20102018江苏高考解析几何汇编(文)
2018各地高考数学文科分类汇编_解析几何

(全国1卷4)答案:(全国1卷15)答案:(全国1卷20)答案:(全国2卷6)双曲线22221(0,0)x y a b a b-=>>A .y =B .y =C .y =D .y x = 答案:A(全国2卷11)已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .1B .2CD 1-答案:D(全国2卷20)设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.答案:(1)由题意得F (1,0),l 的方程为y =k (x –1)(k >0).设A (x 1,y 1),B (x 2,y 2).由2(1)4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++=. 216160k ∆=+=,故212224k x x k ++=. 所以212244(1)(1)k AB AF BF x x k +=+=+++=.由题设知22448k k+=,解得k =–1(舍去),k =1. 因此l 的方程为y =x –1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+.设所求圆的圆心坐标为(x 0,y 0),则00220005(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩,解得0032x y =⎧⎨=⎩,或00116.x y =⎧⎨=-⎩, 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.(全国3卷8)答案:A(全国3卷10)答案:D(全国3卷20)答案:(北京卷10)已知直线l过点(1,0)且垂直于ε,若l被抛物线截得的线段长为4,则抛物线的焦点坐标为________.答案:(1,0)(北京卷12)答案:4(北京卷20)已知椭圆的离心率为,焦距2.斜率为k的直线l与椭圆M有两个不同的交点A,B.(Ⅰ)求椭圆M的方程;(Ⅱ)若,求的最大值;(Ⅲ)设,直线PA与椭圆M的另一个交点C,直线PB与椭圆M的另一个交点D.若C,D和点共线,求k.(天津卷7)已知双曲线22221(0,0)-=>>x y a b a b的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于,A B 两点,设,A B 到双曲线的同一条渐近线的距离分别为12和d d 且12+=6d d ,则双曲线方程为(A )22139-=x y (B )22193-=x y (C )221412-=x y (D )221124-=x y 答案:A解析:2==ce a,2=c a , 在梯形ABCD 中,+2=AC BD FE ,FE 为渐焦距=b ,1226∴+==d d b 3∴=b222+=a b c 2229,12=3,∴==a b c∴22139-=x y(天津卷12)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为答案:2220x x y -+= 解析:因为圆过(0,0)(2,0)所以圆心在x=1上,设其坐标为(1,b ) 又因为(1,1)在圆上所以10,1r b br =-=?=22(1)1,x y -+=即2220x x y -+=(天津卷19)(19)(本小题满分14分)设椭圆22221x y a b+=(0a b >>)的右顶点为A ,上顶点为B ,已知椭圆的离心率|AB =(I )求椭圆的方程;(II )设直线:l y kx = (k ∆0)与椭圆交于P,Q 两点,l 与直线AB 交于点M ,且点P,M 均在第四象限,若BPM 的面积是BPQ 面积的2倍,求k 的值。
2012_2018年高考全国卷解析几何试题[文科]
![2012_2018年高考全国卷解析几何试题[文科]](https://img.taocdn.com/s3/m/e2424c0a10661ed9ad51f3ac.png)
2011年-2015年高考全国课标卷解析几何试题(文科)1.【2017全国1,文5】已知F 是双曲线C :1322=-y x 的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A的坐标是(1,3),则△APF 的面积为( ) A .13B .1 2C .2 3D .3 22.【2017课标II ,文5】若1a >,则双曲线2221x y a-=的离心率的取值范围是( )A. (2,)+∞B. (2,2)C. (1,2)D. (1,2)4.【2017课标II ,文12】过抛物线2:4C y x =的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为( ) A.5 B.22 C. 23 D. 335.【2017课标1,文12】设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( ) A .(0,1][9,)+∞B .(0,3][9,)+∞C .(0,1][4,)+∞D .(0,3][4,)+∞6.【2017课标3,文11】已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A .63B .33C .23D .1311.【2017课标3,文14】双曲线22219x y a -=(a >0)的一条渐近线方程为35y x =,则a = . 14.【2017课标1,文20】设A ,B 为曲线C :y =24x 上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.线,垂足为N ,点P 满足2NP NM =(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明过点P 且垂直于OQ 的直线l 过C 的左焦点F.16.【2017课标3,文20】在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由; (2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.1、(2016年全国I 卷高考)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为 ( ) (A )13 (B ) 12 (C )23 (D )346、(2016年全国II 卷)设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k =( ) (A )12 (B )1 (C )32(D )27、(2016年全国III 卷高考)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )13(B )12(C )23(D )344、(2016年全国I 卷高考)设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若错误!未找到引用源。
2018文科高考真题解析几何(K12教育文档)

2018文科高考真题解析几何(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018文科高考真题解析几何(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018文科高考真题解析几何(word版可编辑修改)的全部内容。
1.如图,在同一平面内,A,B为两个不同的定点,圆A和圆B的半径都为r,射线AB交圆A于点P,过P作圆A的切线l,当r()变化时,l与圆B的公共点的轨迹是A.圆 B.椭圆 C.双曲线的一支 D.抛物线2.设是椭圆上的动点,则到该椭圆的两个焦点的距离之和为()A. B. C. D.3.双曲线的焦点坐标是A.(−,0),(,0) B. (−2,0),(2,0)C.(0,−),(0,) D. (0,−2),(0,2)4.已知椭圆:的一个焦点为,则的离心率为A. B. C. D.5.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A. B. C. D.6.已知双曲线的离心率为,则点到的渐近线的距离为A. B. C. D.7.双曲线的离心率为,则其渐近线方程为A. B. C. D.8.已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为A. B. C. D.9.已知抛物线C:的焦点是F,准线是l,(Ⅰ)写出F的坐标和l的方程;(Ⅱ)已知点P(9,6),若过F的直线交抛物线C于不同两点A,B(均与P不重合),直线PA,PB分别交l于点M,N.求证:MF⊥NF.10.设常数.在平面直角坐标系中,已知点,直线:,曲线:.与轴交于点、与交于点.、分别是曲线与线段上的动点.(1)用表示点到点距离;(2)设,,线段的中点在直线,求的面积;(3)设,是否存在以、为邻边的矩形,使得点在上?若存在,求点的坐标;若不存在,说明理由.11.(2018年浙江卷)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.(Ⅰ)设AB中点为M,证明:PM垂直于y轴;(Ⅱ)若P是半椭圆x2+=1(x〈0)上的动点,求△PAB面积的取值范围.12.设椭圆的右顶点为A,上顶点为B.已知椭圆的离心率为,.(1)求椭圆的方程;(2)设直线与椭圆交于,两点,与直线交于点M,且点P ,M 均在第四象限.若的面积是面积的2倍,求的值.13.已知椭圆2222:1(0)x y M a b a b+=>>的离心率为63,焦距为22.斜率为k 的直线l 与椭圆M有两个不同的交点A ,B 。
2010-2018全国卷分类汇编(解析几何)1卷索引版

2010-2018全国卷分类汇编(解析几何)1卷索引版2010-2018新课标全国卷分类汇编新课标全国(1)(解析几何)(目录索引:可按ctrl +题号直接找到该题)1. (2010课标全国,理12) 已知双曲线E 的中心为原点,(3,0)F 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为(A)22136x y -= (B) 22145x y -= (C) 22163x y -= (D) 22154x y -= 解析:1122(,),(,)A x y B x y ,双曲线方程为22221x y a b-=,∵AB 过F ,N ,∴斜率1AB k =∵2222112222221,1x y x y a b a b -=-=,∴两式差有1212121222()()()()0x x x x y y y y a b-+-+-=,∴2245b a =,又∵229a b +=,∴224,5a b ==,故选B2. (2010课标全国,理15) 过点A(4,1)的圆C 与直线x-y-1=0相切于点B (2,1),则圆C 的方程为22(3)2x y -+=解析: 设圆心(,)O a b ,借助图形可知3a =,又11032b OB b -∴=-=-与切线垂直,即22C (3)2r OB x y ==∴-+=圆的方程为3.(2010课标全国,理20) 设12,F F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过1F 斜率为1的直线i 与E 相交于,A B 两点,且22,,AF AB BF 成等差数列。
(1)求E 的离心率;(2) 设点(0,1)p -满足PA PB =,求E 的方程 解:(I )由椭圆定义知224AF BF AB a ++=,又222AB AF BF =+,得43AB a =l 的方程为y x c =+,其中c =设()11,A x y ,()22,B x y ,则A 、B 两点坐标满足方程组22221y x c x y a b=+⎧⎪⎨+=⎪⎩,化简得()()222222220a b x a cx a c b +++-= 则()2222121222222,a c b a cx x x x a b a b--+==++ 因为直线AB 斜率为1,所以AB=21x -=得22244,3ab a a b =+故222a b = 所以E的离心率c e a===(II )设AB 的中点为()00,N x y ,由(I )知212022223x x a c x c a b +-===-+,003cy x c =+=。
江苏十年高考试题汇编第一部分+立体几何

第一讲立体几何一.填空题(共12小题)1.下列命题:①直线l平行于平面α内的无数条直线,则l∥α;②若直线a不在平面α内,则a∥α;③若直线a∥b,直线b⊄α,则a⊄α;④若直线a∥b,b⊄α,那么直线a就平行于平面α内的无数条直线;⑤若直线a∥b,b∥α,则a∥α;⑥过直线外一点,可以作无数个平面与这条直线平行;⑦过平面外一点有无数条直线与这个平面平行;⑧若一条直线与平面平行,则它与平面内的任何直线都平行.其中正确的命题是.(填序号)2.(2018•铜山区三模)已知平面α,β,直线m,n.给出下列命题:①若m∥α,n∥β,m∥n,则α∥β;②若α∥β,m∥α,n∥β,则m∥n;③若m⊥α,n⊥β,m⊥n,则α⊥β;④若α⊥β,m⊥α,n⊥β,则m⊥n.其中是真命题的是(填写所有真命题的序号).3.(2014秋•涟水县校级期末)设α,β,γ为两两不重合的平面,l,m,n为两两不重合的直线,给出下列四个命题:①若α⊥γ,β⊥γ,则α∥β;②若α∥β,l⊂α,则l∥β;③若m⊂α,n⊂α,m∥β,n∥β,则α∥β;④若l⊥α,l∥β,则α⊥β其中命题正确的是.(填序号)4.(2012•江苏)如图,在长方体ABCD﹣A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A﹣BB1D1D的体积为cm3.5.(2013•江苏)如图,在三棱柱A1B1C1﹣ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F﹣ADE的体积为V1,三棱柱A1B1C1﹣ABC的体积为V2,则V1:V2=.6.(2014•江苏)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.7.(2015•江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.8.(2017•江苏)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.9.(2010•湖北)圆柱形容器内部盛有高度为8cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是cm.10.(2015•上海)若正三棱柱的所有棱长均为a,且其体积为16,则a=.11.(2012•山东)如图,正方体ABCD﹣A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1﹣EDF的体积为.12.(2011•新课标)已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6,BC=2,则棱锥O﹣ABCD的体积为.二.解答题(共4小题)13.(2016•江苏)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在B上,且B1D⊥A1F,A1C1⊥A1B1.求证:侧棱B(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.14.(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.15.(2017•江苏)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.16.(2013•南京一模)如图,在四面体A﹣BCD中,有CB=CD,平面ABD⊥平面BCD,点E、F分别为BD,AB的中点,MN∥平面ABD.(1)求证:平面ABD⊥平面EFC;(2)如图,求证:直线MN∥直线GH.第一讲立体几何参考答案与试题解析一.填空题(共12小题)1.下列命题:①直线l平行于平面α内的无数条直线,则l∥α;②若直线a不在平面α内,则a∥α;③若直线a∥b,直线b⊄α,则a⊄α;④若直线a∥b,b⊄α,那么直线a就平行于平面α内的无数条直线;⑤若直线a∥b,b∥α,则a∥α;⑥过直线外一点,可以作无数个平面与这条直线平行;⑦过平面外一点有无数条直线与这个平面平行;⑧若一条直线与平面平行,则它与平面内的任何直线都平行.其中正确的命题是③⑥⑦.(填序号)【解答】解:在①中,若直线l平行于平面α内的无数条直线,当这无数条直线不相交时,则直线l与α相交、平行或l⊂α,故①错误:在②中,若直线a在平面α外.则a与α平行或相交,故②错误;在③中,若直线a∥b,直线b⊄α,则a⊄α,正确;在④中,若直线a∥b,b⊄α,那么直线a就平行于平面α内的无数条直线,不正确;在⑤中,若直线a∥b,b∥a,则a∥α或a⊂α,故⑤错误;在⑥中,因为过直线外一点可以作无数个平面与已知直线平行,因为只须这些平面经过这条直线的平行线且不过这条直线即可,正确;在⑦中,因为过平面外一点可作一个平面与这个平面平行,只是在这个平面内的直线都与这个平面平行,正确;在⑧中,如果一条直线与平面平行,则它与平面内的直线平行或异面,故错误.故答案为③⑥⑦2.(2018•铜山区三模)已知平面α,β,直线m,n.给出下列命题:①若m∥α,n∥β,m∥n,则α∥β;②若α∥β,m∥α,n∥β,则m∥n;③若m⊥α,n⊥β,m⊥n,则α⊥β;④若α⊥β,m⊥α,n⊥β,则m⊥n.其中是真命题的是③④(填写所有真命题的序号).【解答】解:①若m∥α,n∥β,m∥n,则α∥β或α、β相交,是假命题;②若α∥β,m∥α,n∥β,则m∥n或m,n相交或异面,是假命题;③若m⊥α,n⊥β,m⊥n,则α⊥β,是真命题;④若α⊥β,m⊥α,n⊥β,则m⊥n,是真命题,故答案为:③④.3.(2014秋•涟水县校级期末)设α,β,γ为两两不重合的平面,l,m,n为两两不重合的直线,给出下列四个命题:①若α⊥γ,β⊥γ,则α∥β;②若α∥β,l⊂α,则l∥β;③若m⊂α,n⊂α,m∥β,n∥β,则α∥β;④若l⊥α,l∥β,则α⊥β其中命题正确的是②④.(填序号)【解答】解:①若α⊥γ,β⊥γ,则α∥β,此命题不正确,因为垂直于同一平面的两个平面可能平行、相交,不能确定两平面之间是平行关系,故不正确;②若α∥β,l⊂α,则,利用平面与平面平行的性质,可得l∥β,正确;③若m⊂α,n⊂α,m∥β,n∥β,m,n不一定相交,则α∥β不正确;④由题意l⊥α,当l∥β时,必存在β内的直线l′,使l∥l′,可得l′⊥α,由面面垂直的判定定理可得α⊥β,正确.故答案为:②④.4.(2012•江苏)如图,在长方体ABCD﹣A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A﹣BB1D1D的体积为6cm3.【解答】解:过A作AO⊥BD于O,AO是棱锥的高,所以AO==,所以四棱锥A﹣BB1D1D的体积为V==6.故答案为:6.5.(2013•江苏)如图,在三棱柱A1B1C1﹣ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F﹣ADE的体积为V1,三棱柱A1B1C1﹣ABC的体积为V2,则V1:V2=1:24.【解答】解:因为D,E,分别是AB,AC的中点,所以S△ADE :S△ABC=1:4,又F是AA1的中点,所以A1到底面的距离H为F到底面距离h的2倍.即三棱柱A1B1C1﹣ABC的高是三棱锥F﹣ADE高的2倍.所以V1:V2==1:24.故答案为1:24.6.(2014•江苏)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.【解答】解:设两个圆柱的底面半径分别为R,r;高分别为H,h;∵=,∴,它们的侧面积相等,∴,∴===.故答案为:.7.(2015•江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆.【解答】解:由题意可知,原来圆锥和圆柱的体积和为:.设新圆锥和圆柱的底面半径为r,则新圆锥和圆柱的体积和为:.∴,解得:.故答案为:.8.(2017•江苏)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.【解答】解:设球的半径为R,则球的体积为:R3,圆柱的体积为:πR2•2R=2πR3.则==.故答案为:.9.(2010•湖北)圆柱形容器内部盛有高度为8cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是4cm.【解答】解:设球半径为r,则由3V球+V水=V柱可得3×,解得r=4.故答案为:410.(2015•上海)若正三棱柱的所有棱长均为a,且其体积为16,则a=4.【解答】解:由题意可得,正棱柱的底面是变长等于a的等边三角形,面积为•a•a•sin60°,正棱柱的高为a,∴(•a•a•sin60°)•a=16,∴a=4,故答案为:4.11.(2012•山东)如图,正方体ABCD﹣A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1﹣EDF的体积为.【解答】解:将三棱锥D 1﹣EDF选择△D1ED为底面,F为顶点,则=,其==,F到底面D1ED的距离等于棱长1,所以=××1=S故答案为:12.(2011•新课标)已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6,BC=2,则棱锥O﹣ABCD的体积为8.【解答】解:矩形的对角线的长为:,所以球心到矩形的距离为:=2,所以棱锥O﹣ABCD的体积为:=8.故答案为:8二.解答题(共4小题)13.(2016•江苏)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.【解答】解:(1)∵D,E分别为AB,BC的中点,∴DE为△ABC的中位线,∴DE∥AC,∵ABC﹣A1B1C1为棱柱,∴AC∥A1C1,∴DE∥A1C1,∵A1C1⊂平面A1C1F,且DE⊄平面A1C1F,∴DE∥A1C1F;(2)∵ABC﹣A1B1C1为直棱柱,∴AA1⊥平面A1B1C1,又∵A1C1⊥A1B1,且AA1∩A1B1=A1,AA1、A1B1⊂平面AA1B1B,∴A1C1⊥平面AA1B1B,∵DE∥A1C1,∴DE⊥平面AA1B1B,又∵A1F⊂平面AA1B1B,∴DE⊥A1F,又∵A1F⊥B1D,DE∩B1D=D,且DE、B1D⊂平面B1DE,∴A1F⊥平面B1DE,又∵A1F⊂平面A1C1F,∴平面B1DE⊥平面A1C1F.14.(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.【解答】证明:(1)∵D、E为PC、AC的中点,∴DE∥PA,又∵PA⊄平面DEF,DE⊂平面DEF,∴PA∥平面DEF;(2)∵D、E为PC、AC的中点,∴DE=PA=3;又∵E、F为AC、AB的中点,∴EF=BC=4;∴DE2+EF2=DF2,∴∠DEF=90°,∵DE∥PA,PA⊥AC,∴DE⊥AC;∵AC∩EF=E,∴DE⊥平面ABC;∵DE⊂平面BDE,∴平面BDE⊥平面ABC.15.(2017•江苏)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【解答】证明:(1)因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,所以AB∥EF,又因为EF⊄平面ABC,AB⊂平面ABC,所以由线面平行判定定理可知:EF∥平面ABC;(2)在线段CD上取点G,连结FG、EG使得FG∥BC,则EG∥AC,因为BC⊥BD,FG∥BC,所以FG⊥BD,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD,所以FG⊥AD,又因为AD⊥EF,且EF∩FG=F,所以AD⊥平面EFG,所以AD⊥EG,故AD⊥AC.16.(2013•南京一模)如图,在四面体A﹣BCD中,有CB=CD,平面ABD⊥平面BCD,点E、F分别为BD,AB的中点,MN∥平面ABD.(1)求证:平面ABD⊥平面EFC;(2)如图,求证:直线MN∥直线GH.【解答】证明:(1)∵CB=CD,E为BD的中点,∴CE⊥BD.∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,∴CE⊥平面ABD,∵CE⊂平面EFC,∴平面ABD⊥平面EFC;(2)∵点E、F分别为BD,AB的中点,∴EF∥AD.∵MN∥平面ABD,平面CEF∩平面ABD=EF,∴MN∥EF,∴MN∥AD,而MN⊄平面ACD,AD⊂平面ACD,∴MN∥平面ACD,∵平面BMN∩平面ACD=GH,∴MN∥GH.。
2010~2018江苏高考三角函数汇编(文)

2010~2018高考三角函数汇编1、考纲要求:三角函数的概念B同角的三角函数的基本关系式B正弦函数、余弦函数的诱导公式B三角函数图像与性质B函数y=Asin(ωx+φ)的图像与性质A 两角和与差的正弦、余弦及正切C二倍角的正弦、余弦及正切B正弦定理、余弦定理及应用B2、高考解读:高考中,对三角计算题的考查始终围绕着求角、求值问题,以和、差角公式的运用为主,可见三角式的恒等变换比三角函数的图象与性质更为重要.三角变换的基本解题规律是:寻找联系、消除差异.常有角变换、函数名称变换、次数变换等简称为:变角、变名、变次.备考中要注意积累各种变换的方法与技巧,不断提高分析与解决问题的能力.三角考题的花样翻新在于条件变化,大致有三类:第一类是给出三角式值见2014年三角解答题,第二类是给出在三角形中见2011年、2015年、2016年三角解答题,第三类是给出向量见2013年、2017年三角解答题.而2012年三角解答题则是二、三类的混合.通常一大一小也会出现两小一大情况,还有可能出现应用题,主要考察三角公式、三角函数的图像与性质、解三角形知识,一般都是容易题或中档题。
一、三角公式★7.(5分)(2011•江苏)已知,则的值为.★★11.(5分)(2012•江苏)设α为锐角,若cos(α+)=,则sin(2α+)的值为.(2015•江苏)已知tanα=﹣2,tan(α+β)=,则tanβ的值为.★8.(5分)★5.(5分)(2017•江苏)若tan(α﹣)=.则tanα=.★★★15.(14分)(2013•江苏)已知=(cosα,sinα),=(cosβ,sinβ),0<β<α<π.(1)若|﹣|=,求证:⊥;(2)设=(0,1),若+=,求α,β的值.★★★15.(14分)(2014•江苏)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.★★★16.(14分)(2018•江苏)已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.二、三角函数图像与性质★★★10.(5分)(2010•江苏)定义在区间上的函数y=6cosx的图象与y=5tanx的图象的交点为P,过点P作PP1⊥x轴于点P1,直线PP1与y=sinx 的图象交于点P2,则线段P1P2的长为.★★9.(5分)(2011•江苏)函数f(x)=Asin(ωx+φ),(A,ω,φ是常数,A>0,ω>0)的部分图象如图所示,则f(0)=.★1.(5分)(2013•江苏)函数y=3sin(2x+)的最小正周期为.★5.(5分)(2014•江苏)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.★★★9.(5分)(2016•江苏)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是.★★7.(5分)(2018•江苏)已知函数y=sin(2x+φ)(﹣φ<)的图象关于直线x=对称,则φ的值为.★★★16.(14分)(2017•江苏)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.三、解三角形★★★13.(5分)(2010•江苏)在锐角△ABC中,角A、B、C的对边分别为a、b、c,若+=6cosC,则+的值是.★★★★14.(5分)(2014•江苏)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.★★★★14.(5分)(2016•江苏)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是.★★★13.(5分)(2018•江苏)在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为.★★★15.(14分)(2011•江苏)在△ABC中,角A,B,C的对边分别是a,b,c.(1)若sin(A+)=2cosA,求A的值.(2)若cosA=,b=3c,求sinC的值.★★★15.(14分)(2012•江苏)在△ABC中,已知.(1)求证:tanB=3tanA;(2)若cosC=,求A的值.★★★15.(14分)(2015•江苏)在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.★★★15.(14分)(2016•江苏)在△ABC中,AC=6,cosB=,C=.(1)求AB的长;(2)求cos(A﹣)的值.★★★17.(14分)(2010•江苏)某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4m,仰角∠ABE=α,∠ADE=β.(1)该小组已经测得一组α、β的值,tanα=1.24,tanβ=1.20,请据此算出H 的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使α与β之差较大,可以提高测量精确度.若电视塔的实际高度为125m,试问d为多少时,α﹣β最大?★★★18.(16分)(2013•江苏)如图,游客从某旅游景区的景点A处下山至C 处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,cosA=,cosC=(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?★★★17.(14分)(2018•江苏)某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为△CDP,要求A,B均在线段MN上,C,D均在圆弧上.设OC与MN所成的角为θ.(1)用θ分别表示矩形ABCD和△CDP的面积,并确定sinθ的取值范围;(2)若大棚I内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.。
2018-江苏高考立体几何(含解析)

2018 年-2008 年江苏高考立体几何解答题(共 11 题)说明:三角向量解答题考在 15题或 16 题,是解答题的前两题之一,要求学生必须做对,而且书写规范,条理清楚1.在平行六面体 ABCD A 1B 1C 1D 1 中, AA 1 AB , AB 1 B 1C 1.求证:( 1) AB ∥平面A 1B 1C ; (2)平面ABB 1 A 1 平面A 1 BC .2) BC 1 AB 1 .5.如图在三棱锥 P-ABC 中, D,E,F 分别为棱 PC,AC,AB 的中点,已知 PA AC,PA 6,BC 8,DF 5,2.如图 ,在三棱锥 A-BCD 中,AB ⊥AD, BC ⊥BD, 平面 ABD ⊥平面 且 EF ⊥ AD. BCD, 点E,F (E 与A,D 不重合 )分别在棱 AD,BD 上,求证:(1) EF ∥平面 ABC ; 2)AD ⊥AC.3. 如图,在直三棱柱 ABC-A 1B 1C 1 中,D ,E 分别为 AB ,BC 的中点,点 F 在侧棱 B 1B 上,且 B 1D A 1F, A 1C 1 A 1B 1.求证:( 1)直线 DE ∥平面 A 1C 1F ;2)平面 B 1DE ⊥平面 A 1C 1F.4.如图,在直三棱柱 ABC A 1B 1C 1中,已知 AC BC ,BC CC 1,设 AB 1的中点为D , B 1C BC 1E .求证:1) DE // 平面 AA 1C 1C ;求证( 1)直线 PA 平面 DEF ; 2)平面 BDE 平面 ABC 。
6.如图,在三棱锥 S ABC 中,平面 SAB 平面SBC , AB BC ,AS AB ,过A 作AF SB ,垂足为 F , 点 E ,G 分别是棱SA ,SC 的中点.求证:(1)平面 EFG //平面 ABC ;(2) BC SA .7. 如图,在直三棱柱ABC A 1B 1C 1中, A 1B 1 A 1C 1 ,D ,E 分别是棱BC ,CC 1上的点(点D 不同于点 C ),且AD DE ,F 为B 1C 1 的中点.求证:( 1)直线 EF ‖平面 PCD ;(2)平面 BEF ⊥平面 PAD 9、如图,在四棱锥 P-ABCD 中, PD ⊥平面 ABCD ,PD=DC=BC=1,AB=2,AB ∥DC ,∠BCD=900。
2018年高考文科数学分类汇编:专题九解析几何

《2018年高考文科数学分类汇编》第九篇:解析几何一、选择题1.【2018全国一卷4】已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为 A .13B .12 C.2 D.32.【2018全国二卷6】双曲线,则其渐近线方程为A .B .C .D . 3.【2018全国二11】已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为 A .B .CD4.【2018全国三卷8】直线分别与轴,轴交于A ,B 两点,点P 在圆上,则面积的取值范围是A .B .C .D .5.【2018全国三卷10】已知双曲线,则点到的渐近线的距离为 AB.C .D .6.【2018天津卷7】已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为A221412x y -=B221124x y -= C22139x y -=D 22193x y -= 22221(0,0)x y a b a b-=>>y =y =2y x =±y =1F 2F C P C 12PF PF ⊥2160PF F ∠=︒C 12120x y ++=x y ()2222x y -+=ABP △[]26,[]48,⎡⎣22221(00)x y C a b a b-=>>:,(4,0)C 227.【2018浙江卷2】双曲线221 3=x y -的焦点坐标是A .,0),0)B .(−2,0),(2,0)C .(0,,(0D .(0,−2),(0,2)8.【2018上海卷13】设P 是椭圆 ²5x + ²3y =1上的动点,则P 到该椭圆的两个焦点的距离之和为( )A.2√2B.2√3C.2√5D.4√2 二、填空题1.【2018全国一卷15】直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.2.【2018北京卷10】已知直线l 过点(1,0)且垂直于x 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________.3.【2018北京卷12】若双曲线2221(0)4x y a a -=>的离心率为2,则a =_________. 4.【2018天津卷12】在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________.5.【2018江苏卷8】在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c ,则其离心率的值是 . 6.【2018江苏卷12】在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为 .7.【2018浙江卷17】已知点P (0,1),椭圆24x +y 2=m (m >1)上两点A ,B 满足AP =2PB ,则当m =___________时,点B 横坐标的绝对值最大.8.【2018上海卷2】2.双曲线2214x y -=的渐近线方程为 . 9.【2018上海卷12】已知实数x ₁、x ₂、y ₁、y ₂满足:²²1x y +=₁₁,²²1x y +=₂₂,212x x y y +=₁₂₁,的最大值为__________三、解答题1.【2018全国一卷20】设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN =∠∠.2.【2018全国二卷20】设抛物线的焦点为,过且斜率为的直线与交于,两点,.(1)求的方程;(2)求过点,且与的准线相切的圆的方程.3.【2018全国三卷20】已知斜率为的直线与椭圆交于,两点.线段的中点为. (1)证明:; (2)设为的右焦点,为上一点,且.证明:.4.【2018北京卷20】已知椭圆2222:1(0)x y M a b a b +=>>的离心率为3,焦距为.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B .(Ⅰ)求椭圆M 的方程;(Ⅰ)若1k =,求||AB 的最大值;(Ⅰ)设(2,0)P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个24C y x =:F F (0)k k >l C A B ||8AB =l A B C k l 22143x y C +=:A B AB (1,)(0)M m m >12k <-F C P C FP FA FB ++=02||||||FP FA FB =+交点为D .若C ,D 和点71(,)44Q -共线,求k .5.【2018天津卷19】设椭圆22221(0)x y a b a b+=>>的右顶点为A ,上顶点为B .已知椭圆的离心率为3,||AB = (I )求椭圆的方程;(II )设直线:(0)l y kx k =<与椭圆交于,P Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM △的面积是BPQ △面积的2倍,求k 的值.6.【2018江苏卷18】如图,在平面直角坐标系xOy 中,椭圆C 过点1)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △,求直线l 的方程.7.【2018浙江卷21】如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上. (Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴; (Ⅱ)若P 是半椭圆x 2+24y =1(x <0)上的动点,求△P AB 面积的取值范围.8.【2018上海卷20】(本题满分16分,第1小题满分4分,第2小题满分6分,第2小题满分6分,第3小题满分6分)设常数t >2,在平面直角坐标系xOy 中,已知点F (2,0),直线l :x=t ,曲线τ:²8y x =00x t y (≦≦,≧),l 与x 轴交于点A ,与τ交于点B ,P 、Q 分别是曲线τ与线段AB 上的动点.(1)用t 为表示点B 到点F 的距离;(2)设t =3,2FQ =∣∣,线段OQ 的中点在直线FP 上,求△AQP 的面积; (3)设t =8,是否存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在τ上?若存在,求点P 的坐标;若不存在,说明理由.参考答案 一、选择题1.C2.A3.D4.A5.D6.C7.B8.C 二、填空题1. 222.)0,1(3.44.0222=-+x y x 5.2 6.3 7.58.x y 21±= 9.32+三、解答题1.解:(1)当l 与x 轴垂直时,l 的方程为x =2,可得M 的坐标为(2,2)或(2,–2).所以直线BM 的方程为y =112x +或112y x =--.(2)当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为(2)(0)y k x k =-≠,M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0.由2(2)2y k x y x=-⎧⎨=⎩,得ky 2–2y –4k =0,可知y 1+y 2=2k ,y 1y 2=–4.直线BM ,BN 的斜率之和为 1221121212122()22(2)(2)BM BN y y x y x y y y k k x x x x ++++=+=++++.① 将112y x k =+,222yx k=+及y 1+y 2,y 1y 2的表达式代入①式分子,可得 121221121224()882()0y y k y y x y x y y y k k++-++++===.所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM +∠ABN . 综上,∠ABM =∠ABN .2.解:(1)由题意得F (1,0),l 的方程为y =k (x –1)(k >0).设A (x 1,y 1),B (x 2,y 2).由得. ,故. 所以.2(1)4y k x y x=-⎧⎨=⎩2222(24)0k x k x k -++=216160k ∆=+=212224k x x k ++=212244(1)(1)k AB AF BF x x k +=+=+++=由题设知,解得k =–1(舍去),k =1. 因此l 的方程为y =x –1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为 ,即.设所求圆的圆心坐标为(x 0,y 0),则解得或 因此所求圆的方程为或.3.解:(1)设,,则,.两式相减,并由得. 由题设知,,于是. 由题设得,故. (2)由题意得F (1,0).设,则 .由(1)及题设得,. 又点P 在C 上,所以,从而23=. 于是.同理. 所以.故.22448k k +=2(3)y x -=--5y x =-+00220005(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩,0032x y =⎧⎨=⎩,00116.x y =⎧⎨=-⎩,22(3)(2)16x y -+-=22(11)(6)144x y -++=11()A x y ,22()B x y ,2211143x y +=2222143x y +=1212=y y k x x --1212043x x y y k +++⋅=1212x x +=122y y m +=34k m=-302m <<12k <-33()P x y ,331122(1)(1)(1)(00)x y x y x y -+-+-=,,,,3123()1x x x =-+=312()20y y y m =-+=-<34m =3(1)2P -,11||(22xFA x ==-2||=22x FB -1214()32FA FB x x +=-+=2||=||+||FP FA FB4.解:(Ⅰ)由题意得2c =,所以c =又c e a ==,所以a =2221b a c =-=, 所以椭圆M 的标准方程为2213x y +=.(Ⅱ)设直线AB 的方程为y x m =+,由2213y x m x y =+⎧⎪⎨+=⎪⎩消去y 可得2246330x mx m ++-=, 则2223644(33)48120m m m ∆=-⨯-=->,即24m <,设11(,)A x y ,22(,)B x y ,则1232m x x +=-,212334m x x -=,则12|||AB x x =-==易得当20m =时,max ||AB ,故||AB. (Ⅲ)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,则221133x y += ①,222233x y += ②,又(2,0)P -,所以可设1112PA y k k x ==+,直线PA 的方程为1(2)y k x =+, 由122(2)13y k x x y =+⎧⎪⎨+=⎪⎩消去y 可得2222111(13)121230k x k x k +++-=, 则2113211213k x x k +=-+,即2131211213k x x k =--+,学科*网 又1112y k x =+,代入①式可得13171247x x x --=+,所以13147y y x =+, 所以1111712(,)4747x y C x x --++,同理可得2222712(,)4747x y D x x --++.故3371(,)44QC x y =+-,4471(,)44QD x y =+-, 因为,,Q C D 三点共线,所以34437171()()()()04444x y x y +--+-=,将点,C D 的坐标代入化简可得12121y y x x -=-,即1k =.5. 解:(I )设椭圆的焦距为2c ,由已知得2259c a =,又由222a b c =+,可得23a b =.由||AB ==,从而3,2a b ==.所以,椭圆的方程为22194x y +=. (II )设点P 的坐标为11(,)x y ,点M 的坐标为22(,)x y ,由题意,210x x >>, 点Q 的坐标为11(,)x y --.由BPM △的面积是BPQ △面积的2倍,可得||=2||PM PQ ,从而21112[()]x x x x -=--,即215x x =. 易知直线AB 的方程为236x y +=,由方程组236,,x y y kx +=⎧⎨=⎩消去y ,可得2632x k =+.由方程组221,94,x y y kx ⎧+⎪=⎨⎪=⎩消去y,可得1x =. 由215x x =5(32)k =+,两边平方,整理得2182580k k ++=,解得89k =-,或12k =-.当89k =-时,290x =-<,不合题意,舍去;当12k =-时,212x =,1125x =,符合题意. 所以,k 的值为12-.6.解:(1)因为椭圆C 的焦点为12() 3,0,(3,0)F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1(3,)2在椭圆C 上,所以2222311,43,a ba b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩ 因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩消去y ,得222200004243640()x y x x x y +-+-=.(*) 因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以002,1x y ==. 因此,点P 的坐标为(2,1). ②因为三角形OAB 的面积为267, 所以21 267AB OP ⋅=,从而427AB =. 设1122,,()(),A x y B x y ,由(*)得2200022001,22448(2)2(4)x y x x x y ±-=+,所以2222121()()x B y y x A =-+-222000222200048(2)(1)(4)x y x y x y -=+⋅+.因为22003x y +=, 所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =,因此P的坐标为. 综上,直线l的方程为y =+7.解:(Ⅰ)设00(,)P x y ,2111(,)4A y y ,2221(,)4B y y . 因为PA ,PB 的中点在抛物线上,所以1y ,2y 为方程202014()422y x y y ++=⋅即22000280y y y x y -+-=的两个不同的实数根. 所以1202y y y +=.因此,PM 垂直于y 轴.(Ⅱ)由(Ⅰ)可知120212002,8,y y y y y x y +=⎧⎪⎨=-⎪⎩ 所以2221200013||()384PM y y x y x =+-=-,12||y y -= 因此,PAB △的面积32212001||||4)24PABS PM y y y x =⋅-=-△. 因为220001(0)4y x x +=<,所以2200004444[4,5]y x x x -=--+∈. 因此,PAB △面积的取值范围是. 8.解:(1)由抛物线的性质可知,抛物线x y 82=的准线为2-=x ,抛物线上的点B 到焦点)0,2(F 的距离等于点B 到准线2-=x 的距离,由题意知,点B 的横坐标为t ,则2+=t BF 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010-2018江苏高考解析几何汇编(文)
2010~2018年高考解析几何汇编
1、考纲要求:直线的斜率和倾斜角B直线方程C直线的平行与垂直关系B两直线的交点B两点间的距离、点到直线的距离B圆的标准方程与一般方程 C
直线与圆、圆与圆的位置关系B椭圆标准方程与性质B双曲线标准方程与性质 A 抛物线的标准方程与性质 A
2、高考解读:通常是两小一大,填空题一方面考查直线与圆的位置关系,另一
方面考查圆锥曲线的概念与几何性质,解答题主要是直线与圆、直线与圆锥曲
线的综合题,个别考题是基础题,多数考题是中档题,特别是解答题主要考查
学生的运算能力和学生的观察、推理以及创造性地综合分析、解决问题的能力,
有可能出现难题。
一、直线与圆的位置关系
★★9.(5分)(2010?江苏)在平面直角坐标系xOy中,已知圆x2+y2=4上有且仅有四个点到直线12x﹣5y+c=0的距离为1,则实数c的取值范围是.★★★14.(5分)(2011?江苏)设集合
,B={(x,y)|2m≤x+y≤2m+1,x,y∈R},若A∩B≠?,则实数m的取值范围是.
★★★12.(5分)(2012?江苏)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.
★★9.(5分)(2014?江苏)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.
★★10.(5分)(2015?江苏)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方
程为.
★★13.(5分)(2017?江苏)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是.
★★★12.(5分)(2018?江苏)在平面直角坐标系xOy中,A为直线l:y=2x
上在第一象限内的点,B(5,0),以AB为直径的圆C与直线l交于另一点D.若=0,则点A的横坐标为.
★★★17.(14分)(2013?江苏)在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4,设圆C的半径为1,圆心在l上.
(1)若圆心C也在直线y=x﹣3上,过点A作圆C的切线,求切线方程;(2)若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标的取值范围.
★★★18.(16分)(2016?江苏)如图,在平面直角坐标系xOy中,已知以M 为圆心的圆M:x2+y2﹣12x﹣14y+60=0及其上一点A(2,4).
(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;
(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;
(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,求实数t的取值范围.
二、圆锥曲线的定义与几何性质
★★6.(5分)(2010?江苏)在平面直角坐标系xOy中,双曲线上一点M,点M的横坐标是3,则M到双曲线右焦点的距离是.
★★8.(5分)(2012?江苏)在平面直角坐标系xOy中,若双曲线
的离心率为,则m的值为.
★★3.(5分)(2013?江苏)双曲线的两条渐近线方程为.★★★12.(5分)(2013?江苏)在平面直角坐标系xOy中,椭圆C的标准方程为(a>b>0),右焦点为F,右准线为l,短轴的一个端点为B,设原点到直线BF的距离为d1,F到l的距离为d2,若d2=,则椭圆C的离心
率为.
★★12.(5分)(2015?江苏)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c 的最大值为.
★★3.(5分)(2016?江苏)在平面直角坐标系xOy中,双曲线﹣=1的
焦距是.
★★★10.(5分)(2016?江苏)如图,在平面直角坐标系xOy中,F是椭圆+=1(a>b>0)的右焦点,直线y=与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是.
★★8.(5分)(2017?江苏)在平面直角坐标系xOy中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q 的面积是.
★★8.(5分)(2018?江苏)在平面直角坐标系xOy中,若双曲线﹣=1(a>0,b>0)的右焦点F(c,0)到一条渐近线的距离为c,则其离心率的值为.
三、直线与椭圆的综合题
★★★18.(16分)(2010?江苏)在平面直角坐标系xOy中,如图,已知椭圆
=1的左、右顶点为A、B,右焦点为F.设过点T(t,m)的直线TA、
TB与椭圆分别交于点M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.(1)设动点P满足PF2﹣PB2=4,求点P的轨迹;
(2)设x1=2,x2=,求点T的坐标;
(3)设t=9,求证:直线MN必过x轴上的一定点(其坐标与m无关).
★★★★18.(16分)(2011?江苏)如图,在平面直角坐标系xOy中,M、N分
别是椭圆的顶点,过坐标原点的直线交椭圆于P,A两点,其中点P
在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k
(1)若直线PA平分线段MN,求k的值;
(2)当k=2时,求点P到直线AB的距离d;
(3)对任意k>0,求证:PA⊥PB.
★★★19.(16分)(2012?江苏)如图,在平面直角坐标系xOy中,椭圆
(a>b>0)的左、右焦点分别为F1(﹣c,0),F2(c,0).已知(1,e)和(e,)都在椭圆上,其中e为椭圆的离心率.
(1)求椭圆的方程;
(2)设A,B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,AF2与BF1交于点P.
(i)若AF1﹣BF2=,求直线AF1的斜率;
(ii)求证:PF1+PF2是定值.
别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;
(2)若F1C⊥AB,求椭圆离心率e的值.
+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.
(1)求椭圆的标准方程;
(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l 和AB于点P,C,若PC=2AB,求直线AB的方程.
=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,两准线之间
的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.
(1)求椭圆E的标准方程;
(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.
点(),焦点F1(﹣,0),F2(,0),圆O的直径为F1F2.(1)求椭圆C及圆O的方程;
(2)设直线l与圆O相切于第一象限内的点P.
①若直线l与椭圆C有且只有一个公共点,求点P的坐标;
②直线l与椭圆C交于A,B两点.若△OAB的面积为,求直线l的方程.。