四种晶体类型的比较教学文案
晶体的四种基本类型和特点

晶体的四种基本类型和特点晶体是由于原子、分子或离子排列有序而形成的固态物质。
根据晶体的结构特点,晶体可以分为四种基本类型:离子晶体、共价晶体、金属晶体和分子晶体。
1. 离子晶体离子晶体由正离子和负离子通过离子键结合而成。
正负离子之间的电荷吸引力使得离子晶体具有高熔点和脆性。
离子晶体的晶格结构稳定,形成高度有序的排列。
常见的离子晶体有氯化钠(NaCl)、氧化镁(MgO)等。
离子晶体在溶液中能够导电,但在固态下通常是绝缘体。
2. 共价晶体共价晶体由共价键连接的原子或分子组成。
共价键是由原子间的电子共享形成的,因此共价晶体具有很高的熔点和硬度。
共价晶体的晶格结构复杂多样,具有很高的化学稳定性。
典型的共价晶体包括金刚石(C)和硅(Si)。
共价晶体通常是绝缘体或半导体,由于共价键的稳定性,其导电性较弱。
3. 金属晶体金属晶体由金属原子通过金属键结合而成。
金属键是由金属原子间的电子云形成的,因此金属晶体具有良好的导电性和热传导性。
金属晶体的晶格结构常为紧密堆积或面心立方等紧密排列。
金属晶体的熔点通常较低,而且具有良好的延展性和韧性。
典型的金属晶体有铁(Fe)、铜(Cu)等。
4. 分子晶体分子晶体由分子通过弱相互作用力(如范德华力)结合而成。
分子晶体的晶格结构不规则,分子间的距离和角度较大。
由于分子间的相互作用力较弱,分子晶体通常具有较低的熔点和软硬度。
典型的分子晶体有水(H2O)、冰、石英(SiO2)等。
分子晶体在固态下通常是绝缘体,但某些分子晶体在溶液中能够导电。
总结起来,离子晶体由正负离子通过离子键结合,具有高熔点和脆性;共价晶体由共价键连接,具有高熔点和硬度;金属晶体由金属原子通过金属键结合,具有良好的导电性和热传导性;分子晶体由分子通过弱相互作用力结合,具有较低的熔点和软硬度。
这四种基本类型的晶体在结构、性质和应用上都有明显的差异。
研究晶体的类型和特点对于理解物质的性质和应用具有重要意义。
四大晶体对比导学案

四大晶体复习(一课时)班级:姓名:小组:。
【学习目标】1.学生能对比说出四大晶体物理特性,记忆常见晶体的配位数,从组成微粒、作用力上辨析。
2.学生通过四大晶体的成键原理及作用力,能复述作用力强弱的比较方法,判断熔沸点大小。
3.学生通过小组讨论和教师讲解,能够总结四大晶体类型的判断方法。
4.学生通过复习晶胞的结构和组成,能对常见的晶胞的密度进行计算。
【重点难点】重点:四大晶体结构和性质的判断,不同晶体熔沸点高低的比较方法。
难点:记忆常见的晶胞结构,陌生晶胞结构的分析和相关计算。
【导学流程】一.基础感知1.比较四种晶体的异同,完成表格:构成粒子粒子间作用力作用力强弱熔沸点硬度导电性溶解性物质类别分子晶体原子晶体离子晶体金属晶体2.A、B、C、D分别代表四种不同的短周期元素.A元素的原子最外层电子排布为ns1,B元素的原子价电子排布为ns2 np2,C元素的最外层电子数是其电子层数的3倍,D元素原子的M电子层的p亚层中有1个电子。
回答:(1)C原子的轨道表示式为,若A元素的原子最外层电子排布为,则按原子轨道的重叠方式,A与C形成的化合物中的共价键属键。
(2)当n=2时,B与C形成的晶体属于晶体,当n=2时,B与C形成的晶体中微粒间的作用力是,晶体的化学式.(3)若D元素与Fe形成某种晶体,该晶体的晶胞如图所示,则晶体的化学式是属于晶体,若晶胞的边长为a nm,则合金的密度为g/cm-3。
(4)C、D两种元素形成的晶体有α-型和γ-型两种变体,α-型熔点高,硬度大,不溶于水,耐酸碱腐蚀,且绝缘性好;γ-型不溶于水,但易溶于强酸和强碱,工业上通常电解熔融态该物质以制备D的单质。
试判断α-型属于晶体,γ-型属于晶体。
1.对议并记忆四种晶体的不同2.融化时各自破坏的作用力3.石墨融化时破坏的作用力4.比较下列物质熔沸点的高低①P4F2Cl2②金刚石碳化硅5.回忆CO2 冰金刚石NaCl CsCl CaF2 的晶胞结构及对应的配位数。
高考化学晶体结构:晶体类型与性质比较

高考化学晶体结构:晶体类型与性质比较在高考化学中,晶体结构是一个重要的知识点,其中晶体类型与性质的比较更是常考的内容。
理解和掌握不同晶体类型的特点及其性质差异,对于我们解决相关问题、提高化学成绩具有关键作用。
晶体,是由原子、离子或分子在空间按一定规律周期性地重复排列构成的固体物质。
根据构成晶体的粒子种类以及粒子间相互作用力的不同,晶体可以分为离子晶体、分子晶体、原子晶体和金属晶体这四大类型。
首先来看看离子晶体。
离子晶体是由阴、阳离子通过离子键结合而成的晶体。
常见的离子晶体有氯化钠、氯化铯等。
离子晶体具有较高的熔点和沸点,因为离子键是一种较强的化学键,要破坏离子键需要消耗大量的能量。
例如氯化钠,在通常情况下是固体,需要加热到 801℃才会熔化。
而且离子晶体在熔融状态或水溶液中能够导电,这是因为离子可以自由移动。
但在固态时,由于离子被束缚在晶格中,不能自由移动,所以不能导电。
接下来是分子晶体。
分子晶体是由分子通过分子间作用力(范德华力或氢键)结合而成的晶体。
像干冰(固态二氧化碳)、冰等都是典型的分子晶体。
分子晶体的熔点和沸点通常较低,因为分子间作用力相对较弱。
例如干冰,在常温常压下就会直接升华变成气体。
分子晶体一般不导电,除非其溶于水后形成了能够自由移动的离子。
再说说原子晶体。
原子晶体是由原子通过共价键结合而成的空间网状结构的晶体。
金刚石、晶体硅、二氧化硅等是常见的原子晶体。
原子晶体具有很高的熔点和沸点,硬度大。
这是因为共价键的强度很大,要破坏共价键需要很高的能量。
比如金刚石,是自然界中最硬的物质之一,其熔点高达 3550℃。
最后是金属晶体。
金属晶体是由金属阳离子和自由电子通过金属键结合而成的晶体。
大多数金属单质都属于金属晶体,如铁、铜、铝等。
金属晶体具有良好的导电性、导热性和延展性。
这是因为自由电子能够在金属阳离子之间自由移动。
金属晶体的熔点和沸点差异较大,这取决于金属键的强弱。
在性质方面,除了熔点、沸点和导电性有所不同外,晶体的硬度和溶解性也各有特点。
四种晶体类型

相应的电子构型变化: 2s 2 2p 6 3s 1 —— 2s 2 2p 6 ,3s 2 3p 5 —— 3s 2 3p 6 形成稀有气体原子结构的稳定离子。
第二步 靠静电吸引, 形成化学键 。 体系的势能与核间距之间的关系如图所示:
V
0 Vr0 r0 r
纵坐标的零点 当 r 无穷大时,即两核之间 无限远时的势能。
§4.3 金属晶体
§4.4 原子晶体 §4.5 分子晶体
§4.6 离子极化
§4.1 晶体的特征 4.1.1 晶体的特征
4.1.2 晶格和晶胞 4.1.3 晶格类型
4.1.4 晶体类型
4.1.1 晶体的特征
晶体 固体
非晶体——无定型物质 两者有何区别?
晶体 (1) 具有整齐规则的几何外形 (2) 在一定压力下具有固定 的熔点 (3) 具有各向异性 无定型物质 外形不规则 没有固定熔点 各向同性
出一套离子半径数值,被称为 Pauling 半径 。
一般教材上两套数据均列出。但在比较半径
大小和讨论变化规律时,多采用 Pauling 半径 。 (2) 离子半径的变化规律
a ) 同主族从上到下,电子层增加,核对外层电 子的引力减小,具有相同电荷数的离子半径增加。 Li + < Na + < K + < Rb + < Cs + b) F- < Cl- < Br- < I- 同周期的主族元素,从左至右阳离子半径随
(5) (18+2)e-构型: 基态离子价电子层最外层有2个电子,次 外层有18个电子。例如: Ti+、 Sn2+、Pb2+、 Bi3+、Sb3+等。
高中化学晶体部分总结教案

高中化学晶体部分总结教案教学目标:
1. 了解晶体的结构和性质。
2. 掌握晶体的分类和特点。
3. 能够运用晶体知识解决相关问题。
教学重点:
1. 晶体的定义和特点。
2. 晶体的分类和结构。
3. 晶体的性质和应用。
教学难点:
1. 理解晶体结构与性质之间的关系。
2. 掌握不同晶体的分类和特征。
教学内容与安排:
1. 晶体的定义和特点(10分钟)
- 介绍晶体的定义和基本特点。
- 讨论晶体和非晶体的区别。
2. 晶体的分类和结构(20分钟)
- 分类:按照组成物质的种类划分。
- 结构:简单立方、体心立方、面心立方等晶体结构。
3. 晶体的性质和应用(20分钟)
- 性质:晶体的有序性、光学性、热学性等。
- 应用:晶体在电子学、光学、医学等领域的应用。
4. 案例分析与练习(20分钟)
- 分析晶体结构与性质的关系。
- 解答相关问题,加深对晶体知识的理解。
教学方式:
1. 讲解和示范相结合,引导学生主动思考。
2. 学生互动,小组合作讨论。
3. 案例分析和练习,巩固知识。
教学评价:
1. 课堂表现(包括参与度、表现等)。
2. 作业完成情况。
3. 知识掌握程度的考试。
教学反思:
1. 学生对晶体概念和分类理解程度不同,应采取多样化教学方式。
2. 案例分析和练习的时间应更充分一些,以便学生深化理解。
(教案完整可以根据实际情况做进一步完善和调整)。
新课程高考化学高中化学重难点复习教案物质结构与性质晶体结构与性质之晶体常识与四种晶体的比较

物质结构与性质晶体结构与性质之晶体常识与四种晶体的比较ZHI SHI SHU LI知识梳理 )1.晶体(1)晶体与非晶体的比较(2)获得晶体的三种途径。
①熔融态物质凝固。
②气态物质冷却不经液态直接凝固(凝华)。
③溶质从溶液中析出。
2.四种晶体的比较3.晶体类型的5种判断方法(1)依据构成晶体的微粒和微粒间的作用判断。
①离子晶体的构成微粒是阴、阳离子,微粒间的作用是离子键。
②原子晶体的构成微粒是原子,微粒间的作用是共价键。
③分子晶体的构成微粒是分子,微粒间的作用为分子间作用力。
④金属晶体的构成微粒是金属阳离子和自由电子,微粒间的作用是金属键。
(2)依据物质的分类判断。
①金属氧化物(如K2O、Na2O2等)、强碱(NaOH、KOH等)和绝大多数的盐类是离子晶体。
②大多数非金属单质(除金刚石、石墨、晶体硅等)、非金属氢化物、非金属氧化物(除SiO2外)、几乎所有的酸、绝大多数有机物(除有机盐外)是分子晶体。
③常见的单质类原子晶体有金刚石、晶体硅、晶体硼等,常见的化合物类原子晶体有碳化硅、二氧化硅等。
④金属单质是金属晶体。
(3)依据晶体的熔点判断。
①离子晶体的熔点较高。
②原子晶体的熔点很高。
③分子晶体的熔点低。
④金属晶体多数熔点高,但也有少数熔点相当低。
(4)依据导电性判断。
①离子晶体溶于水及熔融状态时能导电。
②原子晶体一般为非导体。
③分子晶体为非导体,而分子晶体中的电解质(主要是酸和强极性非金属氢化物)溶于水,使分子内的化学键断裂形成自由移动的离子,也能导电。
④金属晶体是电的良导体。
(5)依据硬度和机械性能判断。
①离子晶体硬度较大、硬而脆。
②原子晶体硬度大。
③分子晶体硬度小且较脆。
④金属晶体多数硬度大,但也有硬度较小的,且具有延展性。
4.晶体熔、沸点的比较(1)不同类型晶体熔、沸点的比较。
①不同类型晶体的熔、沸点高低的一般规律:原子晶体>离子晶体>分子晶体。
②金属晶体的熔、沸点差别很大,如钨、铂等熔、沸点很高,汞、铯等熔、沸点很低。
【高中化学】四类典型晶体的比较及应用 2022-2023学年高二化学 人教版2019选择性必修2

化合物 熔点/℃
TiF4 377
TiCl4 -24.12
TiBr4 38.3
TiI4 155
[解析] (1)TiF4为离子化合物,熔点高,TiCl4、TiBr4、TiI4为共价化合物,是分 子晶体,其组成和结构相似,随相对分子质量的增大,分子间作用力增大,熔点 逐渐升高,故熔点由高到低的顺序为TiF4>TiI4>TiBr4>TiCl4。
GaF3是离子晶体,GaCl3为分子晶体
二氧化硅共价原子晶体, 干冰属于分子晶体
原因是
金属晶体的熔、沸点差别很大,如钨、铂等金属的熔、沸点很高, 汞、铯等金属的熔、沸点很低。
3.同种类型晶体的熔、沸点的比较
结构粒子:分子, 分子晶体:
分子间的作用:是氢键或范德华力) A.氢键:含N--H,O--H,F--H键的分子之间产生的一种静电作用。
[例3] (1)Ti的四卤化物熔点如表所示,TiF4熔点高于其他三种卤化物,自TiCl4至TiI4 熔点依次升高,原因是__________________________
TiF4为离子化合物,熔点高,其他三种均为共价化合物,其组成和结构相似,随相对分子质量 的增大,分子间作用力增大,熔点逐渐升高
1.依据构成晶体的微粒和微粒间的作用判断
(1)分子晶体的构成微粒是分子,微粒间的作用为分子间作用力。 (2)共价晶体的构成微粒是原子,微粒间的作用是共价键。 (3)金属晶体的构成微粒是金属阳离子和自由电子,微粒间的作用是金属键。
(4)离子晶体的构成微粒是阴、阳离子,微粒间的作用是离子键。
分析: (1)离子晶体与化学键的关系: ①离子晶体中一定含有离子键,可能含有共价键。注意,可以再细化:离子晶体中一定含有 离子键,可能含有极性共价键、非极性共价键、配位键。 ②含有离子键的化合物一定是离子化合物。 ③离子晶体一定是由阴、阳离子构成的,但晶体中可以含有分子,如结晶水合物。 ④离子晶体中一定含有阳离子,但含有阳离子的晶体不一定是离子晶体。
高中化学试讲晶体教案

高中化学试讲晶体教案
教学内容:晶体
教学目标:
1. 了解晶体的定义和特征。
2. 掌握晶体的分类和结构特点。
3. 能够区分晶体和非晶体的差异。
教学重点:
1. 晶体的定义和特征。
2. 晶体的分类和结构特点。
教学难点:
1. 晶体的结构特点及其分类。
2. 晶体和非晶体的区分。
教学过程:
一、导入
通过展示一些不同的晶体结构的图片或实物,引导学生思考晶体是什么以及它们与非晶体的区别。
二、讲解
1. 晶体的定义:晶体是由原子、离子或分子按照一定规律排列而形成的固体物质。
2. 晶体的特征:晶体有明显的外形、有规则的几何形状、具有面、角、对称性等特征。
3. 晶体的分类:
a. 晶体按照结构可以分为离子晶体、共价晶体和金属晶体。
b. 晶体按照形状可以分为自然晶体和合成晶体。
4. 晶体的结构特点:晶体的结构是有序的,并且具有周期性和重复性。
三、展示实验
可以进行一些简单的实验来观察晶体的形成过程,如结晶实验或者晶体生长实验。
四、讨论和总结
与学生讨论晶体和非晶体的区别,总结晶体的特点和分类。
五、作业布置
设计一些有关晶体的问题,让学生进行思考和总结。
教学反思:
通过本节课的教学,学生应该能够理解晶体的定义、特征和分类,能够区分晶体和非晶体,并且对晶体的结构有一定了解。
在教学中,要注重启发学生思考,引导他们通过实验和讨
论来深化对知识的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物质的熔沸点的高低与构成该物质的晶体类型及晶体内部粒子间的作用力有关,其规律如下:
1、在相同条件下,不同状态的物质的熔、沸点的高低是不同的,一般有:固体>液体>气体。
例如:NaBr(固)>Br2>HBr(气)。
2、不同类型晶体的比较规律
一般来说,不同类型晶体的熔沸点的高低顺序为:原子晶体>离子晶体>分子晶体,而金属晶体的熔沸点有高有低。
这是由于不同类型晶体的微粒间作用不同,其熔、沸点也不相同。
原子晶体间靠共价键结合,一般熔、沸点最高;离子晶体阴、阳离子间靠离子键结合,一般熔、沸点较高;分子晶体分子间靠范德华力结合,一般熔、沸点较低;金属晶体中金属键的键能有大有小,因而金属晶体熔、沸点有高(如W)有低(如Hg)。
例如:金刚石>食盐>干冰
3、同种类型晶体的比较规律
A、原子晶体:熔、沸点的高低,取决于共价键的键长和键能,键长越短,键能越大共价键越稳定,物质熔沸点越高,反之越低。
如:晶体硅、金刚石和碳化硅三种晶体中,因键长C—C<C—Si< Si—Si,所以熔沸点高低为:金刚石>碳化硅>晶体硅。
B 、离子晶体:熔、沸点的高低,取决于离子键的强弱。
一般来说,离子半径越小,离子所带电荷越多,离子键就越强,熔、沸点就越高,反之越低。
例如:MgO>CaO ,NaF>NaCl>NaBr>NaI 。
KF >KCl >KBr >KI ,CaO >KCl 。
C 、金属晶体:金属晶体中金属阳离子所带电荷越多,半径越小,金属阳离子与自由电子静电作用越强,金属键越强,熔沸点越高,反之越低。
如:Na <Mg <Al ,Li>Na>K 。
合金的熔沸点一般说比它各组份纯金属的熔沸点低。
如铝硅合金<纯铝(或纯硅)。
D 、分子晶体:熔、沸点的高低,取决于分子间作用力的大小。
分子晶体分子间作用力越大物质的熔沸点越高,反之越低。
(具有氢键的分子晶体,熔沸点反常地高)
如:H 2O >H 2Te >H 2Se >H 2S ,C 2H 5OH >CH 3—O —CH 3。
(1)组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。
如:CH 4<SiH 4<GeH 4<SnH 4。
(2)组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高。
如熔沸点 CO >N 2,CH 3OH >CH 3—CH 3。
(3)在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。
如:C 17H 35COOH >C 17H 33COOH ;硬脂酸 > 油酸
(4)烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加,熔沸
点升高,如C 2H 6>CH 4, C 2H 5Cl >CH 3Cl ,CH 3COOH >HCOOH 。
(5)同分异构体:链烃及其衍生物的同分异构体随着支链增多,熔沸点降低。
如:
CH 3(CH 2)3CH 3 (正)>CH 3CH 2CH(CH 3)2(异)>(CH 3)4C(新)。
芳香烃的异构体有两个取代基时,熔点按对、邻、间位降低沸点按邻、间、对位降低)
针对性训练
一、选择题
1.下列性质中,可以证明某化合物内一定存在离子键的是( )
(A )溶于水 (B )有较高的熔点 (C )水溶液能导电 (D )熔融状态能导电 2.下列物质中,含有极性键的离子化合是( )
(A )CaCl 2 (B )Na 2O 2 (C )NaOH (D )K 2S
3.Cs 是IA 族元素,F 是VIIA 族元素,估计Cs 和F 形成的化合物可能是( ) (A )离子化合物 (B )化学式为CsF 2 (C )室温为固体 (D )室温为气体 4.某物质的晶体中含A 、B 、C 三种元素,其排列方式如图所示(其中前后两面心上的B 原子未能画出),晶体中A 、B 、C 的中原子个数之比依次为( )
(A )1:3:1 (B )2:3:1 (C )2:2:1 (D )1:3:3
6.在NaCl 晶体中与每个Na +距离等同且最近的几个Cl -所围成的空间几何构型为( )
(A )正四面体 (B )正六面体 (C )正八面体 (D )正十二面体
7.如图是氯化铯晶体的晶胞(晶体中最小的重复单元),已知晶体中2个最近的Cs +离子核间距为a cm ,氯化铯的式量为M ,NA 为阿伏加德罗常数,则氯化铯晶体的密度为( )
(A )3
8a N m A ⨯g·cm -3 (B )A
N Ma
83
g·cm -3 (C )3
a N M A ⨯g·cm -3
(D )A
N Ma 3
g·cm -3。