高中数学幂函数的定义练习及答案
高中数学必修一《幂函数》精选习题(含详细解析)

高中数学必修一《幂函数》精选习题(含详细解析)一、选择题1.下列函数中,是幂函数的是( )A.y=2xB.y=2x3C.y=D.y=2x22.若幂函数y=(m2-3m+3)x m-2的图象不过原点,则m的取值范围为( )A.1≤m≤2B.m=1或m=2C.m=2D.m=13.函数y=x-2在区间上的最大值是( )A. B. C.4 D.-44若本题的条件不变,则此函数在区间上的最大值和最小值之和为多少?5.在下列函数中,定义域为R的是( )A.y=B.y=C.y=2xD.y=x-16函数y=|x(n∈N,n>9)的图象可能是( )7下列幂函数在(-∞,0)上为减函数的是( )A.y=B.y=x2C.y=x3D.y=8下列幂函数中过点(0,0),(1,1)且为偶函数的是( )A.y=B.y=x4C.y=x-2D.y=9.在同一坐标系内,函数y=x a(a≠0)和y=ax-的图象可能是( )二、填空题10幂函数f(x)=xα过点,则f(x)的定义域是.11若y=a是幂函数,则该函数的值域是.12若函数f(x)是幂函数,且满足=3,则f的值等于.13.设a=,b=,c=,则a,b,c的大小关系是.14已知幂函数f=(m∈Z)的图象与x轴,y轴都无交点,且关于原点对称,则函数f的解析式是.三、解答题15.比较下列各组数的大小:(1)1.10.1,1.20.1;(2)0.24-0.2,0.25-0.2;(3)0.20.3,0.30.3,0.30.2.16.已知幂函数y=x3-p(p∈N*)的图象关于y轴对称,且在(0,+∞)上为增函数,求满足条件(a+1<(3-2a的实数a的取值范围.17幂函数f的图象经过点(,2),点在幂函数g的图象上,(1)求f,g的解析式.(2)x为何值时f>g,x为何值时f<g?18已知幂函数f(x)=(m2-m-1)·x-5m-3在(0,+∞)上是增函数,又g(x)=lo(a>1).(1)求函数g(x)的解析式.(2)当x∈(t,a)时,g(x)的值域为(1,+∞),试求a与t的值.参考答案与解析1【解析】选C.由幂函数所具有的特征可知,选项A,B,D中x的系数不是1;故只有选项C中y==x-1符合幂函数的特征.2【解析】选D.由题意得解得m=1.3【解析】选C.y=x-2在区间上单调递减,所以x=时,取得最大值为4.4【解析】y=x-2在区间上单调递减,所以x=2时,取得最小值为,当x=时,取得最大值为4.故最大值和最小值的和为.5【解析】选C.选项A中函数的定义域为[0,+∞),选项B,D中函数的定义域均为(-∞,0)∪(0,+∞).6【解析】选C.因为y=|x为偶函数,所以排除选项A,B.又n>9,所以<1.由幂函数在(0,+∞)内幂指数小于1的图象可知,只有选项C符合题意.7【解析】选B.函数y=,y=x3,y=在各自定义域上均是增函数,y=x2在(-∞,0)上是减函数. 8【解析】选B.函数y=x4是过点(0,0),(1,1)的偶函数,故B正确;函数y=x-2不过点(0,0),故C 不正确;函数y=,y=是奇函数,故A,D不正确.9【解析】选C.当a<0时,函数y=ax-在R上是减函数,此时y=x a在(0,+∞)上也是减函数,同时为减的只有D选项,而函数y=ax-与y轴相交于点,此点在y轴的正半轴上,故D选项不适合.当a>0时,函数y=ax-在R上是增函数,与y轴相交于点,此点在y轴的负半轴上,只有A,C适合,此时函数y=x a在(0,+∞)上是增函数,进一步判断只有C适合.10【解析】因为幂函数f(x)过点,所以=2α,所以α=-1,所以f(x)=x-1=,所以函数f(x)的定义域是(-∞,0)∪(0,+∞).答案:(-∞,0)∪(0,+∞)11【解析】由已知y=a是幂函数,得a=1,所以y=,所以y≥0,故该函数的值域为[0,+∞).答案:[0,+∞)3,12【解析】依题意设f(x)=xα,则有=3,得α=log2则f(x)=,于是f====.答案:13【解析】因为y=在x∈(0,+∞)上递增,所以>,即a>c,因为y=在x∈(-∞,+∞)上递减,所以>,即c>b,所以a>c>b.答案:a>c>b14【解析】因为函数的图象与x轴,y轴都无交点,所以m2-1<0,解得-1<m<1;因为图象关于原点对称,且m∈Z,所以m=0,所以f=x-1.答案:f=x-115【解析】(1)由于函数y=x0.1在第一象限内单调递增,又因为1.1<1.2,所以1.10.1<1.20.1.(2)由于函数y=x-0.2在第一象限内单调递减,又因为0.24<0.25,所以0.24-0.2>0.25-0.2.(3)首先比较指数相同的两个数的大小,由于函数y=x0.3在第一象限内单调递增,而0.2<0.3,所以0.20.3<0.30.3.再比较同底数的两个数的大小,由于函数y=0.3x在定义域内单调递减,而0.2<0.3,所以0.30.3<0.30.2.所以0.20.3<0.30.3<0.30.2.16【解析】因为幂函数y=x3-p(p∈N*)的图象关于y轴对称,所以函数y=x3-p是偶函数.又y=x3-p在(0,+∞)上为增函数,所以3-p是偶数且3-p>0.因为p∈N*,所以p=1,所以不等式(a+1<(3-2a化为:(a+1<(3-2a.因为函数y=是[0,+∞)上的增函数,所以⇒⇒-1≤a<,故实数a的取值范围为.17【解析】(1)设f=xα,则()α=2,所以α=2,所以f=x2.设g=xβ,则(-2)β=,所以β=-2,所以g=x-2(x≠0).(2)从图象可知,当x>1或x<-1时,f>g;当-1<x<0或0<x<1时,f<g.18【解析】(1)因为f(x)是幂函数,且在(0,+∞)上是增函数,所以解得m=-1,所以g(x)=loga.(2)由>0可解得x<-1或x>1,所以g(x)的定义域是(-∞,-1)∪(1,+∞).又a>1,x∈(t,a),可得t≥1,设x1,x2∈(1,+∞),且x1<x2,于是x2-x1>0,x1-1>0,x2-1>0,所以-=>0, 所以>.由a>1,有loga >loga,即g(x)在(1,+∞)上是减函数.又g(x)的值域是(1,+∞),所以得g(a)=loga=1,可化为=a, 解得a=1±,因为a>1,所以a=1+,综上,a=1+,t=1.。
高中数学沪教版 1 幂函数的定义与图像 课后练习、课时练习

一、单选题1. 函数的大致图象不可能是()A.B.C.D.2. 函数是幂函数,则a的值为()A.B.C.D.3. 若幂函数的图像经过点,则在定义域内()A.为增函数B.为减函数C.有最小值D.有最大值4. 已知幂函数的图像过点,则()D.0A.B.C.5. 已知函数则函数,则函数的图象大致是()A.B.C.D.6. 下列函数是幂函数的是()A.B.C.D.二、多选题7. 已知幂函数的图像经过中的三个点,则的值可能为()C.3 D.9A.B.8. 已知幂函数的图象过点(2,8),下列说法正确的是()A.函数的图象过原点B.函数是偶函数C.函数是单调减函数D.函数的值域为R三、填空题9. 已知幂函数①,②,③,④,其中图像关于轴对称的是__________(填写全部正确的编号)10. 已知幂函数的图像过,则_____.11. 已知函数为幂函数,且在区间上单调递减,则的值为______.12. 写出同时满足以下三个条件的一个函数_________.①;②③且.四、解答题13. 已知幂函数,求此幂函数的解析式,并指出其定义域.14. 函数是幂函数,且当时,是增函数,求的解析式.15. 已知点在幂函数的图像上,对任意的实数x,定义,其中表示不超过x的最大整数.(1)求的值;(2)求函数的值域.16. 已知幂函数是其定义域上的增函数.(1)求函数的解析式;(2)若函数,,是否存在实数使得的最小值为0?若存在,求出的值;若不存在,说明理由;(3)若函数,是否存在实数,使函数在上的值域为?若存在,求出实数的取值范围;若不存在,说明理由.。
高三数学幂函数试题答案及解析

高三数学幂函数试题答案及解析1.若,则满足的取值范围是 .【答案】【解析】根据幂函数的性质,由于,所以当时,当时,,因此的解集为.【考点】幂函数的性质.2.对于函数f(x)若存在x0∈R,f(x)=x成立,则称x为f(x)的不动点.已知f(x)=ax2+(b+1)x+b-1(a≠0).(1)当a=1,b=-2时,求函数f(x)的不动点;(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围;(3)在(2)的条件下,若y=f(x)图象上A,B两点的横坐标是函数f(x)的不动点,且A,B两点关于直线y=kx+对称,求b的最小值.【答案】(1)-1和3.(2)(0,1)(3)-【解析】解:(1)∵a=1,b=-2时,f(x)=x2-x-3,f(x)=x⇒x2-2x-3=0⇒x=-1,x=3,∴函数f(x)的不动点为-1和3.(2)即f(x)=ax2+(b+1)x+b-1=x有两个不等实根,转化为ax2+bx+b-1=0有两个不等实根,需有判别式大于0恒成立,即Δ=b2-4a(b-1)>0⇒Δ1=(-4a)2-4×4a<0⇒0<a<1,∴a的取值范围为(0,1).(3)设A(x1,x1),B(x2,x2),则x1+x2=-,则A,B中点M的坐标为(,),即M(-,-).∵A,B两点关于直线y=kx+对称,且A,B在直线y=x上,∴k=-1,A,B的中点M在直线y=kx+上.∴-=+⇒b=-=-,利用基本不等式可得当且仅当a=时,b的最小值为-.3.若幂函数y=f(x)的图象经过点,则f(25)=________.【答案】【解析】设f(x)=xα,则=9α,∴α=-,即f(x)=x-,f(25)=4.设α∈{-1,1,,3},则使函数y=xα的定义域为R且为奇函数的所有α值为() A.1,3B.-1,1C.-1,3D.-1,1,3【答案】A【解析】当α=-1时函数定义域为{x|x≠0}.当α=时,定义域是[0,+∞),都不符合条件.当α=1,3时,幂函数定义域为R且为奇函数.故选A.5.幂函数y=f(x)的图像经过点(4,),则f()的值为()A.1B.2C.3D.4【答案】B【解析】设幂函数,由,得.【考点】幂函数6.已知幂函数为偶函数,且在区间上是单调增函数(1)求函数的解析式;(2)设函数,其中.若函数仅在处有极值,求的取值范围.【答案】(1);(2).【解析】(1)根据函数的单调性分析出指数大于零,解不等式可得的取值范围,再利用得,然后根据幂函数为偶函数可得;(2)根据导数求极值,为使方程只有一个根,则必须恒成立,于是根据判别式可求.试题解析:(1)在区间上是单调增函数,即又 4分而时,不是偶函数,时,是偶函数,. 6分(2)显然不是方程的根.为使仅在处有极值,必须恒成立, 8分即有,解不等式,得. 11分这时,是唯一极值. . 12分【考点】1.幂函数;2.函数的单调性;3.导数公式;4.函数的极值.7.已知幂函数为偶函数,且在区间上是单调增函数(1)求函数的解析式;(2)设函数,其中.若函数仅在处有极值,求的取值范围.【答案】(1);(2).【解析】(1)根据函数的单调性分析出指数大于零,解不等式可得的取值范围,再利用得,然后根据幂函数为偶函数可得;(2)根据导数求极值,为使方程只有一个根,则必须恒成立,于是根据判别式可求.试题解析:(1)在区间上是单调增函数,即又 4分而时,不是偶函数,时,是偶函数,. 6分(2)显然不是方程的根.为使仅在处有极值,必须恒成立, 8分即有,解不等式,得. 11分这时,是唯一极值. . 12分【考点】1.幂函数;2.函数的单调性;3.导数公式;4.函数的极值.8.函数是幂函数,且在上为增函数,则实数的值是()A.B.C.D.或【答案】【解析】是幂函数或 . 又上是增函数,所以.【考点】幂函数的概念及性质.9.函数由确定,则方程的实数解有( )A.0个B.1个C.2个D.3个【答案】D【解析】因为,所以.方程为:,化简得,其根有3个,且1不是方程的根.【考点】幂的运算,分式方程的求解.10.下列对函数的性质描述正确的是()A.偶函数,先减后增B.偶函数,先增后减C.奇函数,减函数D.偶函数,减函数【答案】B【解析】是偶函数,图象关于y轴对称,而在(0,+∞)是减函数,所以,在(-∞.0)是增函数,故选B。
幂函数的概念、解析式、定义域、值域-高中数学知识点讲解(含答案)

幂函数的概念、解析式、定义域、值域(北京习题集)(教师版)一.选择题(共5小题)1.(2018秋•丰台区期末)已知幂函数()y f x =的图象经过点1(2,)4,则此幂函数的解析式为( )A .2()f x x -=B .2()f x x =C .()2x f x =D .()2x f x -=2.(2017秋•海淀区期末)若幂函数()y f x =的图象经过点(2,4)-,则在定义域内( ) A .为增函数B .为减函数C .有最小值D .有最大值3.(2018•西城区模拟)如果幂函数()f x x α=的图象经过点1(3,)9,则(α= )A .2-B .2C .12-D .124.(2017秋•昌平区校级月考)若幂函数()f x 的图象经过点(2,4),则1()(2f = )A .4B .2C .12D .145.(2012秋•西城区期末)已知幂函数()y f x =的图象经过点(2,4),则()y f x =的解析式为( )A .2x y =B .2y x =C .yD .2y x =二.填空题(共3小题)6.(2017秋•丰台区期中)已知幂函数的图象经过点1(2,)8,则函数的解析式()f x = .7.(2015秋•昌平区期末)已知函数()a f x x =的图象经过点1(3,)27,那么实数a 的值等于 . 8.(2016秋•东城区校级期中)已知幂函数()y f x =的图象过点1(4,)2,则f (8)= .幂函数的概念、解析式、定义域、值域(北京习题集)(教师版)参考答案与试题解析一.选择题(共5小题)1.(2018秋•丰台区期末)已知幂函数()y f x =的图象经过点1(2,)4,则此幂函数的解析式为( )A .2()f x x -=B .2()f x x =C .()2x f x =D .()2x f x -=【分析】由幂函数()y f x x α==的图象经过点1(2,)4,得到124α=,求出2α=-,由此能求出此幂函数的解析式.【解答】解:幂函数()y f x x α==的图象经过点1(2,)4,124α∴=, 解得2α=-,∴此幂函数的解析式为2()f x x -=.故选:A .【点评】本题考查幂函数的解析式的求法,考查幂函数的性质等基础知识,考查运算求解能力,是基础题. 2.(2017秋•海淀区期末)若幂函数()y f x =的图象经过点(2,4)-,则在定义域内( ) A .为增函数B .为减函数C .有最小值D .有最大值【分析】利用待定系数法求出函数的解析式,结合幂函数的性质进行判断即可. 【解答】解:设幂函数()f x x α=, 由(2)4f -=,得2(2)4(2)α-==-, 在2α=, 即2()f x x =,则在定义域内有最小值0, 故选:C .【点评】本题主要考查幂函数的解析式和性质,利用待定系数法是解决本题的关键. 3.(2018•西城区模拟)如果幂函数()f x x α=的图象经过点1(3,)9,则(α= )A .2-B .2C .12-D .12【分析】把点的坐标代入幂函数()f x 的解析式,解方程求出α的值. 【解答】解:幂函数()f x x α=的图象经过点1(3,)9,则139α=,解得2α=-.故选:A .【点评】本题考查了幂函数的定义与应用问题,是基础题. 4.(2017秋•昌平区校级月考)若幂函数()f x 的图象经过点(2,4),则1()(2f = )A .4B .2C .12D .14【分析】利用待定系数法求出函数()y f x =的解析式, 再计算1()2f 的值.【解答】解:设幂函数()(y f x x αα==为实数), 根据()f x 的图象经点(2,4), 得24α=, 解得2α=,2()f x x ∴=, 11()24f ∴=.故选:D .【点评】本题考查了幂函数的图象与性质的应用问题,是基础题.5.(2012秋•西城区期末)已知幂函数()y f x =的图象经过点(2,4),则()y f x =的解析式为( )A .2x y =B .2y x =C .yD .2y x =【分析】设出幂函数()f x ,将点的坐标代入,即可求出函数的解析式. 【解答】解:()f x 是幂函数,设()f x x α= 图象经过点(2,4)42α∴=2α∴=2()f x x ∴= 故选:B .【点评】本题考查利用待定系数法求知函数模型的解析式. 二.填空题(共3小题)6.(2017秋•丰台区期中)已知幂函数的图象经过点1(2,)8,则函数的解析式()f x = 3x - .【分析】幂函数的一般形式是()f x x α=,再利用图象经过点1(2,)8,得1(2)8f =,可以求出α,问题解决.【解答】解:设幂函数为()f x x α=, 因为图象经过点1(2,)8∴31(2)28f -==,从而3α=-函数的解析式3()f x x -= 故答案为3x -【点评】本题考查了幂函数的概念,属于基础题.值得提醒的是准确把握幂函数的表达式的形式和理解函数图象经过某点的意义是解决本题的关键.7.(2015秋•昌平区期末)已知函数()a f x x =的图象经过点1(3,)27,那么实数a 的值等于 3- . 【分析】据幂函数()a f x x =的图象经过点1(3,)27,结合指数的运算性质,可得答案. 【解答】解::幂函数()a f x x =的图象经过点1(3,)27, 313327a -∴==, 解得:3a =-, 故答案为:3-【点评】本题考查的知识点是幂函数的图象和性质,难度不大,属于基础题.8.(2016秋•东城区校级期中)已知幂函数()y f x =的图象过点1(4,)2,则f (8)=4. 【分析】设幂函数()a f x x =,由图象经过点1(4,)2求出()f x 的解析式,再求f (8)的值.【解答】解:设幂函数()a f x x =,图象经过点1(4,)2,142α∴=, 解得12α=-,12()f x x -∴=;f ∴(8)128-==. 【点评】本题考查了幂函数的图象与性质的应用问题,是基础题.。
高中数学-幂函数测试题及答案详解

-,-,,- 若)()(12N n xx f n n∈=++,则)(x f 是( )与图像的交点坐标为 .y=设,则使幂函数的....“或③已知幂函数的图象经过点则的值等于④已知向量,则向量在向量影是已知函数若关于的方程有三个不相等的实数根,则实数的取值范围是(.幂函数的图象过点,那么函数的单调..,集合且,则实数的取值范围是f(x) =<f为偶函数,且的值,并确定的解析式;在上值域.已知幂函数)求函数设函数其中仅在处有极值,求,四值,则相应,,-,.-,,-过点,为已知函数(...为方程的解,即为方的根,即的零点,因为据零点存在性定理可得的大致区间为则使幂函数为奇函数且在若是幂函数为奇函数;,上单调递增的,;函数”且或③已知幂函数的图象经过点的值等于④已知向量,,则向量在向量方向上的投影是.”对于任意”③由幂函数的图象经过点(),所以,所以幂函数为,所以④向量方向上的投影是,是已知函数若关于的方程的取值范围是(..线的斜率联立解得,分析图像知,>0,再由图像分析知D答案:D幂函数的图象过点,那么函数的单调递增区.因为函数过点,所以,故函数解析式为,单调增区间为:,集合,则实数的取值范围是f(x) =f(x) >1;则<f.所有正确命题的序号是已知函数.的值,并确定)若,求上值域.) .已知幂函数为偶函数,且在区间)求函数)设函数,其中仅在处有极值,求)f(x)=(2,(2,=即=m=1,f(x)=.∴)1≤a<。
高中数学《幂函数》针对练习及答案

第二章 函数2.6.2 幂函数(针对练习)针对练习针对练习一 幂函数的概念1.给出下列函数:①31y x=;①32y x =-;①42y x x =+;①y =①()21y x =-;①0.3x y =,其中是幂函数的有( ) A .1个 B .2个 C .3个 D .4个2.下列函数中,值域是R 的幂函数是( ) A .13y x = B .13xy ⎛⎫= ⎪⎝⎭C .23y x =D .23xy ⎛⎫= ⎪⎝⎭3.下列函数是幂函数的是( ) A .3y x =- B .3y x -=C .32y x = D .32y x =-4.已知幂函数y = f (x )的图像过(36, 6),则此幂函数的解析式是( ) A .13y x = B .3y x =C .12y x =D .2y x5.已知幂函数(1)y k x α=-的图象过点()2,4,则k α+等于( ) A .32B .3C .12D .4针对练习二 幂函数的图像6.下列四个图像中,函数34y x =的图像是( )A .B .C .D .7.如图是幂函数y x α=的部分图象,已知α取12,2,2-,12-这四个值,则与曲线1C ,2C ,3C ,4C 相应的α依次为( )A .2,12,12-,2- B .2-,12-,12,2 C .12-,2,2-,12 D .2,12,2-,12-8.如图,①①①①对应四个幂函数的图像,其中①对应的幂函数是( )A .3y x =B .2y xC .y x =D .y =9.若幂函数()m nf x x = (m ,n ①N *,m ,n 互质)的图像如图所示,则( )A .m ,n 是奇数,且m n<1 B .m 是偶数,n 是奇数,且m n>1 C .m 是偶数,n 是奇数,且m n <1 D .m 是奇数,n 是偶数,且m n>110.下列结论中,正确的是( ) A .幂函数的图象都经过点(0,0),(1,1) B .幂函数的图象可以出现在第四象限C .当幂指数α取1,3,12时,幂函数y =xα是增函数 D .当α=-1时,幂函数y =xα在其整个定义域上是减函数针对练习三 幂函数的定义域11.函数()12ln 1xf x x x =-+的定义域A .()0,∞+B .()1,-+∞C .()0,1D .()()0,11,+∞12.幂函数32y x -=的定义域为( ) A .(0,+∞) B .[0,+∞)C .RD .(-∞,0)①(0,+∞)13.下列幂函数中,定义域为R 的幂函数是( ) A .34y x = B .12y x -= C .6y x -= D .25y x =14.若幂函数()f x 的图象经过点⎛⎝⎭,则()f x 的定义域为( )A .2,2⎛⎝⎭B .()(),00,-∞+∞C .[)0,+∞D .(0,+∞)15.下列函数中,与幂函数12y x -=有相同定义域的是( ) A .2log y x =; B .1y x=C .y x =;D .2x y =.针对练习四 幂函数的值域16.幂函数a y x =中a 的取值集合C 是11,0,,1,2,32⎧⎫-⎨⎬⎩⎭的子集,当幂函数的值域与定义域相同时,集合C 为( ) A .11,0,2⎧⎫-⎨⎬⎩⎭B .1,1,22⎧⎫⎨⎬⎩⎭C .11,,32⎧⎫-⎨⎬⎩⎭D .1,1,2,32⎧⎫⎨⎬⎩⎭17.下列函数中,值域为[0,)+∞的是( ) A .2x y = B .12y x =C .ln y x =D .3y x =18.下列函数中,定义域、值域相同的函数是( ) A .2x y =B .ln y x =C .4y x -=D .12y x -=19.当α①11,,1,2,32⎧⎫-⎨⎬⎩⎭时,函数a y x =的值域为R 的α值有( )A .1个B .2个C .3个D .4个20.以下函数12y x =,2y x ,23y x =,1y x -=中,值域为[0,)+∞的函数共( )个A .1B .2C .3D .4针对练习五 幂函数的单调性21.下列函数中是减函数的为( )A .()2f x x =-B .()3f x x = C.()32⎛⎫= ⎪⎝⎭xf xD .()=f x22.在区间()0,1上单调递减的函数是( )A .3y x =B .y =C .1y x =-D .ln y x =23.已知幂函数()2()5f x x ααα=--在(0,)+∞内单调递增,则α的值为( )A .3B .12C .3或12D .-224.若幂函数223()m m f x x +=在(0,)+∞上是减函数,则实数m 值可以是下列的( ) A .2 B .1 C .1- D .2-25.幂函数()()223169m m f x m m x -+=-+在0,上单调递增,则m 的值为( )A .2B .3C .4D .2或4针对练习六 幂函数的奇偶性26.下列幂函数中,其图像关于y 轴对称且过点()0,0、()1,1的是( ) A .12y x =;B .4y x =;C .2y x ;D .13y x =.27.设10,,2,32α⎧⎫∈⎨⎬⎩⎭,则使幂函数()f x x α=的定义域为R ,且为偶函数的α的值是( ) A .0 B .12 C .2 D .328.下列命题中,不正确的是( ) A .幂函数y =x -1是奇函数 B .幂函数y =x 2是偶函数C .幂函数y =x 既是奇函数又是偶函数D .y =12x 既不是奇函数,又不是偶函数29.使幂函数y x α=为偶函数,且在(0,)+∞上是减函数的α值为( ) A .1- B .23-C .12-D .230.下列幂函数中,定义域为R 且为偶函数是( ) A .2yxB .y x =C .13y x =D .23y x =针对练习七 比较大小与解不等式31.已知 1.13.3a =, 1.14b =,0.93c =,则a ,b ,c 的大小关系为( ) A .c a b << B .c b a << C .b a c << D .b c a <<32.已知0.2log 2a =,0.32b =,0.30.2c =,则( ) A .a c b << B .a b c << C .c a b << D .b c a <<33.已知幂函数12f x x ()=,若()()132f a f a +<-,则实数a 的取值范围是( ) A .[-1,3] B .21,3⎡⎫-⎪⎢⎣⎭C .[-1,0)D .21,3⎛⎤- ⎥⎝⎦34.“()()112212a a +<-”是“122a -<<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件35.已知幂函数()12f x x -=,若()()1102f a f a +<-,则a 的取值范围为( )A .()3,5-B .()5,3-C .()5,3--D .()3,5第二章 函数2.6.2 幂函数(针对练习)针对练习针对练习一 幂函数的概念1.给出下列函数:①31y x=;①32y x =-;①42y x x =+;①y =①()21y x =-;①0.3x y =,其中是幂函数的有( ) A .1个 B .2个 C .3个 D .4个【答案】B 【解析】由幂函数的定义即可判断. 【详解】由幂函数的定义:形如y x α=(α为常数)的函数为幂函数, 则可知①331y x x -==和①53y x =是幂函数. 故选;B.2.下列函数中,值域是R 的幂函数是( ) A .13y x = B .13xy ⎛⎫= ⎪⎝⎭C .23y x =D .23xy ⎛⎫= ⎪⎝⎭【答案】A【分析】根据幂函数的定义与性质,对选项中的函数进行分析、判断即可. 【详解】由题意可得选项B 、D 的函数为指数函数,故排除B 、D ; 对于A :函数13y x ==R ,所以值域为R ,满足条件;对于C :函数23y x ==R ,在第一象限内单调递增,又20x ≥,所以值域为[)0+∞,,不满足条件; 故选:A3.下列函数是幂函数的是( ) A .3y x =- B .3y x -= C .32y x = D .32y x =-【答案】B 【解析】根据幂函数的概念判断各选项中的函数是否为幂函数,由此可得出合适的选项. 【详解】形如a y x =(a 为常数且a R ∈)为幂函数,所以,函数3y x -=为幂函数,函数3y x =-、32y x =、32y x =-均不是幂函数, 故选:B.4.已知幂函数y = f (x )的图像过(36, 6),则此幂函数的解析式是( ) A .13y x = B .3y x =C .12y x =D .2y x【答案】C 【解析】设()a f x x ,代入已知点坐标求解即得. 【详解】由题意设()a f x x ,①366a =,12a =,①12()f x x =.故选:C .5.已知幂函数(1)y k x α=-的图象过点()2,4,则k α+等于( ) A .32B .3C .12D .4【解析】 【分析】根据幂函数解析式的特点可得k 的值,再将点()2,4代入解析式可得α的值,进而可得k α+的值. 【详解】因为(1)y k x α=-是幂函数, 所以11k -=可得:2k =, 因为y x α=的图象过点()2,4, 所以42α=,解得:2α=, 所以4k α+=, 故选:D.针对练习二 幂函数的图像6.下列四个图像中,函数34y x =的图像是( )A .B .C .D .【答案】B 【解析】 【分析】首先判断函数的定义域,再根据幂函数的性质判断即可;解:因为34y x =,即34y x ==30x ≥,解得0x ≥,即函数的定义域为[)0,+∞,故排除A 、C 、D ,且函数在定义域上单调递增,故B 正确; 故选:B7.如图是幂函数y x α=的部分图象,已知α取12,2,2-,12-这四个值,则与曲线1C ,2C ,3C ,4C 相应的α依次为( )A .2,12,12-,2- B .2-,12-,12,2 C .12-,2,2-,12 D .2,12,2-,12-【答案】A 【解析】 【分析】由幂函数的图象性质进行判定. 【详解】因为在直线1x =右侧,指数越大,幂函数的图象越靠上, 所以曲线1C ,2C ,3C ,4C 相应的α依次为2,12,12-,2-. 故选:A.8.如图,①①①①对应四个幂函数的图像,其中①对应的幂函数是( )A .3y x =B .2y xC .y x =D .y =【答案】C 【解析】 【分析】根据常见幂函数的图像即可得出答案. 【详解】解:由图知:①表示y =①表示y x =,①表示2y x ,①表示3y x =.故选:C.9.若幂函数()m nf x x = (m ,n ①N *,m ,n 互质)的图像如图所示,则( )A .m ,n 是奇数,且m n<1 B .m 是偶数,n 是奇数,且m n>1 C .m 是偶数,n 是奇数,且m n <1 D .m 是奇数,n 是偶数,且m n>1 【答案】C 【解析】 【分析】根据幂函数的图像和性质利用排除法求解 【详解】由图知幂函数f (x )为偶函数,且1mn<,排除B ,D ; 当m ,n 是奇数时,幂函数f (x )非偶函数,排除A ; 故选:C.10.下列结论中,正确的是( ) A .幂函数的图象都经过点(0,0),(1,1) B .幂函数的图象可以出现在第四象限C .当幂指数α取1,3,12时,幂函数y =xα是增函数 D .当α=-1时,幂函数y =xα在其整个定义域上是减函数 【答案】C 【解析】 【分析】对于AD ,举例判断,对于BC ,由幂函数的性质判断即可 【详解】当幂指数α=-1时,幂函数y =x -1的图象不经过原点,故A 错误;因为所有的幂函数在区间(0,+∞)上都有定义,且y =xα(α①R )>0,所以幂函数的图象不可能出现在第四象限,故B 当α>0时,y =xα是增函数,故C 正确;当α=-1时,y =x -1在区间(-∞,0),(0,+∞)上是减函数,但在整个定义域上不是减函数,故D 错误. 故选:C.针对练习三 幂函数的定义域11.函数()12ln 1xf x x x =-+的定义域A .()0,∞+B .()1,-+∞C .()0,1D .()()0,11,+∞【答案】A 【解析】解不等式010xx x ⎧>⎪+⎨⎪≥⎩即得函数的定义域. 【详解】由题得010,0100xx x x x x x ⎧><->⎧⎪∴∴>+⎨⎨≥⎩⎪≥⎩或 所以函数的定义域为()0,∞+. 故选A 【点睛】本题主要考查函数的定义域的求法,考查对数函数和幂函数的定义域,意在考查学生对这些知识的理解掌握水平和分析推理能力. 12.幂函数32y x -=的定义域为( ) A .(0,+∞) B .[0,+∞)C .RD .(-∞,0)①(0,+∞)【答案】A 【解析】 【详解】333221y xx -⎛⎫=== ⎪⎝⎭, 所以10x≥,解得0x >,即定义域为()0,∞+,故选A . 13.下列幂函数中,定义域为R 的幂函数是( ) A .34y x = B .12y x -= C .6y x -= D .25y x =【答案】D 【解析】 【分析】利用分数指数式与根式的互化,结合具体函数的定义域的求法逐项分析即可求出结果. 【详解】A 34y x =30x ≥,即0x ≥,所以函数34y x =的定义域为[)0,+∞,故A不符合题意; B 12-==y x0x >,所以函数12y x -=的定义域为()0,∞+,故B 不符合题意; C 661xy x -==,则需要满足0x ≠,所以函数6y x -=的定义域为()(),00,-∞⋃+∞,故C 不符合题意;D 25y x ==25y x =的定义域为R ,故D 正确;故选:D.14.若幂函数()f x 的图象经过点⎛⎝⎭,则()f x 的定义域为( )A .⎛⎝⎭B .()(),00,-∞+∞C .[)0,+∞D .0,【答案】D 【解析】求出幂函数的解析式,()12f x x-==. 【详解】设()f x x α=,已知()f x 的图象经过点2⎛ ⎝⎭1222α-==,12α∴=-,()12f x x -∴==其定义域为0,.故选:D. 【点睛】此题考查幂函数的概念,根据概念求解析式,再求函数定义域,需要注意定义域写成集合或区间形式.15.下列函数中,与幂函数12y x -=有相同定义域的是( )A .2log y x =;B .1y x=;C .y x =;D .2x y =.【答案】A【解析】 【分析】 由题知幂函数12-==y x()0,∞+,再依次讨论各选项即可得答案. 【详解】 解:幂函数12-==y x()0,∞+, 对于A 选项,2log y x =定义域为()0,∞+,故正确; 对于B 选项,1y x=定义域为()(),00,-∞⋃+∞,故错误; 对于C 选项,y x =定义域为R ,故错误; 对于D 选项,2x y =定义域为R ,故错误; 故选:A针对练习四 幂函数的值域16.幂函数a y x =中a 的取值集合C 是11,0,,1,2,32⎧⎫-⎨⎬⎩⎭的子集,当幂函数的值域与定义域相同时,集合C 为( ) A .11,0,2⎧⎫-⎨⎬⎩⎭B .1,1,22⎧⎫⎨⎬⎩C .11,,32⎧⎫-⎨⎬⎩⎭D .1,1,2,32⎧⎫⎨⎬⎩⎭【答案】C 【解析】 【分析】分别求出各幂函数的定义域和值域,得到答案. 【详解】当1a =-时,1y x -=定义域和值域均为()(),00,∞-+∞,符合题意;0a =时,0y x =定义域为()(),00,∞-+∞,值域为{}1,故不合题意;12a =时,y =[)0,∞+,值域为[)0,∞+,符合题意; 1a =时,y x =定义域与值域均为R ,符合题意;2a =时,2yx 定义域为R ,值域为[)0,∞+,不符合题意;3a =时,3y x =定义域与值域均为R ,符合题意.故选:C17.下列函数中,值域为[0,)+∞的是( ) A .2xy =B .12y x =C .ln y x =D .3y x =【答案】B 【解析】 【分析】由题意利用基本初等函数的定义域和值域,得出结论. 【详解】解:由于2x y =的定义域为R ,值域为(0,)+∞,故A 不满足条件; 由于12y x ==[0,)+∞,值域为[0,)+∞,故B 满足条件; 由于ln y x =的定义域为(0,)+∞,值域为R ,故C 不满足条件; 由于3y x =的定义域为R ,值域为R ,故D 不满足条件, 故选:B.18.下列函数中,定义域、值域相同的函数是( ) A .2x y = B .ln y x = C .4y x -=D .12y x -=【答案】D 【解析】分别确定函数的定义域与值域.可得正确选项. 【详解】2x y =的定义域是R ,值域是(0,)+∞,ln y x =的定义域是(0,)+∞,值域是R , 4y x -=的定义域是{|0}x x ≠,值域是(0,)+∞,12y x -=的定义域是{|0}x x >,值域是(0,)+∞,D 中函数的定义域、值域相同. 故选:D .19.当α①11,,1,2,32⎧⎫-⎨⎬⎩⎭时,函数y =xα的值域为R 的α值有( ) A .1个 B .2个C .3个D .4个【答案】B 【解析】 【分析】根据幂函数的性质可得. 【详解】解:11,,1,2,32α⎧⎫∈-⎨⎬⎩⎭,y x α=1y x -∴=的值域为()(),00,-∞⋃+∞;12y x =的值域为[)0,+∞; y x =的值域为R ;2yx 的值域为[)0,+∞;3y x =的值域为R ;所以使函数y x α=满足值域为R 的α有2个; 故选:B 【点睛】本题考查幂函数的性质,属于基础题. 20.以下函数12y x =,2y x ,23y x =,1y x -=中,值域为[0,)+∞的函数共( )个A .1B .2C .3D .4【答案】C 【解析】 【分析】根据四个函数的定义域结合函数的解析式,分别求出四个幂函数的值域即可得答案. 【详解】函数12y x ==[0,)+∞,值域为[0,)+∞; 函数2yx 的定义域为R ,值域为[0,)+∞;函数23y x ==20x ≥,∴函数值域为[0,)+∞;函数331y x x -==,值域为(,0)(0,)-∞+∞. ∴值域为[0,)+∞的函数共3个.故选C. 【点睛】本题考查对幂函数简单性质的考查,即函数的三要素,考查基本运算求解能力.针对练习五 幂函数的单调性21.下列函数中是减函数的为( )A .()2f x x =-B .()3f x x =C .()32⎛⎫= ⎪⎝⎭xf xD .()=f x 【答案】D 【解析】 【分析】根据二次函数、正比例函数、指数函数、幂函数的单调性逐一判断即可. 【详解】A :因为函数()2f x x =-在(,0)-∞上单调递增,所以该函数不是减函数,不符合题意;B :因为函数()3f x x =是增函数,所以不符合题意;C :因为函数()32⎛⎫= ⎪⎝⎭xf x 是增函数,所以不符合题意;D :因为函数()=f x故选:D22.在区间()0,1上单调递减的函数是( )A .3y x =B .y =C .1y x =-D .ln y x =【答案】C 【解析】 【分析】依次判断四个选项的单调性即可. 【详解】A 选项:增函数,错误;B 选项:增函数,错误;C 选项:当01x <<时,1y x =-+,为减函数,正确;D 选项:增函数,错误. 故选:C.23.已知幂函数()2()5f x x ααα=--在(0,)+∞内单调递增,则α的值为( )A .3B .12C .3或12D .-2【答案】A【解析】 【分析】由幂函数的定义及幂函数的图象与性质即可求解. 【详解】解:因为幂函数()2()5f x x ααα=--在(0,)+∞内单调递增,所以2510ααα⎧--=⎨>⎩,解得3α=,故选:A.24.若幂函数223()m m f x x +=在(0,)+∞上是减函数,则实数m 值可以是下列的( ) A .2 B .1 C .1- D .2-【答案】C 【解析】 【分析】根据幂函数的单调性即可得出答案. 【详解】解:因为幂函数223()m m f x x +=在(0,)+∞上是减函数, 所以2230m m +<,解得302m -<<. 故选:C.25.幂函数()()223169m m f x m m x -+=-+在0,上单调递增,则m 的值为( )A .2B .3C .4D .2或4【答案】C 【解析】 【分析】利用幂函数的定义和性质求解即可 【详解】2691m m -+=且2310m m -+>解得4m = 故选:C针对练习六 幂函数的奇偶性26.下列幂函数中,其图像关于y 轴对称且过点()0,0、()1,1的是( ) A .12y x =; B .4y x =; C .2y x ;D .13y x =.【答案】B 【解析】 【分析】根据幂函数的性质,逐项判断,即可得到结果. 【详解】由于函数12y x =的定义域为[)0,∞+,所以函数12y x =图像不关于y 轴对,故A 错误; 由于函数4()y f x x ==的定义域为(),-∞+∞,且()4()()f x x f x =-=-,所以函数4y x =关于y 轴对称,且经过了点()0,0、()1,1,故B 正确; 由于2yx 的定义域为()(),00,∞-+∞,所以函数2yx 不过点()0,0,故C 错误;由于13()y f x x ==的定义域为(),-∞+∞,且1133()()f x xxf x ,所以13y x =图像关于原点中心对称,故D 错误. 故选:B.27.设10,,2,32α⎧⎫∈⎨⎬⎩⎭,则使幂函数()f x x α=的定义域为R ,且为偶函数的α的值是( ) A .0 B .12 C .2 D .3【答案】C 【解析】 【分析】分别对0α=,12,2,3时的幂函数分析判断即可 【详解】当0α=时,()0f x x =,其定义域为{}0x x ≠,所以不合题意, 当12α=时, ()12f x x =,其定义域为{}0x x ≥,所以不合题意,当2α=时,2()f x x =,其定义域为R ,且为偶函数,所以符合题意, 当3α=时,3()f x x =,其定义域为R ,而此函数为奇函数,所以不合题意,故选:C28.下列命题中,不正确的是( ) A .幂函数y =x -1是奇函数 B .幂函数y =x 2是偶函数C .幂函数y =x 既是奇函数又是偶函数D .y =12x 既不是奇函数,又不是偶函数 【答案】C 【解析】 【分析】根据奇偶函数的定义依次判断即可. 【详解】因为11x x-=,11=--x x,所以A 正确;因为22()x x -=,所以B 正确; 因为x x -=不恒成立,所以C 不正确;因为12y x =定义域为[0,+∞),不关于原点对称,所以D 正确. 故选:C. 【点睛】本题主要考查奇偶函数的定义,属于简单题.29.使幂函数y x α=为偶函数,且在(0,)+∞上是减函数的α值为( ) A .1- B .23-C .12-D .2【答案】B 【解析】 【分析】根据幂函数的性质确定正确选项. 【详解】A 选项,1y x=是奇函数,不符合题意. B 选项,y =(0,)+∞上是减函数,符合题意.C 选项,y=.D 选项,2y x ,在()0,∞+上递增,不符合题意.故选:B30.下列幂函数中,定义域为R 且为偶函数是( ) A .2yxB .y x =C .13y x =D .23y x =【答案】D 【解析】 【分析】根据函数解析式,判断函数的定义域,并根据偶函数定义()()f x f x =-,来判断函数是否满足,一一判断即可. 【详解】 对于A ,函数2yx 的定义域为{}|0x x ≠,不符合题意,故A 错误;对于B ,函数y x =为奇函数,不符合,故B 错误; 对于C ,函数13y x =为奇函数,不符合,故C 错误;对于D ,函数23y x =的定义域为R ,满足偶函数定义()()f x f x =-,故D 正确. 故选:D.针对练习七 比较大小与解不等式31.已知 1.13.3a =, 1.14b =,0.93c =,则a ,b ,c 的大小关系为( ) A .c a b << B .c b a <<C .b a c <<D .b c a <<【答案】A 【解析】 【分析】根据指数函数、幂函数的单调性可得三者的大小关系. 【详解】因为 3.3x y =为R 上增函数,0.9y x =在()0,∞+上为增函数, 故 1.10.90.93.3 3.33>>即a c >,因为 1.1y x =在()0,∞+上为增函数,故 1.1 1.13.34<即a b <, 故c a b <<, 故选:A .32.已知0.2log 2a =,0.32b =,0.30.2c =,则( ) A .a c b << B .a b c << C .c a b << D .b c a <<【答案】A 【解析】 【分析】把三个数与“0,1”比较即可. 【详解】因为0.20.2log 2log 10a =<=,0a ∴<,0.30221b =>=,1b ∴>,0.300.21<<,01c ∴<<,所以a c b << 故选: A .33.已知幂函数12f x x ()=,若()()132f a f a +<-,则实数a 的取值范围是( ) A .[-1,3] B .21,3⎡⎫-⎪⎢⎣⎭C .[-1,0)D .21,3⎛⎤- ⎥⎝⎦【答案】B 【解析】 【分析】由题得函数()f x 在定义域[0,)+∞单调递增,解不等式组10320132a a a a +≥⎧⎪-≥⎨⎪+<-⎩即得解.【详解】因为幂函数12f x x ()=,所以函数在定义域[0,)+∞单调递增, 因为()()132f a f a +<-,所以10320,132a a a a +≥⎧⎪-≥⎨⎪+<-⎩解之得213a -≤<. 故选:B 【点睛】本题主要考查幂函数的单调性及其应用,意在考查学生对这些知识的理解掌握水平. 34.“()()112212a a +<-”是“122a -<<”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】A 【解析】 【分析】根据幂函数的单调性求出a 的范围,再根据充分条件和必要条件的定义即可得出答案. 【详解】解:因为12y x =是定义在[)0,∞+上的增函数,又()()112212a a +<-,所以102012a a a a+≥⎧⎪-≥⎨⎪+<-⎩,解得112a -≤<,因为由112a -≤<可推出122a -<<,而由122a -<<无法推出112a -≤<, 故“()()112212a a +<-”是“122a -<<”的充分不必要条件. 故选:A.35.已知幂函数()12f x x -=,若()()1102f a f a +<-,则a 的取值范围为( ) A .()3,5- B .()5,3- C .()5,3-- D .()3,5【答案】D 【解析】 【分析】根据幂函数()12f x x -=的单调性与定义域可解不等式()()1102f a f a +<-.【详解】因为幂函数()12f x x -=的定义域为()0,∞+,且()f x 是定义域上的减函数,所以若()()1102f a f a +<-,则10,1020,1102,a a a a +>⎧⎪->⎨⎪+>-⎩解得35a <<.故选:D.。
高中数学《幂函数》题型战法试题及答案

第二章 函数2.6.1幂函数(题型战法)知识梳理一 幂函数的概念一般地,函数y x α=称为幂函数,其中α为常数.注意:幂函数中底数是自变量,而指数函数中指数为自变量.二 幂函数的图像与性质(1)五个常见幂函数的图像: 如右图所示(2)五个常见幂函数的性质:函数 性质 y =x12y x =y =x 2 y =x 3 1y x -=定义域 R [)0+∞, R R ()(),00,-∞+∞ 值域 R [)0+∞,[)0+∞,R ()(),00,-∞+∞奇偶性奇非奇非偶偶奇奇单调性 R 上增[)0+∞,上增 (-∞,0)上减 [0,+∞)上增R 上增(-∞,0)上减 (0,+∞)上减公共点(1)所有的幂函数在区间()0+∞,上都有定义,因此在第一象限内都有图像,并且图像都过点()1,1.(2)如果0α>,幂函数图像过原点,并且在[)0+∞,上是增函数 (3)如果0α<,幂函数图像过原点,并且在[)0+∞,上是减函数 题型战法题型战法一 幂函数的概念典例1.下列函数是幂函数的是( )A .2y x =B .21y x =-C .3y x =D .2x y =变式1-1.下列函数是幂函数的是( ) A .22y x = B .1y x -=- C .31y x = D .2x y =变式1-2.已知幂函数()y f x =的图象过点()2,8,则()2f -的值为( ) A .8 B .8- C .4 D .4-变式1-3.已知幂函数()22233m m y m m x --=-+的图象不过原点,则实数m 的取值为( )A .1B .2C .-2D .1或2变式1-4.已知幂函数()(,)f x kx k R R αα=∈∈的图象过点1(2,则k α+等于( ) A .12 B .1 C .32D .2题型战法二 幂函数的图像典例2.函数y =的图象大致为( )A .B .C .D .变式2-1.已知幂函数()f x 的图象过点()9,3,则函数()f x 的图象是( )A .B .C .D .变式2-2.如图,①①①①对应四个幂函数的图像,其中①对应的幂函数是( )A .3y x =B .2y xC .y x =D .58y x =变式2-3.图中C 1、C 2、C 3为三个幂函数y x α=在第一象限内的图象,则解析式中指数α的值依次可以是( )A .12、3、1- B .1-、3、12C .12、1-、3D .1-、12、3变式2-4.已知幂函数()f x x α=和()g x x β=,其中0αβ>>,则有下列说法: ①()f x 和()g x 图象都过点()1,1; ①()f x 和()g x 图象都过点(1,1)-;①在区间[1,)+∞上,增长速度更快的是()f x ; ①在区间[1,)+∞上,增长速度更快的是()g x . 则其中正确命题的序号是( ) A .①① B .①①C .①①D .①①题型战法三 幂函数的定义域典例3.下列幂函数中,定义域为R 的是( ) A .1y x -= B .12y x -=C .13y x =D .12y x =变式3-1.若()342x --有意义,则实数x 的取值范围是( ) A .[)2,+∞ B .(],2-∞ C .()2,+∞ D .(),2-∞变式3-2.函数()()()102121f x x x -=-+-的定义域是( ) A .(],1-∞ B .11,,122⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭C .(),1-∞-D .1,12⎛⎫⎪⎝⎭变式3-3.5个幂函数:①2y x ;①45y x =;①54y x =;①23y x =;①45y x -=.其中定义域为R 的是( ) A .只有①① B .只有①① C .只有①① D .只有①①变式3-4.若函数()12f x x -=则函数y =f (4 x -3)的定义域是( )A .(-∞,+∞)B .3,4⎛⎫-∞ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .3,4⎛⎫+∞ ⎪⎝⎭题型战法四 幂函数的值域典例4.函数2y x 在区间1,22⎡⎤⎢⎥⎣⎦上的最小值是( )A .14B .14-C .4D .4-变式4-1.在下列函数中,定义域和值域不同的是( ) A .13y x = B .12y x =C .53y x =D .23y x =变式4-2.幂函数()y f x =的图象过点(,则函数()y x f x =-的值域是( ) A .(),-∞+∞ B .1,4⎛⎫-∞ ⎪⎝⎭C .1,4⎡⎫-+∞⎪⎢⎣⎭D .1,4⎛⎫-+∞ ⎪⎝⎭变式4-3.已知函数f (x )={3x −2,x ⩽1,x 12,1<x ⩽4,则函数()f x 值域是( )A .(],2-∞B .(]2,2-C .(]1,4D .(],4∞-变式4-4.已知幂函数()f x x α=1(2,)2,则函数()f x 的值域为 A .(,0)-∞ B .(0,)+∞C .(,0)(0,)-∞⋃+∞D .(,)-∞+∞题型战法五 幂函数的单调性典例5.下列函数在(0,)+∞上为减函数的是( )A .y =B .1y x=C .2y xD .y x =变式5-1.已知函数()122()43f x x x =-+的增区间为( )A .(3,)+∞B .(2,)+∞C .(,2)-∞D .(,1)-∞变式5-2.已知函数()()()2,16,(1aa x x f x x x ⎧+≤=⎨->⎩)是减函数,则实数a 的取值范围是( )A .[)7,2--B .(),2-∞-C .(),7-∞-D .()7,2--变式5-3.已知幂函数()()22244m m f x m m x -=-+在()0,∞+上是增函数,则实数m 的值为( ) A .1或3- B .3 C .1- D .1-或3变式5-4.已知幂函数()()282mf x m m x =-在()0,∞+上为增函数,则()4f =( )A .2B .4C .6D .8题型战法六 幂函数的奇偶性典例6.下列函数是奇函数的为( ) A .2x y =B .1y x -=C .12log y x= D .2yx变式6-1.下列函数中,值域是[)0,∞+且为偶函数的是( ) A .2y xB .e e x x y -=+C .lg y x =D .23y x =变式6-2.下列函数中,既是奇函数又是定义域内的增函数为( ) A .tan y x = B .2log y x = C .2y x= D .3y x =变式6-3.设1,1,22α⎧⎫∈⎨⎬⎩⎭,使函数y x α=的定义域是R ,且为偶函数的所有α的值是( ) A .2 B .1,2 C .12,2D .12,1,2变式6-4.已知幂函数()()2133a f x a a x +=-+为偶函数,则实数a 的值为( )A .3B .2C .1D .1或2题型战法七 比较大小与解不等式典例7.设0.2 1.20.21.2,0.9,0.3a b c -===,则a ,b ,c 大小关系为( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >>变式7-1.0.20.21210.5,log ,0.43a b c ===,则( )A .a c b >>B .b c a >>C .b a c >>D .c a b >>变式7-2.设120.7a =,120.8b =,31log 2c =,则( ) A .c b a << B .c a b << C .a b c<< D .b a c <<变式7-3.已知1122(52)(1)m m -<-,则m 的取值范围是( ) A .(2,+∞) B .52,2⎛⎤⎥⎝⎦C .(),2-∞ D .[)1,2变式7-4.若1122(1)(32)a a +<-,则实数a 的取值范围是( ) A .31,2⎡⎤-⎢⎥⎣⎦B .21,3⎡⎫-⎪⎢⎣⎭C .2,3⎛⎫-∞ ⎪⎝⎭D .3,2⎛⎤-∞ ⎥⎝⎦第二章 函数2.6.1幂函数(题型战法)知识梳理一 幂函数的概念一般地,函数y x α=称为幂函数,其中α为常数.注意:幂函数中底数是自变量,而指数函数中指数为自变量.二 幂函数的图像与性质(1)五个常见幂函数的图像:如右图所示(2)五个常见幂函数的性质:()0,+∞()0,+∞0)上减∞)上减题型战法题型战法一幂函数的概念典例1.下列函数是幂函数的是()A.2=B.21y x=-y xC.3y=y x=D.2x【答案】C【解析】【分析】由幂函数定义可直接得到结果.【详解】形如y xα=为幂函数.y x=的函数为幂函数,则3故选:C.变式1-1.下列函数是幂函数的是()A .22y x =B .1y x -=-C .31y x =D .2x y =【答案】C 【解析】 【分析】根据幂函数的定义判断. 【详解】形如y x α=(α为常数且R α∈)为幂函数, 所以,函数331=xy x -=为幂函数,函数22y x =、1y x -=-、2x y =均不是幂函数. 故选:C.变式1-2.已知幂函数()y f x =的图象过点()2,8,则()2f -的值为( ) A .8 B .8- C .4 D .4-【答案】B 【解析】 【分析】设()af x x =,由已知条件求出a 的值,可得出函数()f x 的解析式,由此可求得()2f -的值. 【详解】设()a f x x =,由()228a f ==,可得3a =,则()3f x x =,因此,()()3228f -=-=-.故选:B.变式1-3.已知幂函数()22233m m y m m x --=-+的图象不过原点,则实数m 的取值为( )A .1B .2C .-2D .1或2【答案】A 【解析】 【分析】根据题意,可知系数为1,指数应小于0,由此列出不等式组,解得答案. 【详解】由题意可知:2233120m m m m ⎧-+=⎨--<⎩,解得1m = ,经经验,符合题意, 故选:A.变式1-4.已知幂函数()(,)f x kx k R R αα=∈∈的图象过点1(2,则k α+等于( ) A .12 B .1 C .32D .2【答案】A 【解析】 【分析】根据幂函数的定义,结合代入法进行求解即可. 【详解】因为()f x 是幂函数,所以1k =,又因为函数()f x 的图象过点1(2,所以1211()2222ααα-=⇒=⇒=-,因此12k α+=,故选:A题型战法二 幂函数的图像典例2.函数y = )A .B .C .D .【答案】A 【解析】 【分析】根据幂函数的性质判断函数值、增长特点,即可确定大致图象. 【详解】由0y ≥,排除B 、D ,根据对应幂函数的性质,第一象限增速逐渐变慢,排除C. 故选:A.变式2-1.已知幂函数()f x 的图象过点()9,3,则函数()f x 的图象是( )A .B .C .D .【答案】C 【解析】 【分析】设出函数的解析式,根据幂函数()y f x =的图象过点(9,3),构造方程求出指数的值, 【详解】设幂函数的解析式为()f x x α=, ①幂函数()y f x =的图象过点(9,3), ①39α=, 解得12α=①()y f x ==[0,)+∞,且是增函数,当01x <<时,其图象在直线y x =的上方.对照选项可知C 满足题意. 故选:C .变式2-2.如图,①①①①对应四个幂函数的图像,其中①对应的幂函数是( )A .3y x =B .2y xC .y x =D .58y x =【答案】D 【解析】 【分析】根据函数图象求出幂函数的指数取值范围,得到正确答案. 【详解】根据函数图象可得:①对应的幂函数y x α=在[)0,∞+上单调递增,且增长速度越来越慢,故()0,1α∈,故D 选项符合要求. 故选:D变式2-3.图中C 1、C 2、C 3为三个幂函数y x α=在第一象限内的图象,则解析式中指数α的值依次可以是( )A .12、3、1- B .1-、3、12C .12、1-、3D .1-、12、3【答案】D 【解析】 【分析】根据幂函数y x α=在第一象限内的图象性质,结合选项即可得出指数α的可能取值. 【详解】由幂函数y x α=在第一象限内的图象,结合幂函数的性质, 可得:图中C 1对应的0α<,C 2对应的01α<<,C 3对应的1α>, 结合选项知,指数α的值依次可以是11,,32-. 故选:D.变式2-4.已知幂函数()f x x α=和()g x x β=,其中0αβ>>,则有下列说法: ①()f x 和()g x 图象都过点()1,1; ①()f x 和()g x 图象都过点(1,1)-;①在区间[1,)+∞上,增长速度更快的是()f x ; ①在区间[1,)+∞上,增长速度更快的是()g x . 则其中正确命题的序号是( ) A .①① B .①①C .①①D .①①【答案】A 【解析】 【分析】由幂函数的性质进行分析判断即可 【详解】幂函数的图象过定点(1,1),①正确,在区间[1,)+∞上,α越大y x α=增长速度更快,①正确, 故选:A.题型战法三 幂函数的定义域典例3.下列幂函数中,定义域为R 的是( ) A .1y x -= B .12y x -=C .13y x =D .12y x =【答案】C 【解析】 【分析】直接根据幂函数的定义域可直接判断,偶次根式被开方式必须大于等于0才有意义,分式则必须分母不为0 【详解】对选项A ,则有:0x ≠对选项B ,则有:0x > 对选项C ,定义域为:R 对选项D ,则有:0x ≥故答案选:C变式3-1.若()342x --有意义,则实数x 的取值范围是( ) A .[)2,+∞ B .(],2-∞ C .()2,+∞ D .(),2-∞【答案】C 【解析】 【分析】将分式指数幂化为根式,结合根式的性质可得出关于实数x 的不等式,即可解得实数x 的取值范围. 【详解】由负分数指数幂的意义可知,()342x --=所以20x ->,即2x >,因此x 的取值范围是()2,+∞. 故选:C.变式3-2.函数()())10211f x x x -=-+-的定义域是( ) A .(],1-∞ B .11,,122⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭C .(),1-∞-D .1,12⎛⎫⎪⎝⎭【答案】B 【解析】 【分析】根据函数解析式有意义可得出关于实数x 的不等式组,由此可解得函数()f x 的定义域. 【详解】因为()()()()100212121f x x x x -=-+-=-, 则有10210x x ->⎧⎨-≠⎩,解得1x <且12x ≠,因此()f x 的定义域是11,,122⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭.故选:B.变式3-3.5个幂函数:①2y x ;①45y x =;①54y x =;①23y x =;①45y x -=.其中定义域为R 的是( ) A .只有①① B .只有①① C .只有①① D .只有①①【答案】C 【解析】 【分析】分别写出所给函数的定义域,然后作出判断即可. 【详解】 ①2yx 的定义域为(,0)(0,)-∞+∞,①45y x =的定义域为R , ①54y x =的定义域为(0,)+∞, ①23y x =的定义域为R ,①45y x -=的定义域为(,0)(0,)-∞+∞,故选:C . 【点睛】本题考查幂函数的定义,侧重考查对基础知识的理解和掌握,属于基础题.变式3-4.若函数()12f x x -=则函数y =f (4 x -3)的定义域是( )A .(-∞,+∞)B .3,4⎛⎫-∞ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .3,4⎛⎫+∞ ⎪⎝⎭【答案】D 【解析】 【分析】 先求出()43f x -=,根据幂函数的定义域求解即可. 【详解】 幂函数()12f x x-==, ()43y f x =-=所以430x ->,所以34x >,所以函数()43y f x =-的定义域是3,4⎛⎫+∞ ⎪⎝⎭,故选D. 【点睛】本题主要考函数的定义域、不等式的解法,属于简单题.定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2) 对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3) 若已知函数()f x 的定义域为[],a b ,则函数()()f g x 的定义域由不等式()a g x b ≤≤求出.题型战法四 幂函数的值域典例4.函数2y x 在区间1,22⎡⎤⎢⎥⎣⎦上的最小值是( )A .14B .14-C .4D .4-【答案】A 【解析】 【分析】 由于函数2y x 在区间1,22⎡⎤⎢⎥⎣⎦上是减函数,从而可求出其最小值【详解】 ①函数2yx 在区间1,22⎡⎤⎢⎥⎣⎦上是减函数,①2min 124y -==, 故选:A. 【点睛】此题考查由函数的单调性求最值,属于基础题变式4-1.在下列函数中,定义域和值域不同的是( ) A .13y x = B .12y x =C .53y x =D .23y x =【答案】D 【解析】 【分析】把幂函数写成根式的形式即可求出定义域及值域,逐项分析即可得解. 【详解】由13y x ==x ∈R ,y R ∈,定义域、值域相同; 由12y x ==[0,)x ∈+∞,[0,)y ∈+∞,定义域、值域相同; 由53y x ==x ∈R ,,定义域、值域相同y R ∈; 由23y x ==x ∈R ,[0,)y ∈+∞,定义域、值域不相同. 故选:D变式4-2.幂函数()y f x =的图象过点(,则函数()y x f x =-的值域是( ) A .(),-∞+∞ B .1,4⎛⎫-∞ ⎪⎝⎭C .1,4⎡⎫-+∞⎪⎢⎣⎭D .1,4⎛⎫-+∞ ⎪⎝⎭【答案】C 【解析】 【分析】设()af x x =,带点计算可得()12f x x =,得到12y x x =-,令12t x =转化为二次函数的值域求解即可. 【详解】设()af x x =,代入点(得2a =12a ∴=, ()12f x x ∴=则12y x x =-,令12t x =,0t ≥22111244t t t y ⎛⎫=--≥- ⎪⎝⎭∴=-函数()y x f x =-的值域是1,4⎡⎫-+∞⎪⎢⎣⎭. 故选:C.变式4-3.已知函数f (x )={3x −2,x ⩽1,x 12,1<x ⩽4,则函数()f x 值域是( )A .(],2-∞B .(]2,2-C .(]1,4D .(],4∞-【答案】B 【解析】 【分析】结合分段函数的单调性来求得()f x 的值域. 【详解】当1x 吋,32x y =-单调递增,值域为(]2,1-;当14x <时,12y x =单调递增,值域为(]1,2,故函数值域为(]2,2-. 故选:B变式4-4.已知幂函数()f x x α=的图象过点1(2,)2,则函数()f x 的值域为 A .(,0)-∞ B .(0,)+∞ C .(,0)(0,)-∞⋃+∞ D .(,)-∞+∞【答案】C 【解析】 【详解】试题分析:()f x x α=的图象过点1(2,)2()11212a a f x x -∴=∴=-∴=,值域为(,0)(0,)-∞⋃+∞考点:幂函数值域题型战法五 幂函数的单调性典例5.下列函数在(0,)+∞上为减函数的是( )A .y =B .1y x=C .2y xD .y x =【答案】B 【解析】 【分析】依据幂函数的性质去判断各选项的单调性即可解决. 【详解】选项A :由12>可得12y x ==(0,)+∞上单调递增.不符合要求,排除;选项B :由10-<可得11y x x-==在(0,)+∞上单调递减.符合要求,可选;选项C :由20>可得2y x 在(0,)+∞上单调递增.不符合要求,排除;选项D :由10>可得y x =在(0,)+∞上单调递增.不符合要求,排除. 故选:B变式5-1.已知函数()122()43f x x x =-+的增区间为( ) A .(3,)+∞ B .(2,)+∞ C .(,2)-∞ D .(,1)-∞【答案】A 【解析】先求得函数的定义域,再令243t x x =-+,结合12y t =的单调性,利用复合函数的单调性求解. 【详解】 由2430x x -+≥, 解得3x ≥或1x ≤,因为243t x x =-+在(,1]-∞递减,在[3,)+∞递增, 又因为12y t =在[0,)+∞递增, 所以()f x 增区间为(3,)+∞ 故选:A变式5-2.已知函数()()()2,16,(1aa x x f x x x ⎧+≤=⎨->⎩)是减函数,则实数a 的取值范围是( ) A .[)7,2-- B .(),2-∞-C .(),7-∞-D .()7,2--【答案】A 【解析】 【分析】由分段函数()f x 是减函数及幂函数的单调性,可得()2001621a a a a ⎧+<⎪<⎨⎪-≤+⨯⎩,解不等式组即可得答案. 【详解】解:因为函数()()()2,16,(1aa x x f x x x ⎧+≤=⎨->⎩)是减函数,所以()2001621a a a a ⎧+<⎪<⎨⎪-≤+⨯⎩,解得72a -≤<-,所以实数a 的取值范围是[)7,2--, 故选:A.变式5-3.已知幂函数()()22244m m f x m m x -=-+在()0,∞+上是增函数,则实数m 的值为( ) A .1或3- B .3 C .1- D .1-或3【答案】B 【解析】 【分析】由函数是幂函数,解得3m =或1m =,再代入原函数,由函数在()0,∞+上是增函数确定最后的m 值. 【详解】①函数是幂函数,则2441m m -+=,①3m =或1m =.当3m =时()3f x x =在()0,∞+上是增函数,符合题意;当1m =时()1f x x -=在()0,∞+上是减函数,不合题意.故选:B.变式5-4.已知幂函数()()282mf x m m x =-在()0,∞+上为增函数,则()4f =( )A .2B .4C .6D .8【答案】A 【解析】 【分析】由于幂函数在在()0,∞+上为增函数,所以可得282100m m m ⎧--=⎨>⎩,求出m 的值,从而可求出幂函数的解析式,进而可求得答案 【详解】由题意得282100m m m ⎧--=⎨>⎩,得12m =,则()12f x x =,()42f =. 故选:A题型战法六 幂函数的奇偶性典例6.下列函数是奇函数的为( )A .2x y =B .1y x -=C .12log y x =D .2y x【答案】B【解析】【分析】奇函数应该满足()()f x f x =--,且定义域关于原点对称,对选项一一判断即可.【详解】奇函数应该满足()()f x f x =--,22x x -≠-,12log y x=的定义域为()0,∞+显然A,C,不成立,当0x ≠时,有()11x x --=--,所以1y x -=为奇函数,由()22x x -=可知,2y x 为偶函数. 故选:B .变式6-1.下列函数中,值域是[)0,∞+且为偶函数的是( )A .2y xB .e e x x y -=+C .lg y x =D .23y x = 【答案】D【解析】【分析】根据函数的奇偶性和值域确定正确选项.【详解】2y x 的值域为()0,∞+,不符合题意,A 选项错误.e e 2x x y -=≥+,当0x =时等号成立,不符合题意,B 选项错误. lg y x =的定义域为()0,∞+,是非奇非偶函数,不符合题意,C 选项错误. 令()23f x x =,其定义域为R ,()()()2233f x x x f x =-=-=,所以()f x 是偶函数, 且230x ≥,即()f x 的值域为[)0,∞+,符合题意,D 选项正确.故选:D变式6-2.下列函数中,既是奇函数又是定义域内的增函数为( ) A .tan y x =B .2log y x =C .2y x =D .3y x = 【答案】D【解析】【分析】根据初等函数的性质及奇函数的定义结合反例逐项判断后可得正确的选项.【详解】对于A ,tan y x =的定义域为|,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭,而233ππ>,但2tan tan 33ππ==,故tan y x =在定义域上不是增函数,故A 错误.对于B ,2log y x =的定义域为()0,+∞,它不关于原点对称,故该函数不是奇函数, 故B 错误.对于C ,因为21>时,2221<,故2y x=在定义域上不是增函数,故C 错误. 对于D ,因为3y x =为幂函数且幂指数为3,故其定义域为R ,且为增函数, 而()33-=-x x ,故3y x =为奇函数,符合.故选:D.变式6-3.设1,1,22α⎧⎫∈⎨⎬⎩⎭,使函数y x α=的定义域是R ,且为偶函数的所有α的值是( )A .2B .1,2C .12,2D .12,1,2 【答案】A【解析】【分析】 把1,1,22α=分别代入验证即可.【详解】当12α=时,y x α==[)0,∞+,故12α≠;当1α=时,y x x α==,定义域为R ,但是为奇函数,故1α≠;当2α=时,2y x x α==,定义域为R ,为偶函数,故2α=.故选:A变式6-4.已知幂函数()()2133a f x a a x +=-+为偶函数,则实数a 的值为( ) A .3B .2C .1D .1或2【答案】C【解析】【分析】 由题意利用幂函数的定义和性质,得出结论.【详解】幂函数()()2133a f x a a x +=-+为偶函数,2331a a ∴-+=,且1a +为偶数,则实数1a =,故选:C题型战法七 比较大小与解不等式典例7.设0.2 1.20.21.2,0.9,0.3a b c -===,则a ,b ,c 大小关系为( ) A .a b c >>B .a c b >>C .c a b >>D .c b a >>【答案】C【解析】【分析】利用有理指数幂和幂函数的单调性分别求得a ,b ,c 的范围即可得答案.【详解】200. 1.211.2a >==, 1.200.90.91b =<=, b a ∴<,又0.2y x =在(0,)+∞上单调递增,0.20.20.2101 1.20.3()3a -∴<=<=,b ac ∴<<,变式7-1.0.20.21210.5,log ,0.43a b c ===,则( )A .a c b >>B .b c a >>C .b a c >>D .c a b >>【答案】C【解析】【分析】 利用幂函数的单调性判断a b >,再利用对数函数的单调性、对数的换底公式即可求解.【详解】幂函数0.2y x =在(0,)+∞上单调递增, 00.20.20.50.50.4∴>>,1a c ∴>>, 1221log log 313b ==>, b ac ∴>>,故选:C .变式7-2.设120.7a =,120.8b =,31log 2c =,则( ) A .c b a <<B .c a b <<C .a b c <<D .b a c << 【答案】B【解析】【分析】根据函数单调性和中间值比较函数值大小.【详解】因为12y x =在[)0,∞+上单调递增,0.70.8<,所以121200780..b a <=<=,而331log log 102c =<=,故c a b <<. 故选:B变式7-3.已知1122(52)(1)m m -<-,则m 的取值范围是( ) A .(2,+∞)B .52,2⎛⎤ ⎥⎝⎦C .(),2-∞D .[)1,2【答案】B由幂函数的性质,可得0521m m ≤-<-,解不等式组可得答案【详解】 解:因为1122(52)(1)m m -<-, 所以0521m m ≤-<-, 解得522m <≤,故选:B变式7-4.若1122(1)(32)a a +<-,则实数a 的取值范围是( ) A .31,2⎡⎤-⎢⎥⎣⎦ B .21,3⎡⎫-⎪⎢⎣⎭ C .2,3⎛⎫-∞ ⎪⎝⎭ D .3,2⎛⎤-∞ ⎥⎝⎦ 【答案】B【解析】首先利用幂函数的单调性得到10320132a a a a +≥⎧⎪-≥⎨⎪+<-⎩,再解不等式组即可. 【详解】 因为1122(1)(32)a a +<-,所以10320132a a a a +≥⎧⎪-≥⎨⎪<-⎩,解得213a -≤<. 故选:B。
高中数学幂函数练习题(附答案)

高中数学幂函数练习题(附答案)
高中数学幂函数练习题(附答案)数学必修1(苏教版)
2.4 幂函数
我们已经学习了指数函数,它是底数为常数,指数为自变量的函数,这与我们初中学习过的一些函数(如y=x,y=x2,y=x-1等)“底数为自变量,指数为常数”是否为同一类型,性质是否有区别?”
基础巩固
1.下列函数中,既是偶函数,又在区间(0,+)上单调递减的函数是()
A.y=x-2 B.y=x-1
C.y=x2 D.y=
答案:A
2.
右图所示的是函数y= (m,nN*且m,n互质)的图象,则() A.m,n是奇数且mn1
B.m是偶数,n是奇数,且mn1
C.m是偶数,n是奇数,且mn1
D.m,n是偶数,且mn1
解析:由图象知y=为偶函数,且m、n互质,m是偶数,n 是奇数,又由y=与y=x图象的位置知mn1.
答案:C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学幂函数的定义练习及答案题型一:幂函数的定义【例1】 下列所给出的函数中,是幂函数的是( )A .3x y -=B .3-=x yC .32x y =D .13-=x y【考点】幂函数的定义 【难度】1星【题型】选择【关键词】无【解析】 形如(01)x y a a a =>≠且的函数叫做幂函数,答案为B .【答案】B【例2】 11.函数的定义域是 .【考点】幂函数的定义 【难度】1星【题型】填空【关键词】无 【解析】【答案】【例3】 如果幂函数()f x x α=的图象经过点,则(4)f 的值等于( ). A. 16 B. 2 C. 116 D. 12【考点】幂函数的定义 【难度】1星 【题型】选择 【关键词】无 【解析】 【答案】D【例4】 幂函数()y f x =的图象过点1(4,)2,则(8)f 的值为 .【考点】幂函数的定义 【难度】1星 【题型】填空 【关键词】无 【解析】典例分析【例5】 下列幂函数中过点(0,0),(1,1)的偶函数是( ).A.12y x = B. 4y x = C. 2y x -= D.13y x =【考点】幂函数的定义 【难度】1星【题型】选择【关键词】无 【解析】 【答案】B【例6】 下列命题中正确的是( )A .当0=α时函数αx y =的图象是一条直线B .幂函数的图象都经过(0,0)和(1,1)点C .若幂函数αx y =是奇函数,则αx y =是定义域上的增函数D .幂函数的图象不可能出现在第四象限【考点】幂函数的定义 【难度】2星 【题型】选择【关键词】无【解析】 A 错,当0α=时函数y x α=的图象是一条直线(去掉点(0,1));B 错,如幂函数1y x -=的图象不过点(0,0);C 错,如幂函数1y x -=在定义域上不是增函数;D 正确,当0x >时,0x α>.【答案】D【例7】 函数2221(1)mm y m m x --=--是幂函数,求m 的值.【考点】幂函数的定义 【难度】2星 【题型】解答【关键词】无 【解析】 幂函数需要保证系数为1,同时指数为有理数,从此两个条件入手,可以得到关于m 的等式和不等式,从而解出m 的值. ∵2221(1)mm y m m x --=--是幂函数,∴函数可以写成如下形式a y x =(a 是有理数) ∴211m m --=,解得121,2m m =-= 当11m =-时,211212m m Q --=∈22m =时,222211m m Q --=-∈∴m 的值域为-1或2.【点评】本题为幂函数的基本题目,注意不要忘了检验a 是有理数. 【答案】-1或2【例8】 求函数1302(3)y x x x -=+--的定义域.【考点】幂函数的定义 【难度】2星 【题型】解答 【关键词】无 【解析】 这是几个幂函数的复合函数,求复合函数的定义域需要保证每一个函数都有意义,即分母不为0、被开方数大于等于0.使函数有意义,则x 必须满足0030x x x ≥⎧⎪≠⎨⎪-≠⎩,解得:0x >且3x ≠即函数的定义域为{|0,3}x x x >≠且.【答案】{|0,3}x x x >≠且【例9】 函数1224(42)(1)y mx x m m mx -=++++-+的定义域是全体实数,则实数m 的取值范围是( ).A.12),B.1)+,∞ C.(22)-,D.(11--+ 【考点】幂函数的定义【难度】2星【题型】选择【关键词】无【解析】 要使函数1224(42)(1)y mx x m m mx -=++++-+的定义域是全体实数,可转化为2420mx x m +++>对一切实数都成立,即0m >且244(2)0m m ∆=-+<.解得1m >.故选(B) 【答案】B【例10】 讨论幂函数a y x =(a 为有理数)的定义域. 【考点】幂函数的定义 【难度】2星【题型】解答【关键词】无【解析】 (1)若*a N ∈,则x ∈R ,这是函数的定义域为R .(2)若a ∈{负整数} {0}U ,则(,0)(0,)x ∈-∞+∞U ,这时函数的定义域是(,0)(0,)-∞+∞U (3)若na m=*(,,,)m n N m n ∈且互质,则: ①m 是偶数,x R -∈,这是函数的定义域是R -; ②m 是奇数,x R ∈,这时函数的定义域为R(4)若na m=-*(,,,)m n N m n ∈且互质,则:①m 是偶数,x R +∈,这是函数的定义域是R +;②m 是奇数,(,0)(0,)x ∈-∞⋃+∞,这时函数的定义域是(,0)(0,)-∞⋃+∞.【答案】(1)若*a N ∈,则x ∈R ,这是函数的定义域为R .(2)若a ∈{负整数} {0}U ,则(,0)(0,)x ∈-∞+∞U ,这时函数的定义域是(,0)(0,)-∞+∞U(3)若na m=*(,,,)m n N m n ∈且互质,则: ①m 是偶数,x R -∈,这是函数的定义域是R -; ②m 是奇数,x R ∈,这时函数的定义域为R(4)若na m=-*(,,,)m n N m n ∈且互质,则:①m 是偶数,x R +∈,这是函数的定义域是R +;②m 是奇数,(,0)(0,)x ∈-∞⋃+∞,这时函数的定义域是(,0)(0,)-∞⋃+∞.【例11】 已知幂函数6()m y x m Z -=∈与2()m y x m Z -=∈的图象都与x 、y 轴都没有公共点,且2()m y x m Z -=∈的图象关于y 轴对称,求m 的值.【考点】幂函数的定义 【难度】2星 【题型】解答【关键词】无【解析】 ∵ 幂函数图象与x 、y 轴都没有公共点,∴ 6020m m -<⎧⎨-<⎩,解得26m <<.又 ∵ 2()m y x m Z -=∈的图象关于y 轴对称, ∴ 2m -为偶数,即得4m =.【答案】4m =【例12】 幂函数273235()(1)t t f x t t x +-=-+是偶函数,且在(0,)+∞上为增函数,求函数解析式.【考点】幂函数的定义 【难度】2星【题型】解答【关键词】无【解析】 ∵ ()f x 是幂函数, ∴ 311t t -+=,解得1,10t =-或.当0t =时,75()f x x =是奇函数,不合题意;当1t =-时;25()f x x =是偶函数,在(0,)+∞上为增函数; 当1t =时;85()f x x =是偶函数,在(0,)+∞上为增函数. 所以,25()f x x =或85()f x x =.【答案】25()f x x =或85()f x x =.【例13】 已知幂函数223()()mm f x x m Z --=∈ 的图形与x 轴对称,y 轴无交点,且关于y 轴对称,试确定的解析式.【考点】幂函数的定义 【难度】2星【题型】解答【关键词】无【解析】 由()22230232m m m m n n N m Z ⎧--≤⎪--∈∈⎨⎪∈⎩得113m =-,, 1m =-和3时解析式为()0f x x =,1m =是解析式为()4f x x -=【答案】()4f x x -=题型二:幂函数的性质与应用【例14】 下列函数在区间(0,3)上是增函数的是( ).A. 1y x =B. 12y x = C. 1()3x y = D. 2215y x x =--【考点】幂函数的性质与应用 【难度】1星 【题型】选择【关键词】无 【解析】 【答案】B【例15】 下列函数中既是偶函数又是(,0)-∞上是增函数的是( )A .43y x = B .32y x = C .2y x -= D .14y x-=【考点】幂函数的性质与应用 【难度】1星 【题型】选择 【关键词】无 【解析】 A 、D 中的函数为偶函数,但A 中函数在(,0)-∞为减函数.【答案】C【例16】 942--=a ax y 是偶函数,且在),0(+∞是减函数,则整数a 的值是 .【考点】幂函数的性质与应用 【难度】1星【题型】填空【关键词】无 【解析】【答案】5;【例17】 比较下列各组中两个值大小(1)6110.6与6110.7(2)5533(0.88)(0.89).--与【考点】幂函数的性质与应用 【难度】1星 【题型】解答【关键词】无【解析】 (1)∵函数611y x =在(0,)+∞上是增函数且00.60.7<<<+∞∴6611110.60.7<(2)函数53y x =在(0,)+∞上增函数且89.088.00<< ∵55330.880.89<∴55330.880.89->-,即5533(0.88)(0.89).-<-【答案】(1)6611110.60.7<(2)5533(0.88)(0.89).-<-【例18】 幂函数(1)knmy x-=(,,*,,m n k N m n ∈互质)图象在一、二象限,不过原点,则n m k ,,的奇偶性为 .【考点】幂函数的性质与应用 【难度】2星 【题型】填空【关键词】无 【解析】【答案】k m ,为奇数,n 是偶数;【例19】 求证:函数3x y =在R 上为奇函数且为增函数. 【考点】幂函数的性质与应用 【难度】2星【题型】解答【关键词】无 【解析】【答案】显然)()()(33x f x x x f -=-=-=-,奇函数;令21x x <,则))(()()(22212121323121x x x x x x x x x f x f ++-=-=-, 其中,显然021<-x x ,222121x x x x ++=2222143)21(x x x ++,由于0)21(221≥+x x ,04322≥x ,且不能同时为0,否则021==x x ,故043)21(22221>++x x x .从而0)()(21<-x f x f . 所以该函数为增函数.【例20】 设120.7a =,120.8b =,c 3log 0.7=,则( ).A. c <b <aB. c <a <bC. a <b <cD. b <a <c 【考点】幂函数的性质与应用 【难度】2星 【题型】选择 【关键词】无 【解析】 【答案】B【例21】 比较下列各组数的大小: 32(2)a + 32a ; 223(5)a -+ 235-; 0.50.4 0.40.5.【考点】幂函数的性质与应用 【难度】2星 【题型】填空【关键词】无 【解析】【答案】>,≤, <,【例22】 (1)若0a <,比较12,(),0.22aa a 的大小;(2)若10a -<<,比较1333,,a a a 的大小.【考点】幂函数的性质与应用 【难度】2星 【题型】解答 【关键词】无 【解析】 (1)当0a <时,幂函数a y x =在(0,)+∞上单调减,∵10.222<<,∴12()0.22a a a <<. (2)当10a -<<时,13330,0,0aa a ><<, 指数函数()x y a =-在(0,)+∞上单调减,∵133>,∴1330()()a a <-<-,∴ 1330a a >>, ∴ 1333a a a >>【答案】(1)12()0.22aa a <<(2)1333a a a >>【例23】 函数2-=x y 在区间]2,21[上的最大值是( )A .41 B .1- C .4D .4-【考点】幂函数的性质与应用 【难度】1星 【题型】选择 【关键词】无【解析】 函数2y x -=在区间1[,2]2上单调减,当12x =时,max 4y =.【答案】C【例24】 函数2422-+=x x y 的单调递减区间是【考点】幂函数的性质与应用 【难度】2星【题型】填空【关键词】无【解析】 由22240x x +-≥得:46x x ≥≤-或,∵ 函数12y t =在[0,)+∞上为增函数,函数2224t x x =+-在(,6]-∞上为减函数,故所给函数的单调减区间为(,6]-∞-.【答案】(,6]-∞-【例25】 函数R x x x y ∈=|,|,满足( )A .是奇函数又是减函数B .是偶函数又是增函数C .是奇函数又是增函数D .是偶函数又是减函数【考点】幂函数的性质与应用 【难度】2星【题型】选择【关键词】无 【解析】【答案】C【例26】 已知幂函数()y f x =的图象过点(27,3),试讨论其单调性. 【考点】幂函数的性质与应用 【难度】2星【题型】解答【关键词】无【解析】 设y x α=,代入点(27,3),得327α=,解得13α=, 所以13y x =,在R 上单调递增.【答案】R 上单调递增【例27】 对于幂函数54)(x x f =,若210x x <<,则)2(21x x f +,2)()(21x f x f +大小关系是( ) A .)2(21x x f +>2)()(21x f x f + B . )2(21x x f +<2)()(21x f x f + C . )2(21x x f +=2)()(21x f x f + D . 无法确定 【考点】幂函数的性质与应用【难度】2星【题型】选择【关键词】无 【解析】【答案】A【例28】 已知0<a <1,试比较()(),,aa a a a a a a 的大小.【考点】幂函数的性质与应用 【难度】2星 【题型】解答 【关键词】无 【解析】 本题考查的是幂函数的单调性知识,这里三个表达式的底数和幂都分别不同,所以需要转化看待,将它们化成同类幂函数进行比较.为比较a a 与()a a a 的大小,将它们看成指数相同的两个幂,由于幂函数()()01a f x x a =<<在区间[0,]+∞上是增函数,因此只须比较底数a 与a a 的大小,由于指数函数x y a = (0<a <1)为减函数,且1>a ,所以a a a <,从而()a a a a a <.比较a a 与()aa a 的大小,也可以将它们看成底数相同(都是a α)的两个幂,于是可以利用指数函数 (),01x a yb b a a ==<<是减函数,由于1>a ,得到a a a <.由于a a a <,函数x y a = (0<a <1)是减函数,因此()aa a a a >.综上,()()aa a a a a a a >>【点评】解答本题的关键都在于适当地选取一个函数,函数选得恰当,问题可以顺利地获得解决..【答案】()()aa a a a a a a >>【例29】 已知1133(1)(32)a a --+<-,求a 的取值范围.【考点】幂函数的性质与应用 【难度】2星 【题型】解答【关键词】无【解析】 13()f x x -=在(,0)-∞、(0,)+∞上是减函数,对于不同的a +1和3-2a 进行讨论,将它们等价转化到同一个单调区间..∵13(1)a -+和13(32)a --是幂函数13()f x x -=的两个函数值, 且13()f x x -=在(,0)-∞、(0,)+∞上是减函数当10,320a a +>->时,有1320a a +>->,解得2332a <<; 当10,320a a +<-<时,有3210a a -<+<,此时无解当(1)(32)0a a +-<时,有10a +<且320a ->,解得1a <-综上可知a的取值范围为23 (,1)(,)32 -∞-⋃.【答案】23(,1)(,)32-∞-⋃.【例30】若11(1)(32)m m--+<-,试求实数m的取值范围.【考点】幂函数的性质与应用【难度】2星【题型】解答【关键词】无【解析】(分类讨论):(1)10320132mmm m+>⎧⎪->⎨⎪+>-⎩,,,解得2332dm<<;(2)10320132mmm m+<⎧⎪-<⎨⎪+>-⎩,,,此时无解;(3)10320mm+<⎧⎨->⎩,,,解得1m<-.综上可得23(1)32m⎛⎫∈-- ⎪⎝⎭U,,∞.【答案】23(1)32m⎛⎫∈-- ⎪⎝⎭U,,∞【例31】若33(1)(32)m m+<-,试求实数m的取值范围.【考点】幂函数的性质与应用【难度】2星【题型】解答【关键词】无【解析】(利用单调性):由于函数3y x=在()-+,∞∞上单调递增,所以132m m+<-,解得23m<.【答案】23m<【例32】若1122(1)(32)m m+<-,试求实数m的取值范围.【考点】幂函数的性质与应用【难度】2星【题型】解答【关键词】无【解析】由图3,10320321mmm m+⎧⎪->⎨⎪->+⎩,,,,解得213m-<≤.【答案】213m-<≤【例33】若44(1)(32)m m+<-,试求实数m的取值范围.【考点】幂函数的性质与应用【难度】2星【题型】解答【关键词】无【解析】作出幂函数4y x=的图象如图4.由图象知此函数在(0)(0)-+U,,∞∞上不具有单调性,若分类讨论步骤较繁,把问题转化到一个单调区间上是关键.考虑4α=时,44x x=.于是有44(1)(32)m m+<-,即44132m m+<-..又∵幂函数4y x=在(0)+,∞上单调递增,∴132m m+<-,解得23m<,或m>4.【答案】23m<,或m>4【例34】已知函数2()f x x=,设函数()[()](21)()1g x qf f x q f x=-+-+,问是否存在实数(0)q q<,使得()g x在区间(]4--,∞是减函数,且在区间(40)-,上是增函数?若存在,请求出来;若不存在,请说明理由.【考点】幂函数的性质与应用【难度】3星【题型】解答【关键词】无【解析】∵2()f x x=,则42()(21)1g x qx q x=-+-+.假设存在实数(0)q q<,使得()g x满足题设条件,设12x x<,则4242121122()()(21)(21)g x g x qx q x qx q x-=-+-+--22122112()()[()(21)]x x x x q x x q =+-+--.若(]124x x ∈--,,∞,易知120x x +<,210x x ->,要使()g x 在(]4--,∞上是减函数,则应有2212()(21)0q x x q +--<恒成立.∵14x <-,24x -≤,∴221232x x +>.而0q <, ∴2212()32q x x q +<.. 从而要使2212()21q x x q +<-恒成立,则有2132q q -≥,即130q -≤. 若12(40)x x ∈-,,,易知1221()()0x x x x +-<,要使()f x 在(40)-,上是增函数,则应有2212()(21)0q x x q +-->恒成立.∵140x -<<,240x -<<,∴221232x x +<,而0q <,∴2212()32q x x q +>. 要使2212()21q x x q +>-恒成立,则必有2132q q -≤,即130q -≥. 综上可知,存在实数130q =-,使得()g x 在(]4-∞-,上是减函数,且在(40)-,上是增函数.【答案】存在,130q =-【例35】 由于对某种商品开始收税,使其定价比原定价上涨x 成(即上涨率为10x),涨价后,商品卖出个数减少bx 成,税率是新定价的a 成,这里a,b 均为正常数,且a <10,设售货款扣除税款后,剩余y 元,要使y 最大,求x 的值.【考点】幂函数的性质与应用 【难度】3星【题型】解答【关键词】无【解析】 设原定价A 元,卖出B 个,则现在定价为A (110x+), 现在卖出个数为110bx B ⎛⎫- ⎪⎝⎭,现在售货金额为111110101010x bx x bx A B AB ⎛⎫⎛⎫⎛⎫⎛⎫+-=+- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,应交税款为11101010x bx a AB ⎛⎫⎛⎫+-⋅ ⎪⎪⎝⎭⎝⎭,剩余款为21111111010101010010x bx a a b b y AB AB x x -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-⋅-=--++ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 所以5(1)b x b -=时y 最大 要使y 最大,x 的值为5(1)b x b-=.【答案】5(1)b x b-=题型三:幂函数的图像【例36】 函数3x y =和31x y =图象满足( )A .关于原点对称B .关于x 轴对称C .关于y 轴对称D .关于直线x y =对称【考点】幂函数的图像 【难度】1星【题型】选择【关键词】无 【解析】【答案】D【例37】 函数43y x =的图象是( )【考点】幂函数的图像 【难度】1星【题型】选择【关键词】无 【解析】 【答案】A【例38】 幂函数m y x =与n y x =在第一象限内的图象如图所示,则( ).A .101n m -<<<<B .1,01n m <-<<C .10,1n m -<<>D .1,1n m <-> 【考点】幂函数的图像 【难度】2星 【题型】选择 【关键词】无 【解析】 由幂函数图象在第一象限内的分布规律,观察第一象限内直线1x =的右侧,图象由下至上,依次是n y x =,1y x -=,0y x =,m y x =,1y x =,所以有101n m <-<<<. 选B.点评:观察第一象限内直线1x =的右侧,结合所记忆的分布规律. 注意比较两个隐含的图象1y x =与0y x =.【答案】B.【例39】 【答案】如图1—9所示,幂函数αx y =在第一象限的图象,比较1,,,,,04321αααα的大小( )A .102431<<<<<ααααB .104321<<<<<ααααC .134210αααα<<<<<D .142310αααα<<<<<【考点】幂函数的图像 【难度】2星【题型】选择【关键词】无 【解析】 【答案】D【例40】 下图为幂函数y x α=在第一象限的图象,则1234,,,αααα按由小到大的顺序排列为 。