的有( B )①-10;②10a(a≥0);③mn(m,n同号且n≠0);④x2+1;⑤38.A .3个B .2个C .1个D .0个2.若代数式x +1(x -3)2有意义,则实数x 的取值范围是( B )A .x ≥-1B .x ≥-1且x ≠3C .x >-1D .x >-1且x ≠33.下列计算:(1)( 2)2=2;(2) (-2)2=2;(3)(-2 3)2=12;(4)(2+3)(2- 3)=-1.其中结果正确的个数为( D ) A .1 B .2 C .3 D .44.下列式子中为最简二次根式的是( A ) A. 3 B. 4 C.8 D.125.若75n 是整数,则正整数n 的最小值是( B ) A .2 B .3 C .4 D .56.一个直角三角形的两条直角边长分别为2 3 cm ,3 6 cm ,那么这个直角三角形的面积是( C )A .8 2 cm 2B .7 2 cm 2C .9 2 cm 2 D. 2 cm 27.如果a -b =2 3,那么代数式(a 2+b 22a -b )·aa -b的值为( A )A. 3 B .2 3 C .3 3 D .4 3 8.甲、乙两人计算a +1-2a +a 2的值,当a =5的时候得到不同的答案,甲的解答是a +1-2a +a 2=a +(1-a )2=a +1-a =1;乙的解答是a +1-2a +a 2=a +(a -1)2=a +a -1=2a -1=9.下列判断正确的是( D )A .甲、乙都对B .甲、乙都错C .甲对,乙错D .甲错,乙对 二、填空题(每小题3分,共24分)9.已知a <2,则(a -2)2=____2-a____. 10.计算:27-613=___根号三_____. 11.在实数范围内分解因式:x 2-5=_____(x-根号五)(x+根号五)_______. 12.计算:18÷3×13=____根号二____. 13.化简:(1)13 2=____六分之根号二____;(2)112=___十二分之二倍的根号三_____;(3)102 5=____十分之五倍的根号二____;(4)23-1=____根号三加一____. 14.一个三角形的三边长分别为8 cm ,12 cm ,18 cm ,则它的周长是____五倍的根号二加二倍的根号三____ cm.15.已知a 是13的整数部分,b 是13的小数部分,则ab =____三倍的根号十三减九____.16.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式.即:如果一个三角形的三边长分别为a ,b ,c ,那么该三角形的面积为S =14[a 2b 2-(a 2+b 2-c 22)2].已知△ABC 的三边长分别为5,2,1,则△ABC 的面积为____1____.三、解答题(共52分) 17.(10分)计算:解(1)2(12+20)-3(3-5); =根号三加七倍的根号五(2)(3-2 5)(15+5)-(10-2)2. =负的五倍的根号三减三倍的根号五减十二18.(10分)已知a =7+2,b =7-2,求下列代数式的值:(1)a 2b +b 2a ;(2)a 2-b 2. (1)=六倍的根号七 (2)=八倍的根号七19.(10分)先化简,再求值:1x 2+2x +1·(1+3x -1)÷x +2x 2-1,其中x =2 5-1.十分之根号五20.(10分)王师傅有一根长45米的钢材,他想将它锯断后焊成三个面积分别为2平方米、18平方米、32平方米的正方形铁框,王师傅的钢材够用吗?请通过计算说明理由.四倍的根号二加四倍的根号十八加四倍的根号三十二等于四倍的根号二加十二倍的根号二加十六倍的根号二等于三十倍的根号二三十二倍的根号二大于四十五所以王师傅的钢材不够用21.(12分)阅读材料:小明在学习了二次根式后,发现一些含根号的式子可以写成另一个式子的平方的形式,如3+2 2=(1+2)2,善于思考的小明进行了以下探索:设a+b2=(m+n2)2(其中a,b,m,n均为正整数),则有a+b2=m2+2n2+2mn2,所以a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a,b,m,n均为正整数时,若a+b3=(m+n3)2,用含m,n的式子分别表示a,b,得a=___m的平方加三倍的n方_____,b=___2mn_____;(2)利用所探索的结论,找一组正整数a,b,m,n填空:___13___+___4___3=(____1__+__2____3)2;(3)若a+4 3=(m+n3)2,且a,m,n均为正整数,求a的值.A=13or勾股定理单元复习测试题一.选择题二.01.以下列各组数为边长,不能构成直角三角形的是()A.3,4,5 B.1,1,C.8,12,13 D.2.如图所示,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D,则BD的长为()A.B.C.D.3.如图,字母B所代表的正方形的面积是()A.12 B.144 C.13 D.1944.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,则梯子顶端A下落了()米.A.0.5 B.1 C.1.5 D.25.如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形、如果大正方形的面积13,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么(a+b)2的值为()A.169 B.25 C.19 D.136.如图①所示,有一个由传感器A控制的灯,要装在门上方离地高4.5m的墙上,任何东西只要移至该灯5m及5m以内时,灯就会自动发光.请问一个身高1.5m的学生要走到离墙多远的地方灯刚好发光?()A.4米B.3米C.5米D.7米7.如图,在四个均由十六个小正方形组成的正方形网格中,各有一个三角形ABC,那么这四个三角形中,不是直角三角形的是()A.B.C.D.8.下列说法中,正确的个数有()①已知直角三角形的面积为2,两直角边的比为1:2,则斜边长为;②直角三角形的最大边长为,最短边长为1,则另一边长为;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC为直角三角形;④等腰三角形面积为12,底边上的高为4,则腰长为5.A.1个B.2个C.3个D.4个9.已知△ABC中,AB=17,AC=10,BC边上的高AD=8,则边BC的长为()A.21 B.15 C.6 D.以上答案都不对10.如图,在△ABC中,∠A=90°,P是BC上一点,且DB=DC,过BC上一点P,作PE ⊥AB于E,PF⊥DC于F,已知:AD:DB=1:3,BC=,则PE+PF的长是()A.B.6 C.D.二.填空题11.如图,在Rt△ABC中,∠C=90°,DE垂直平分AB,连结AD,若AC=6,BC=8,则CD的长为.12.已知:如图,四边形ABDC,AB=4,AC=3,CD=12,BD=13,∠BAC=90°.则四边形ABDC的面积是.13.如图,在四边形ABCD中,∠ADC=∠ABC=45°,CD=,BC=,连接AC、BD,若AC⊥AB,则BD的长度为.14.如图,一架15m长的梯子AB斜靠在一竖直的墙OA上,这时梯子的顶端A离地面距离OA为12m,如果梯子顶端A沿墙下滑3m至C点,那么梯子底端B向外移至D点,则BD的长为m.15.如图,某小区有一块直角三角形绿地,量得直角边AC=4m,BC=3m,考虑到这块绿地周围还有足够多的空余部分,于是打算将这块绿地扩充成等腰三角形,且扩充部分是以AC为一条直角边的直角三角形,则扩充的方案共有种.三.解答题16.已知:如下图,Rt△ABC中,CD⊥AB于D,AC=4,BC=3,DB=.(1)求DC的长;(2)求AD的长;(3)求AB的长.17.《勾股圆方图》是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图(1)).设每个直角三角形中较短直角边为a,较长直角边为b,斜边为c(1)利用图(1)面积的不同表示方法验证勾股定理.(2)实际上还有很多代数恒等式也可用这种方法说明其正确性.试写出图(2)所表示的代数恒等式:;(3)如果图(1)大正方形的面积是13,小正方形的面积是1,求(a+b)2的值.18.如图的一块地(图中阴影部分),∠ADC=90°,AD=12,CD=9,AB=25,BC=20.(1)求∠ACB的度数;(2)求阴影部分的面积.19.如图所示,永定路一侧有A、B两个送奶站,C为永定路上一供奶站,CA和CB为供奶路线,现已测得AC=8km,BC=15km,AC⊥BC,∠1=30°.(1)连接AB,求两个送奶站之间的距离;(2)有一人从点C处出发沿永定路边向右行走,速度为2.5km/h,多长时间后这个人距B 送奶站最近?并求出最近距离.20.如图,平面直角坐标系中的每个小正方形边长为1,△ABC的顶点在网格的格点上.(1)画线段AD∥BC,且使AD=BC,连接BD;此时D点的坐标是.(2)直接写出线段AC的长为,AD的长为,BD的长为.(3)直接写出△ABD为三角形,四边形ADBC面积是.21.如图,有一公路AB和一铁路CD在点A处交汇,且∠BAD=30°,在公路的点P处有一所学校(学校看作点P,点P与公路AB的距离忽略不计),AP=320米,火车行驶时,火车周围200米以内会受到噪音的影响,现有一列动车在铁路CD上沿AD方向行驶,该动车车身长200米,动车的速度为180千米/时,那么在该动车行驶过程中.(1)学校P是否会受到噪声的影响?说明理由;(2)如果受噪声影响,那么学校P受影响的时间为多少秒?,勾股定理参考答案一.选择题1.解:A、32+42=52,故是直角三角形,故此选项不符合题意;B、12+12=()2,故是直角三角形,故此选项不符合题意;C、82+122≠132,故不是直角三角形,故此选项符合题意;D、()2+()2=()2,故是直角三角形,故此选项不符合题意.故选:C.2.解:△ABC的面积=×BC×AE=2,由勾股定理得,AC==,则××BD=2,解得BD=,故选:A.3.解:如图,根据勾股定理我们可以得出:a2+b2=c2a2=25,c2=169,b2=169﹣25=144,因此B的面积是144.故选:B.4.解:在Rt△ABC中,AB=2.5米,BC=1.5米,故AC===2米,在Rt△ECD中,AB=DE=2.5米,CD=(1.5+0.5)米,故EC===1.5米,故AE=AC﹣CE=2﹣1.5=0.5米.故选:A.5.解:∵大正方形的面积13,小正方形的面积是1,∴四个直角三角形的面积和是13﹣1=12,即4×ab=12,即2ab=12,a2+b2=13,∴(a+b)2=13+12=25.故选:B.6.解:由题意可知.BE=CD=1.5m,AE=AB﹣BE=4.5﹣1.5=3m,AC=5m 由勾股定理得CE==4m故离门4米远的地方,灯刚好打开,故选:A.7.解:A、∵AC2=22+42=20,BC2=12+22=5,AB2=32+42=25,∴△ABC是直角三角形,故本选项错误;B、∵AC2=22+32=13,BC2=12+12=2,AB2=22+32=13,∴△ABC不是直角三角形,故本选项正确;C、∵AB2=12+32=10,AC2=22+22=8,BC2=12+12=2,∴△ABC是直角三角形,故本选项错误;D、∵AC2=22+42=20,BC2=22=4,AB2=42=16,∴△ABC是直角三角形,故本选项错误.故选:B.8.解:①、设较短的一个直角边为M,则另一个直角边为2M,所以M×2M=2,解得M =,2M=2.根据勾股定理解得斜边为.所以此项正确;②、根据勾股定理解得,另一边==,所以此项正确;③、设∠A=x,则∠B=5x,∠C=6x.因为x+5x+6x=180°解得x=15°,从而得到三个角分别为15°、75°、90°.即△ABC为直角三角形,所以此项正确;④、已知面积和高则可以得到底边为6,又因为是等腰三角形,则底边上的高也是底边上的中线,则可以得到底边的一半为3.此时再利用勾股定理求得腰长为=5.所以此项正确.所以正确的有四个.故选:D.9.解:在直角三角形ABD中,根据勾股定理,得BD=15;在直角三角形ACD中,根据勾股定理,得CD=6.当AD在三角形的内部时,BC=15+6=21;当AD在三角形的外部时,BC=15﹣6=9.则BC的长是21或9.故选:D.10.【解答】解:(1)作PM⊥AC于点M,可得矩形AEPM∴PE=AM,利用DB=DC得到∠B=∠DCB∵PM∥AB.∴∠B=∠MPC∴∠DCB=∠MPC又∵PC=PC.∠PFC=∠PMC=90°∴△PFC≌△CMP∴PF=CM∴PE+PF=AC∵AD:DB=1:3∴可设AD=x,DB=3x,那么CD=3x,AC=2x,BC=2x∵BC=∴x=2∴PE+PF=AC=2×2=4.(2)连接PD,PD把△BCD分成两个三角形△PBD,△PCD,S=BD•PE,△PBDS=DC•PF,△PCDS=BD•AC,△BCD所以PE+PF=AC=2×2=4.故选:C.二.填空题(共5小题)11.解:∵DE是AB的中垂线,∴DA=DB,设AD=x,则DB=x,CD=BC﹣BD=8﹣x,在Rt△ACD中,∵AC2+CD2=AD2,∴62+(8﹣x)2=x2,解得x=,∴CD=8﹣x=,故答案为:.12.解:连接BC,∵∠A=90°,AB=4,AC=3∴BC=5,∵BC=5,BD=13,CD=12∴BC2+CD2=BD2∴△BCD是直角三角形∴S四边形ABCD=S△BCD+S△ABC=×4×3+×5×12=36,故答案为:3613.解:过A作AE⊥AD,使AE=AD,连接CE,DE,过C作CF⊥AD于F,则△ADE是等腰直角三角形,∵∠ADC=45°,∴△CDF是等腰直角三角形,∴CF=DF=CD=1,∵AC⊥AB,∠ABC=45°,∴△ABC是等腰直角三角形,∴AC=BC=,∴AF==2,∴AD=3,∴DE=AD=3,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE,(SAS),∴CE=BD,∵∠ADE=∠ADC=45°,∴∠CDE=90°,∴CE==2,∴BD=CE=2.故答案为:2.14.解:在Rt△ABO中,∵AB=15m,AO=12m,∴OB===9m.同理,在Rt△COD中,DO===12m,∴BD=OD﹣OB=12﹣9=3(m).故答案是:3.15.解:如图所示:故答案是:3.三.解答题(共6小题)16.解:(1)在Rt△DCB中,DC2+DB2=BC2,∴DC2=9﹣,∴DC=;(2)在Rt△ACD中,AD2+CD2=AC2,∴AD2=16﹣,∴AD=;(3)AB=AD+DB=+=5.17.解:(1)图(1)中的大正方形的面积可以表示为c2,也可表示为(b﹣a)2+4×ab ∴(b﹣a)2+4×ab=c2化简得b2﹣2ab+b2+2ab=c2∴当∠C=90°时,a2+b2=c2;(2)(x+y)(x+2y)=x2+3xy+2y2故填:(x+y)(x+2y)=x2+3xy+2y2(3)依题意得则2ab=12∴(a+b)2=a2+b2+2ab=13+12=25,即(a+b)2=25.18.解:在Rt△ADC中,∵AD=12,CD=9,∴AC2=AD2+CD2=122+92=225,∴AC=15(取正值).在△ABC中,∵AC2+BC2=152+202=625,AB2=252=625.∴AC2+BC2=AB2,∴△ACB为直角三角形,∠A CB=90°.(2)S阴影=AC×BC﹣AD×CD=×15×20﹣×12×9=96.答:阴影部分的面积为96.19.解:(1)∵AC=8km,BC=15km,AC⊥BC,∴A C2+BC2=AB2,AB=km,(2)过B作BD⊥永定路于D,∵△ABC是直角三角形,且∠ACB=90°,∵∠1=30°,∴∠BCD=180°﹣90°﹣30°=60°,在Rt△BCD中,∵∠BCD=60°,∴∠CBD=30°,∴CD=BC==7.5(km),∵7.5÷2.5=3(h),∴3小时后这人距离B送奶站最近.最近距离为km.20.解:(1)如图所示:D点的坐标是(0,﹣4);(2)线段AC的长为=,AD的长为=2,BD的长为=.(3)∵AB==5,AD=2,BD=,(2)2+()2=(5)2,∴△ABD为直角三角形,四边形ADBC面积是2×=20.故答案为:(0,﹣4);,2,;直角,20.21.解:(1)如图作PH⊥CD于H.在Rt△APH中,∵∠PAH=30°,PA=320m,∴PH=PA=160m,∵160<200,∴学校P会受到噪声的影响.(2)当PE=PF=200时,动车在线段EF上时,受噪声影响,∵EF=2FH==240m,180千米/时=50米/秒∵=8.8秒,答:学校P受影响的时间为8.8秒.二次根式详解详析1.B [解析] ①的被开方数是负数,不是二次根式.②符合二次根式的定义,是二次根式.③m,n同号,且n≠0,则被开方数是非负数,是二次根式.④因为x2≥0,所以x2+1>0,被开方数是正数,是二次根式.⑤的根指数不是2,所以不是二次根式.2.B [解析] 由题意得⎩⎪⎨⎪⎧x +1≥0,(x -3)2≠0, 解得x ≥-1且x ≠3.3.D [解析] (1)根据“( a )2=a (a ≥0)”可知( 2)2=2成立;(2)根据“ a 2=||a ”可知 (-2)2=2成立;(3)根据“(ab )2=a 2b 2”可知,计算(-2 3)2,可将-2和 3分别平方后,再相乘,所以这个结论正确;(4)根据“(a +b )(a -b )=a 2-b 2”,( 2+3)( 2- 3)=( 2)2-( 3)2=2-3=-1.4.A5.B [解析] ∵75=25×3,∴使75n 是整数的正整数n 的最小值是3.故选B. 6.C7.A [解析] 原式=(a -b )22a ·a a -b =a -b 2,把a -b =2 3代入,原式=2 32=3,故选A.8.D [解析] ∵a =5,∴(1-a )2=|1-a |=a -1.9.2-a 10. 311.(x +5)(x -5) 12. 2 13.(1)26 (2)36 (3)22(4)3+1 14.(5 2+2 3) [解析] 8+12+18=2 2+2 3+3 2=(5 2+23)cm.15.3 13-9 [解析] 根据题意,得a =3,b =13-3,所以ab =3()13-3= 3 13-9.16.1 [解析] 把5,2,1代入三角形的面积公式得S =14[5×4-(5+4-12)2]=14(20-16)=1,故填1. 17.解:(1)原式=2(2 3+2 5)-3 3+3 5 =4 3+4 5-3 3+3 5 =3+7 5. (2)原式=3×15+ 5 3- 25×15-10 `5-[](10)2-2×10×2+(2)2=3 5+5 3-10 3-10 5-10+4 5-2=-3 5-5 3-12.18.解:(1)原式=ab (a +b ).当a =7+2,b =7-2时,原式=6 7. (2)原式=(a +b )(a -b ).当a =7+2,b =7-2时,原式=8 7.19.解:原式=1(x +1)2·x +2x -1·(x +1)(x -1)x +2=1x +1. 当x =2 5-1时, 原式=12 5-1+1=510.20.解:不够用.理由如下: 焊成三个面积分别为2平方米、18平方米、32平方米的正方形铁框所需的钢材的总长是4(2+18+32)=4(2+3 2+4 2)=32 2(米),(32 2)2=2048,452=2025. ∵2048>2025,∴王师傅的钢材不够用.21.解:(1)m 2+3n 22mn(2)答案不唯一,如:4 2 1 1(3)根据题意,得⎩⎪⎨⎪⎧a =m 2+3n 2,4=2mn .∵2mn =4,且m ,n 为正整数,∴m =2,n =1或m =1,n =2, ∴a =7或a =13.平行四边形答案:所以D 是错误的.故选D .2、解:菱形对角线不相等,矩形对角线不垂直,也不平分一组对角,故答案应为对角线互相平分,故选B .3、解:∵▱ABCD 的周长是28cm ,∴AB+BC=14cm,∵AB+BC+AC=22cm,∴AC=22﹣14=8 cm.故选D.4、解:∵平行四边形ABCD∴OA=OC=6,OB=OD=5∵在△OAB中:OA﹣OB<AB<OA+OB∴1<m<11.故选C.5、解:∵ABCD是平行四边形∴AD=BC,AB=CD,AO=CO,BO=DO∵∠AOB=∠COD,∠AOD=∠COB∴△ABO≌△CDO,△ADO≌△CBO(ASA)∵BD=BD,AC=AC∴△ABD≌△CDB,△ACD≌△CAB(SAS)∴共有四对.故选D.6、解:根据菱形的性质可得较短的对角线与菱形的两边组成一个等边三故选D.8、解:由已知可得,菱形的边长为5cm,两邻角分别为60°,120°.又菱形的对角线互相垂直平分,且每一条对角线平分一组对角,可得30°的角,所对边为2.5cm,则此条对角线长5cm.根据勾股定理可得,另一对角线长的一半为cm,则较长的对角线长为5cm.故本题选C.9、解:矩形的四个角平分线将矩形的四个角分成8个45°的角,因此形成的四边形每个角是90°.又知两条角平分线与矩形的一边构成等腰直角三角形,所以这个四边形邻边相等,根据有一组邻边相等的矩形是正方形,得到该四边形是正方形,故选A.∴△DEF的周长为△EAF的周长,即AE+EF+AF=(AB+BC+AC)=(12+10+9)=15.5.故选D.第二卷非选择题二、填空题(每小题3分,共24分)11、解:设这个正方形的边长为xcm,则根据正方形的性质可知:x2+x2=42=16,解可得x=2cm;则它的面积是x2=8cm2,故答案为8cm2.12、解:菱形的两条对角线分别是6cm,8cm,得到两条对角线相交所构成的直角三角形的两直角边是×6=3cm和×8=4cm,那么它的斜边即菱形的边长=5cm,面积为6×8×=24cm2.故答案为5,24.∴∠CAB=30°∴PA=2EP∵AB=2,E是AB的中点∴AE=1在Rt△APE中,PA2﹣PE2=1∴PE=,PA=∴PE+PB=PE+PA=.故答案为.所以S1=S2.故答案为S1=S2.17、解:∵Rt△ABC的周长是4+4,斜边上的中线长是2,∴斜边长为4,设两个直角边的长为x,y,则x+y=4,x2+y2=16,解得:xy=8,∴S△ABC=xy=4.18、解:连接BD和AA2,∵四边形ABA2D和四边形A1EFC都是正方形,∴DA1=A1A2,∠A1DN=∠A1A2M=45°,∠DA1A2=∠NA1M=90°,∴∠DA1N=∠A2A1M,∵在△DA1N和△A2A1M中∠A1DN=∠A1A2M,DA1=A1A2,∠DA1N=∠A2A1M,∴△DA1N≌△A2A1M,即四边形MA1NA2的面积等于△DA1A2的面积,也等于正方形ABA2D的面积的,同理得出,其余的阴影部分的面积都等于正方形面积的,则这七个正方形重叠形成的重叠部分的面积是6××12=,故答案为:.三、解答题(共7小题,共66分)∴∠BAD=∠DAC,∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠CAE,∵四边形ADCE为矩形,∴矩形ADCE是正方形.∴当∠BAC=90°时,四边形ADCE是一个正方形.22、证明:∵DE∥AC,DF∥AB,∴四边形AEDF为平行四边形.又∵∠1=∠2,而∠2=∠3,∴∠1=∠3,∴AE=DE.∴▱AEDF为菱形.∴AD⊥EF.23、(1)证明:∵E是AD的中点,∴AE=DE.∵AF∥BC,∴∠FAE=∠BDE,∠AFE=∠DBE.∴△AFE≌△DBE.∴AF=BD.∵AF=DC,∴BD=DC.即:D是BC的中点.(4分)(2)解:四边形ADCF是矩形;∴∠ADB=∠CDB;(2)∵PM⊥AD,PN⊥CD,∠ADB=∠CDB,∴∠PMD=∠PND=90°,PM=PN,∵∠ADC=90°,∴四边形MPND是矩形,∵PM=PN,∴四边形MPND是正方形.25、证明:(1)∵CE平分∠ACB,∴∠ACE=∠BCE.∵MN∥BC,∴∠PEC=∠BCE.∴∠ACE=∠PEC,PE=PC.同理:PF=PC.∴PE=PF.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018春季八年级期末调考数 学 试 题说明:1. 本试卷分为第Ⅰ卷和第Ⅱ卷. 第Ⅰ卷1~2页,第Ⅱ卷3~8页. 第Ⅰ卷的答案选项用2B 铅笔填涂在机读卡上;第Ⅱ卷用蓝、黑色钢笔或圆珠笔直接答在试卷上.2. 本试卷满分120分,答题时间为120分钟. 交卷时只交第Ⅱ卷,第Ⅰ卷由学生自己保存.第Ⅰ卷 选择题(36分)一、选择题(本大题共12个小题,每小题3分,共36分) 在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1. 如图,Rt △ABC 沿直角边BC 所在的直线向右平移得到△DEF ,下列结论中错误的是 A. △ABC ≌△DEF B. ∠DEF =90°C. EC =CFD. AC =DF2. 函数 中自变量x 的取值围为A. x ≥2B. x >-2C. x <-2D. x ≥-23. 边长为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形. 设穿过的时间为t ,大正方形除去小正方形部分的面积为S (阴影部分). S 随t 变化而变化的大致图象为A B C D4. 已知正比例函数y =kx (k ≠0)中,y 随x 的增大而增大. 反比例函数y =-xk过点(3,y 1),(2,y 2)和(-3,y 3),则y 1,y 2,y 3的大小关系为A .y 1<y 2<y 3B .y 1>y 2>y 3C .y 1>y 3>y 2D .y 3>y 1>y 2 5. 如图是学校小卖部“六一”儿童节期间儿童玩具、糖果、其它421+=x y物品等的销售额的扇形统计图. 若玩具的销售额为1800元,那么 糖果的销售额是 A. 3000元 B. 300元 C. 30% D. 900元 6. 下列命题错误的是 A. 有三条边相等的三角形全等 B. 有两条边和一个角对应相等的三角形全等 C. 有一条边和一个角对应相等的等腰三角形全等 D. 有一条边和一锐角对应相等的直角三角形全等7. 如图△ABC 是等腰三角形,以两腰AB 、AC 为边向外作正方 形ABDE 和正方形ACFG ,则图中全等三角形有( )对. A. 2 B. 3 C. 4 D. 5 8. 如果把分式ba ab2中的a 和b 都扩大到原来的9倍,那么分式的值A. 扩大到原来的9倍B. 缩小9倍C. 是原来的91D. 不变 9. 如图,ABCD 的周长为18cm ,点O 是对角线AC 的中点,过点O 作EF 垂直于AC ,分别交DC 、AB 于E 、F , 连结AE ,则△ADE 的周长为A. 5cmB. 8cmC. 9cmD. 10cm10. 下列命题中,能判断四边形ABCD 是矩形的命题有①AC =BD ,AC ⊥BD ;②OA =OB =OC =OD ;③∠A =∠B =∠C =90°;④AB CD ,∠A =90°. A. 1个 B .2个 C .3个 D .4个 11. 函数y =-kx +k (k ≠0)与y =xk的大致图象可能是A B C D12. 某服装厂准备加工300套演出服装. 在加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务. 设该厂原来每天加工x 套演出服装,则可列方程A.9260300=-x B.9602300=+x x C.960260300=+-x x D.960260300=--xx2009年春季八年级期末考试数 学 试 题全卷总分表题号 一 二 三 四 五 六 七 全卷总分总分人复查人 得分第Ⅱ卷 非选择题(84分)二、填空题(本大题共8个小题,每小题3分,共24分)将解答结果直接填在题中的横线上.13. 在四边形ABCD 中,∠A:∠:B:∠C:∠D =1:2:1:2,则四边形ABCD 是 . 14. 一个纳米粒子的直径是0.000 000 035米,用科学记数 法表示为 米.15. 如图,在正方形ABCD 中,E 在BC 的延长线上,且 EC =AC ,AE 交CD 于点F ,则∠AFC = 度.16. 已知一组数据1,3,2,5,x 的平均数为3. 则样本的标准差为 . 17. 关于x 的方程32322=--+-xmx x 有增根,则m = . 18. 已知点A (2,3)和点B (m ,-3)关于原点对称,则m = ;若点C 与点B 关于y 轴对称,则点C 的坐标为 . 19. 如图是甲、乙两地5月上旬的 日平均气温统计图,则甲、乙两地 这10天的日平均气温的方差大小 关系为:S 2甲 S 2乙.20. 已知等腰三角形的周长为10,底边为y ,腰为x. 请写出y 与x 的函数关系式及自变量x得 分 评卷人的取值围 . 三、解答题(每题6分,共24分)21. 计算:20090 -2)21(--+|-2008 |.22. 先化简,再求值:1311222+-+-+-x xx x x ,其中x =2.23. 解分式方程:93132-=--x x x .24. 作图题:在△ABC中,∠C=90°,按下列要求作图.(尺规作图,保留痕迹,不写作法)①作AB边的垂直平分线,交AC于点E,交AB于点F;②连结CF,作∠CFB的平分线,交BC于点G .得分评卷人四、几何证明题(本大题满分8分)25. 如图,在梯形ABCD中,AB∥DC,AC平分∠BCD,AE∥BC.求证:四边形AECB是菱形.得分评卷人五、几何证明题(本大题共9分)26. 如图,在等边△DAC和等边△EBC中,AE、BD分别与CD、CE交于点M、N,且A、C、B三点在同一条直线上.求证:(1)AE=BD;(2)CM=CN.得分评卷人六、解答题(本大题共9分)m(x>0)的图象经过A、B两点,且A点的坐标为(2,-4),27. 如图,反比例函数y=x点B的横坐标为4. 请根据图象的信息解答:(1)求反比例函数的解析式;(2)若AB所在的直线的解析式为y=kx+b(k≠0),求出k和b的值.(3)求△ABO的面积.七、(本大题共10分)28. 甲、乙两同学本期十次数学测验成绩如下表:(1)甲同学十次数学测验成绩的众数是;乙同学十次数学测验成绩的中位数是.(2)甲同学本期数学测验成绩的平均分是;乙同学本期数学测验成绩的平均分是;乙同学本期数学测验成绩的极差是.(3)你认为甲、乙两位同学,谁的成绩更稳定?通过计算加以说明.2018年春季八年级期末调考数学试题参考答案一、选择题(本大题共12个小题,每小题3分,共36分)1.C2.B3.A4.D5.D6.B7.D8.A9.C 10.B 11.C 12.C二、填空题(本大题共8个小题,每小题3分,共24分)13. 平行四边形 14. 3.5×10-8 15. 112.5 16.217. -1 18. -2;(2,-3) 19. < 20. y =10-2x (25<x <5) 注:18题第一空1分,第二空2分. 20题的函数关系式1分,x 的取值围2分. 三、解答题(每题6分,共24分)21.(共6分)解:20090 -2)21(--+|-2008 |=1-4+2008 ……………………(每项算对,各给1分)……4分 =2005 …………………………………………………………………2分22.(共6分)解:原式=13)1)(1(122+-+-++-x xx x x x ……………………………………1分 =)1)(1()1)(3()1)(1(122-+--+-++-x x x x x x x x …………………………1分=)1)(1(34122-+-++-x x x x x=)1)(1(22-+-x x x =)1)(1()1(2-+-x x x …………………………1分=12+x ………………………………………………………1分资料.当x =2时,12+x =122+=32 ………………………………………2分 另解:原式=13)1)(1()1(2+-+-+-x x x x x ………………………………………2分 =1311+-++-x x x x ………………………………………………1分 =12+x …………………………………………………………1分 当x =2时,12+x =122+=32 ………………………………………2分 23.(共6分)解:方程两边同乘以(x +3)(x -3),约去分母,得 ……………1分x (x +3)-(x 2-9)=3. ………………………………………2分解这个整式方程,得x =-2. ………………………………………………………………1分检验:把x =-2代入x 2-9,得(-2)2-9≠0,所以,x =-2是原方程的解. ………………………………………………2分24.(共6分)作出了AB 边的垂直平分线给3分;作出了∠CFB 的平分线给3分.注:若未标明字母扣1分.四、几何证明题(本大题满分8分)25. 证明:∵AB ∥DC ,AE ∥BC ,∴四边形ABCD 是平行四边形. …………2分∵AC 平分∠BCD ,∴∠ACB =∠ACE. …………………………………………………………1分又AB ∥CD ,∴∠BAC =∠ACE (两直线平行,错角相等), ……………………1分∴∠ACB =∠BAC (等量代换), …………………………………………1分∴BA =BC (等角对等边), ………………………………………………1分∴四边形ABCE 是菱形(有一组邻边相等的平行四边形是菱形). ……2分注:①若证得AE =EC ,或证得四边相等得菱形参照给分;②未批理由可不扣分.五、几何证明题(本大题共9分)26.(1)(5分)证明:∵△ACD 和△BCE 是等边三角形,∴∠ACD =∠BCE =60°,∴∠ACD +∠DCE =∠BCE +∠DCE ,即∠ACE =∠DCB. …………………2分资料.在△ACE 和△DCB 中,AC =DC ,EC =BC (等边三角形三边相等),∠ACE =∠DCB (已证),∴△ACE ≌△DCB (S.A.S.), ………………………………………………2分∴AE =BD (全等三角形的对应边相等). ………………………………1分(2)(4分)证明:∵△ACE ≌△DCB (已证),∴∠EAC =∠BDC ,即∠MAC =∠NDC. ……………………………………………………1分∵∠ACD =∠BCE =60°(已证),A 、C 、B 三点共线,∴∠ACD +∠BCE +∠DCN =180°,∴∠MCN =60°,即∠ACM =∠DCN =60°. ………………………………………………1分又AC =DC ,∴△ACM ≌△DCN (A.S.A.), …………………………………………1分∴CM =CN. ……………………………………………………………1分六、解答题(本大题共9分)27. 解:(1)(2分)把A 点的坐标(2,-4)代入y =xm 得-4=2m ,m =-8, ∴反比例函数的解析式为y =x 8-(x >0).……2分 注:若解析式未标明x >0,则只给1分.(2)(3分)当x =4时,y =x8-=-2,∴B (4,-2). ………………………………1分 ∵A (2,-4),B (4,-2)在直线y =kx +b 上,∴⎩⎨⎧+=-+=-bk b k 4224 ………………………………………………………………………1分 解之得k =1,b =-6. ………………………………………………………………1分(3)(4分)解一:作辅助线如图,则C (4,-4). …………………………………1分S △ABO =S 正方形ODCE -S △ODA -S △OEB -S △ABC ………………………………………2分=4×4-21×2×4-21×4×2-21×2×2 =16-4-4-2=6. ……………………………………………………………………………1分解二:如图,取AB 中点M ,连结OM ,(或作OM ⊥AB )∵OA =OB =2224+=25,资料.∴OM ⊥AB (或AM =BM ) ………………1分而AB =22BN AN +=2222+=22 …1分 ∴AM =21AB =2 ∴OM =22AM OA -=22)2()52(-=32 ……………………1分∴S △AOB =21AB ·OM =21×22×32=6. …………………………1分 解三:S △ABO =S 矩形ACOD +S 梯ABED -S △AOC -S △BOE ……2分 =2×4+21(2+4)×2-21×4×2-21×4×2 =8+6-4-4=6. ……………………………………2分解四:延长AB 交x 轴、y 轴于M 、N ,则M(6,0),N(0,6).S △AOB =S △MON -S △AOM -S △BON= … =6. 按解一的给分方法给分.七、(本大题共10分)28.(1)、(2)小题每空1分,共5分;(3)小题共5分.(1)98;98.(2)99;99;24.(3)1012=甲S [()()()()()2222299979998999999979998-+-+-+-+- ()()()()()22222999999989910799999998-+-+-+-+-+][]01640141041101+++++++++= 6.776101=⨯= ……………………………………………………………2分 ()()()[]222299110998999108101-+⋯+-+-=乙S []222222222211)2(9)13()1(1)1()3()10(9101+-++-+-++-+-+-+= []121481169111910081101+++++++++= 8.56568101=⨯= …………………………………………………………2分资料. ∵22<乙甲S S ,∴甲的成绩更稳定. ………………………………………………………1分注:①若第(3)小题,不是通过计算而得出正确结论,只给2分;若计算2甲S 正确,2乙S 不正确而得出正确结论共给3分.②此题旨在考查学生计算能力,引起教师对培养学生计算能力的高度重视。