英文翻译格式
翻译排版和一般要求

一、排版要求:1. 格式问题:(1)除有特殊要求外,文件都要做成双语对照的,即将译文一段对一段写在原文的下面。
注意:请不要将译文直接写在原文的后面,要另起一段。
为了格式的统一,译文的格式要和原文尽量保持一致。
一般来说,英翻中的译文首行空两格(两个汉字),中翻英的译文首行不空格。
具体格式如下:Word文件的格式:英译中:原文:The Parties agree that the Owner shall register this Tenancy Agreement within fifteen (15) days from the date of execution with the competent registration authorities at the district or county where the Premises is located in accordance with the relevant laws, and obtain the evidence of the registration and the record of the lease. If this Tenancy Agreement is amended or terminated after it has been registered and recorded, the Owner shall be responsible for registering the amendment or termination with the original registration authorities within fifteen (15) days from the date of such amendment or termination. The Owner shall be liable for all the costs, penalties, fines and disputes arising from its failure in registering this Tenancy Agreement or its amendment or termination.译文:双方约定,出租人应在本租赁协议签署日后十五(15)天内按照相关法律的规定,到房屋所在地区或国家的适当登记部门登记本租赁协议,并获得此登记的证明以及租赁记录。
专业中英文翻译规范

翻译规范——Format(2011年修订版)请仔细阅读以下规定。
本篇大部分规定为格式方面的规定,而部分翻译项目则可能对其格式另有特殊规定。
1. SPACE(空格)除非有特别指示,请在每个翻译项目的中文文字(双字节字符)和英文字或数字(均为单字节)之间留一个单字节空格。
Example 1:今天是2002 年5 月26 日正确。
今天是2002 年5 月26 日错误,数字前没有留出一个单字节空格。
今天是2002 年5 月26 日错误,2 个中文字间无需留出一个空格。
欲知以上各行间有何区别,可到Word > 工具> 选项> 视图> “格式标记”下选择“全部”或者“隐藏文字”。
Example 2:熟练操作WINDOWS 98 中文环境。
在“作”和“W”,“S”和“9”,及“8”和“中”之间都需要留出一个空格。
英文字或数字位于句首或句末的,则无需留空。
Example 1:2002 年5 月26 日是个重要的日子。
正确。
2002 年5 月26 日是个重要的日子错误,句首无须留出一个空格。
Example 2:他的英文名叫做John。
正确。
他的英文名叫做John 。
地址: 福州左海帝景3座1105室网址: 错误,句末无须留出一个空格。
2. PUNCTUATION(标点符号)usage1) 中文须使用双字节标点符号,如,。
、“”!;:; 英文则须使用单字节标点符号, . , “” ! ; :。
双字节标点符号和单字节标点符号的区示:输入状态不同,即双字节标点符号须在中文输入状态下输入,而单字节标点符号须在英文状态下输入;For example:“计算机世界”杂志要用双字节引号,“Computer World” 应使用单字节英文引号。
2) 英文中并列的单字节逗号“,”,中文翻译要改成双字节顿号“、” 等。
3) 书名、协议名称、法律合同规章名称译成英文时应该采用斜体形式,中文时则应在其名称前后加上书名号《》。
英译汉格式规范

英译中翻译格式规范I 格式规范1. 如非引用英文原文,则译稿中中文的标点应全部为中文全角字符标点。
2. 多个词组并列时,英文中的“,”为中文中的“、”,英文中的省略号“…”应为六个字符的中文省略号“……”,左括号和右括号也都应为中文全角括号“(”和“)”3. 数字和金额可以加分节号“,”(如5,000),也可以不加,但在全文中应统一。
4. 译文中中文的字体形式应与英文原文尽量一致,例如原文用粗体、斜体(但文献标题除外)或加下划线,则译文应也用粗体、斜体或加下划线;5. 数值范围的表示形式可以采用110 kV~220 kV,也可以采用110~220 kV,但在原文中应统一;注意:数字和波浪线之间没有空格,而数字与单位之间要加一个空格,但“°C”、“°F”和“%”除外;6. 公式中的符号从“插入公式”中选择;7. 原文中用斜体表示的书籍、手册、期刊及报纸名称,大型音乐会作品曲名,戏曲及电影剧名,广播电视节目名称或诗歌标题,在译文中应使用书名号“《》”8. 全文统一采用宋体,英文字母或阿拉伯数字采用Times New Roman字体;9. 当翻译合同或招投标文件时,“定义与解释”一条中首字母全部为大写的术语(如The Owner, The Supplier等),在译成中文时应用双引号突出(“业主”、“供货商”)。
10. 一级标题和二级标题应用不同字号区别开,例如一级标题可采用2或3号字,二级标题可以用四号或小四;11. 正文采用小四或五号字。
12. 翻译中,数字应重点关注,均应与原文核对;13. 译文的章节与条款编号,应与原文一致,有问题提出;14. 直径符号φ的输入方法:插入,符号,字体选择Symbol,然后选择输入φ,并采用斜体;II 术语和表达规范1. 原文中的“General”,一般译为“概述”。
如果是标准或规范,一般译为“一般规定”或“总则”,其余视情况处理;2. 缩写词首次出现(整个文件中第一次出现)时要译出,此后用缩写;3. 原文中的单位符号、公式等可直接引用,单位(如cm2)不必再译为中文;4. 原文中的人名不译出。
英文翻译2(格式)

英文翻译B《Mode choice of university students commuting to school and the role of active travel》Author:Kate E. Whalen, Antonio Páez, Juan A. Carrasco School of Geography and Earth Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, CanadaDept. of Civil Engineering, Universidad de Concepción, P.O. Box 160-C,Concepción, ChileAvailable online 9 July 2013大学生去学校和旅游活动模式选择的作用突出点学生选择活动出行的比一般人群更普遍。
多项logit离散选择模型是用来识别影响模态选择的因素。
街道密集增加了电动模式的选择率。
更高的人行道密度减少了机动模式的概率。
我们找到一个由汽车和自行车旅游时间的积极效用。
摘要近年来,有旅游兴趣的学生越来越多。
已经指出,学生倾向于使用各种运输方式,包括积极的旅行,比其他人群更频繁。
调查大学生的模态的选择提供了一个独特的机会来了解人口的大部分活跃的在一个主要trip-generating位置的通勤者。
反过来,这可以对影响活跃旅游的因素提供宝贵的见解。
在本文中,我们报告一个在大学生中模式选择分析的结果,使用在加拿大汉密尔顿的麦克马斯特大学为例。
这项研究的结果表明,成本的结合,个人态度,环境因素如街道和人行道密度是影响模态的选择的因素。
一个关键发现是,由汽车和自行车旅行时间积极影响这些模式的工具,尽管旅行时间以递减的速率增加。
而旅行时间的积极效用的汽车已经被堵在哪里,我们的分析证明骑自行车的人随处可去。
英语的范文汉字姓名中文名字翻译英文名字格式

英语的范文汉字姓名中文名字翻译英文名字格式1.如果你是英文名字,中文的姓,可以按照西方的方式写。
例如:Rick Zhang2.如果你是中文的拼音,按照中国的顺序,姓在前,名在后;如果名字是三个字的,后两个字拼音要连在一起。
例如:张文洁Zhang Wenjie“ ___”这个名字有两种写法:这种一般写给中国人或会中文的人看,因为中国人习惯姓在前,名在后,你这样写的话,读出来时他也才容易明白2.Xiaoming Li这个比较正式,国际上的正式场合用这种比较好,而且这个多是写给外国人看的,因为英语国家的外国人习惯姓在前,名在后补充:银行的写法又不一样,如果是银行的写法或护照的写法,毛一东是这样的:MAO YI DONG英文名的英文意思是Englishname,目前各国比较流行英文名,因为世界各国交流多了,有了英文名更方便交流。
英语姓名的一般结构为:教名自取名姓。
如 William·Jefferson·Clinton。
但在很多场合中间名往往略去不写,如 George·Bush,而且许多人更喜欢用昵称取代正式教名,如 Bill·Clinton。
上述教名和中间名又称个人名。
英文名与中文名不同,中文名是姓在前名在后,英文名恰恰相反。
例如:中----李,小明;英----Jake·Wood。
Charming ^_^举个例子:比如“ ___”这个名字,有两种写法:1)Li Xiaoming ( 这种一般写给中国人或会中文的人看,因为中国人习惯姓在前,名在后,你这样写的话,读出来时他也才容易明白)2)Xiaoming Li (这个比较正式,国际上的正式场合用这种比较好,而且这个多是写给外国人看的,因为英语国家的外国人习惯姓在前,名在后)英文名的英文意思是Englishname,目前各国比较流行英文名,因为世界各国交流多了,有了英文名更方便交流。
英语姓名的一般结构为:教名自取名姓。
专业英语翻译格式要求

标题(居中,三号黑体)(——如有附标题,则为小三号黑体)作者1,作者2(小四号楷体)摘要:“摘要”两字用小四号黑体加粗,摘要内容宜用小四号宋体。
关键词:“关键词”三字小四号黑体加粗,其他用小四号宋体,关键词之间用中文逗号隔开,结束处不加标点。
总体要求:总字数不少于3500字,参考文献无需翻译,但应完全罗列。
表格名称、内容需翻译,图名需翻译,图内解释无需翻译,但应将原图截下放于相应位置处。
文章标题段前段后都为0.5行,单倍行距。
以下正文除各部分标题、插图和表格外,一律用小四号宋体,正文为1.1倍行距。
段前6磅,段后0磅。
首行缩进2字符,无左右缩进,其他具体字体要求见注2。
1.一级标题(四号,黑体,加粗,一级标题是段前段后0.5行,单倍行距)1.1 二级标题(小四号,宋体,加粗,二三级标题都是段前段后6磅,单倍行距)1.1.1 三级标题(小四号,宋体,加粗)图表名称的格式:图片名称标注在下方,表格名称标注在表格上方,居中,汉字用宋体,数字、英文用Time New Roman , 罗马字用Symbol,字号五。
表1 名称……表格要求见注3表格以序号、名称的格式标注,居中,中英文对照,表格为三线表(表格套用格式为简明型1)。
x/cm I/mA v/(m⋅s-1) h/m p/MPa10 30 2.5 4 11012 34 3.0 5 111注:表注和图注用五号宋体,表注左对齐,图注居中。
1.1.2 三级标题(小四号,宋体,加粗)基金项目:基金项目类别(编号);基金项目类别(编号)作者简介:第一作者姓名(出生年-),性别,职称,主要研究方向通信联系人:姓名,职称,主要研究方向:……. E-mail:……(第一作者为研究生、博士后时,应当以作者中的导师为通信联系人;其他情况时,在作者简介后直接加E-mail,不写通信联系人。
)图1 名称……图形要求见注4图号和图名用五号宋体,图下居中。
1.2 二级标题(小四号,宋体,加粗)2.一级标题注释统一采用页下注:五号宋体。
英文翻译报告格式字体
英文翻译报告格式字体
格式设置如下:
1、字体为 Times New Roma,大小为12 font(也就是小四);
2、行距为1.5 或 2倍行距,段与段之间需要空一行;
3、对齐方式为左对齐或者两侧对齐(总之,左起必须顶格);
4、Reference(参考文献)必须另起一页,且不计入文章字数。
扩展资料
英语注释具体要求如下:
①在文中要有引用标注,如××× [1];
②如果重复出现同一作者的同一作品时,只注明作者的姓和引文所在页码(姓和页码之间加逗号);格式要求如下:
[1](空两格)作者名(名在前,姓在后,后加英文句号),书名(用斜体,后加英文句号),出版地(后加冒号),出版社或出版商(后加逗号),出版日期(后加逗号),页码(后加英文句号)。
[2](空两格)作者名(名在前,姓在后,后加英文句号),文章题目(文章题目用“”引起来)(空一格)紧接杂志名(用斜体,后加逗号),卷号(期号),出版年,起止页码,英文句号。
英语翻译注意事项
翻译者入门须知1. 英文中没有中文的书名号,在英文中,书名使用斜体或者双引号来表达,例如:中文:《中华人民共和国劳动合同法》英文中表达为Labor contract law of the People's Republic of China 或者为“Labor contractlaw of the People's Republic of China”2. 一段话或者一句话的开头第一个字母要大写。
这预示着一个新的开始。
在英文书写中,我们还要注意正确运用标点符号的书写。
我们每写一个英文单词,后面紧跟着一个空格。
在一句话的停顿或者终止时,标点符号紧挨着英文单词。
然后下面的一个单词和前面的标点符号之间也有一个空格距离。
3. 专有名词的书写。
一些专有名字有自己固定的书写模式,它的第一个字母要大写,这些切忌千万别弄错了。
例如:“中华人民共和国”英文为People's Republic of China (PRC) 每个单词都是第一个字母大写,而单词之间的连接词,例如“of”还是小写。
4. 关于金额的书写。
123456.89 元如果用英文正确的表达出来的话就是One hundred and twenty-three thousandfour hundred and fifty-six point eighty nine Yuan.这里面需要注意的是:1) thousand 和hundred 之间不需要and2) hundred 后面需要and3)一般你要用国际通用的货币符号的话,应该放在数字前面如4)但是如果要说yuan的话就应该放在数字后面5)因为各国的货币不一样,所以表达的时候一定要表达清晰,例如美元就应该是USD 或者为US Dollar, 港元表示为HKD 或者为Hong Kong dollar,澳元AUD 或者为AustralianDollar …. 单独的Dollar 并不能具体的表示是哪国的货币,所以这点需要谨慎,一定要注意6)具体的表示金额的时候,thousand/hundred 没有复数形式直接使用。
英文信件翻译格式
英文信件翻译格式
英文信件的翻译格式与普通的英文信件格式基本相同,但需要将内容从目标语言翻译成英文。
以下是一个简单的英文信件翻译格式的示例:
日期(Date):
收件人(Recipient):
地址(Address):
尊敬的XX先生/女士(尊称),
首段(Introduction):
写明你写信的目的和背景,以及与收件人的关系。
正文(Body):
详细描述你想要表达的内容,使用简单明了的语句,确保语法和拼写正确。
结束语(Closing):
表达对收件人的感谢,提供需要进一步行动或回复的指示(如果有的
话)。
问候语(Closing Remarks):
使用适当的问候语,如“最好的祝愿”(Best regards),“诚挚的问候”(Sincerely),“敬祝安康”(Yours faithfully)等。
签名(Signature):
在信末,写上你的名字,并用手写签名(如果适用)。
附件(Attachments):
如有需要,列出附加文件的清单。
注:
-在翻译时,尽量保持语法结构和句子流畅性,并关注文化差异和用词选择。
-如果涉及正式场合或商务信函,可能需要使用更正式的词汇和格式。
请记住这只是一个参考的翻译格式示例,具体的信件格式可能会因不同的情况而有所变化。
如果你有特定的信件内容或格式要求,可以提供更多细节,以便我可以提供更精确的帮助。
毕业论文外文翻译格式
盐城师范学院毕业论文(设计)外文资料翻译学院:(四号楷体_GB2312下同)专业班级:学生姓名:学号:指导教师:外文出处:(外文)(Times New Roman四号) 附件:1.外文资料翻译译文; 2.外文原文1.外文资料翻译译文译文文章标题×××××××××正文×××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××…………。
*注:(本注释不是外文翻译的部分,只是本式样的说明解释)1. 译文文章标题为三号黑体居中,缩放、间距、位置标准,无首行缩进,无左右缩进,且前空(四号)两行,段前、段后各0.5行间距,行间距为1.25倍多倍行距;2. 正文中标题为小四号,中文用黑体,英文用Times New Roman体,缩放、间距、位置标准,无左右缩进,无首行缩进,无悬挂式缩进,段前、段后0.5行间距,行间距为1.25倍多倍行距;3. 正文在文章标题下空一行,为小四号,中文用宋体,英文用Times New Roman体,缩放、间距、位置标准,无左右缩进,首行缩进2字符(两个汉字),无悬挂式缩进,段前、段后间距无,行间距为1.25倍多倍行距;4. 强行分页时请用插入分页符换页;5. 正文中表格与插图的字体,中文部分一律用五号楷体_GB2312;表格用三线表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附录1A simplified approach for settlement calculation of pilegroups considering pile-to-pile interactionin layered soils1 IntroductionPiles, generally arranged in groups, are used in various applications to support structures exposed to vertical loads. In many cases, the settlement of pile groups is the controlling factor in design because the primary purpose of pile groups is to limit the deformation of structures. Therefore, many researchers have proposed different methods to investigate the behavior of the settlement of pile groups.The current methods for estimating the settlement of pile groups can be categorized as: 1) Numerical methods, such as finite element method, and boundary element method. As a very powerful technique, numerical methods can readily calculate the settlements of pile groups in terms of the nonlinearity of soils and the interaction between individual piles by performing full three-dimensional-models for pile groups. However, the application of numerical methods is limited in practice for the complex modeling procedures and the high computational requirements, especially for large numbers of pile groups. 2) Equivalent pier methods. The methods consider the pile groups as a whole pier to simplify the procedure for estimating the settlement of pile groups which equals that of single pile by means of load-transfer function. The obvious drawback of equivalent pier method is that the computed settlement is only relative to the size of the equivalent pier by neglecting the influence of the pile number and pile space in pile groups. 3) Superimposing methods. The methods, originally introduced by POULOS, are widely used recently which estimate the settlements of pile groups by superimposing the interaction factors of any two individual piles. LEE developed a procedure to calculate the interaction factors for both rigid and flexible pile groups. COSTANZO and LANCELLOTA proposed an approximate solution to evaluate the interaction factors taking into account the nonlinearity characteristic of surrounding soil around piles. WONG and POULOS modified the interaction factors which can account for the different type of piles. However, the superimposing method does not considerthe reinforcing effects of pile group, i.e. the settlement reduction of soils due to the presence of the neighboring piles. As a result, the computed settlement of pile groups is usually greater than the actual result. Therefore, it is required that developing a simplified approach for estimating the settlement of pile groups considering the reinforcing effect of piles induced by the interaction between individual piles in pile groups which can readily be used in practice.This work presents a simplified approach to carry out a load settlement analysis of pile groups subjected to vertical loads in layered soils by using two models. First, the shear-deformation model of soils deduced from the method presented by RANDOLPH and WROTH, is developed to simulate the interaction between individual piles in pile groups. The load-transfer model, general used in analyzing the behaviors of single piles, is then extended to estimate the settlement of pile groups by accounting for the interaction between individual piles. Consequently, the relationship between the settlement and the vertical load of pile groups is developed. Results of a certain laboratory on pile groups are used to verify the proposed approach in this work. The influences of the pile space and pile length on the settlement of pile groups are also discussed.2 Interaction between pilesThis work focuses on the vertically-loaded pile groups consisting of n identical piles with the same length L, diameter d, pile space S, and elastic embedded in layered soils, as shown in Fig.1(a).Generally, the modulus Epresistance of the surrounding soils at thepile/soil interface, i.e. shaft frictional force named as τ, is mobilized once the displacement of the piles occurs. Thezdisplacement of pile groups at a given depth is different from that of single pile under the same load due to the fact that the reinforcing effect caused by the interaction between some neighboring piles confines the displacement of soils along piles. Therefore, it is necessary to consider the interaction between individual piles in calculating the settlement of pile groups. The soils are assumed to be a series of nonlinear springs attached along the pile shaft to simulate the behaviors of soils subjected to shaft frictional force, as shown in Fig.1(b). Obviously, the stiffness of springs, denoted as the ratio of the shaft frictional force to the displacement of soils, is relative to the interaction between individualpiles in pile group.Fig.1 Sketch of pile groups located in layered soilsin Considered the interaction between any two piles with the pile space Sij pile group, i and j, as shown in Fig.2. For pile i, the vertical displacement of the surrounding soil at depth z, defined as w(z), is composed of three parts: the first,i(z), is caused by the shaft frictional force of pile i itself at depth z; named as wiithe second is due to the shaft frictional force of pile j at the same depth z, w(z);ijthe third is the reduction part induced by the reinforce-effect of pile j, w'ij (z).Likewise, the values of the equivalent stiffness of springs are also composed of the same three parts. The procedure of calculating each part of the soil vertical displacement and the equivalent stiffness of springs are presented as follows.Fig.2 Interaction between two piles in pile group2.1 Calculation of w ii (z )According to the formulation presented by RANDOLPH and WROTH to estimate the shear-deformation mechanism of surrounding soils around piles subjected to the shaft frictional force τiz , the displacement of a point of soils is expressed asm 0s m 0,)/l n ()(r r r G r r r z w iz i ≤≤=τ(1)m ,0)(r r z w i >=where r 0=d /2, is the radius of the pile; r is the distance from the point of soil to the center of the pile; s G is the shear modulus of soils around the pile shaft, and the expression can be written as below accounting for the layer characteristic of soils:L h G G n i ii ∑==01,s s (2)where i G ,s and h i are the shear modulus and the thickness of the i -th layer soil, respectively; r m is the radial distance from the pile centre to a point at which the shaft shear stress induced by the pile can be considered to be negligible. The value of r m can be taken as r m =2.5ρL (1-0.5μs ), where the parameter ρ is the ratio of the shear modulus of soils at the depth L /2 to that of the soil at L , and μs is the Poisson ratio of the soil.So, the expression of w ii (z ) iss 0m 0)/l n ()(G r r r z w iz ii τ= (3)and the relative equivalent stiffness of the springs is)/l n (20m s r r G w k i i z iziiz πτ== (4) 2.2 Calculation of w ij (z )For pile j , there is also a shaft frictional force at the depth z to resist the vertical load at the pile top, τjz .Likewise, according to the shear-deformation formulation, w ij (z ) can be written ass m 0)/l n ()(G S r r z w ij jz ij τ= (5)Obviously, accounting for all the action of the other piles, the relative equivalent stiffness of springs can be written as∑≠==n i j j ij ijz S r G k ,1m s )/ln(2π (6) 2.3 Calculation of w 'ij (z )This part of displacement of the soil around the pile i is induced by the reinforce-effect of pile j . The value of the stress of pile j at the depth z caused by the spread of τiz , can be expressed asij iz jiz S r ,a 0ττ=(7)For pile j , τjiz can be taken as a negative frictional force which pulls pile j down, whereas pile j generates a counter force with the same value but oppositedirection namely ijzτ' , which reduces the vertical displacement of the soil around the pile i . Hence, the value of w 'ij (z ) is)l n ()(m s 20ijij iz ij S r S G r z w τ=' (8) Accounting for all the other piles action, the relative equivalent stiffness of springs can be written as)/l n ()/(2m ,10sij n i j j ij ij S r S r G k ∑≠=='π (9) So, the total equivalent stiffness of springs along pile i can be readily obtained:i j zi j z i i z iz k k k k '++=1111 (10) 3 Procedure for calculating settlement of pile group3.1 Developing load-transfer function for individual pile in pile groups The analysis method, proposed originally by COYLE and REESE , is an efficient method to predict the load settlement relationship for single piles subjected to vertical load for its simplicity and capability of incorporating the nonlinear behavior of soils. However, due to the emission of influence of pile-to-pile interaction on the deformation of the soil surrounding the pile, it is rather difficult to be extended to pile-group analysis. In this work, a load-transfer function is developed based on the analysis of the aforementioned interaction between individual piles in pile group.Pile i , supported by a series of nonlinear springs along pile shaft or pile bottom to resist the vertical load P i at the pile top, is taken out to be analyzed separately, as shown in Fig.3(a). The stiffness of spring at the pile bottom can be conveniently expressed using the following equation suggested in Ref.:)1(4sb 0sb b μπ-=r G k (11) where G sb and μsb are the shear modulus and Poisson ratio of the soil at the pilebottom.Fig.3 Load settlement analysis of individual pile in pile-group:(a) Load analysis of pile i ; (b) Load analysis of pile jConsidering one element with the finite length dz of pile i at the depth z , all the loads exerting on the finite element can be described as two parts: vertical load located at the top and bottom, P (z ) and P (z )+dP (z ), and shaft frictional force τ(z ). The relative differential equation can be established according to the equilibrium condition in vertical direction asdzz dp z )(1)(⋅-=μτ (12) where u is the perimeter of the pile. Besides, the elastic compresstion of the finite element can be expressed asdz A E z P z dw pp p )()(-= (13) where A P is the area of the cross-section of pile.If it is assumed that there is no slipping in the pile/soil interface, substituteEq.(12) into Eq.(13) so that the load-transfer function of pile i subjected to vertical load can be written as0)()(22P =-z w k dz z w d A E i iz i P (14) 3.2 Solution for settlement of pile groupIf the axial load on the top of pile i is assumed as P i , the boundary condition of Eq.(14) can be easily expressed asi z i P dzz dw A E -==0P P |)( (15))(|)(PP L w k dzz dw A E i b L z i -== So, the solution of Eq.(14) may be simplified as z z i i i e c e c z w λλ-+=21)( (16) whereiz i k A E P P =λ)]cosh()sin([2)]/(1[P P P P b 1L L A E A E k e P c i i i i L i i λλλλλ+-⋅=- )]cosh()sin([2)]/(1[P P P P b 2L L A E A E k e P c i i i i L i i λλλλλ++⋅= Obviously, the value of Eq.(16) when z =0 is the settlement of pile i , which can also be regarded as the settlement of the n -pile group, because the rigid cap makes all the individual pile in pile group deform simultaneously, which can be expressed as)0()0()0(21n w w w =⋅⋅⋅==(17)Q P P P P n =+⋅⋅⋅+++321where Q is the total load applied at the center of the cap.4 Verification by model testA model test of 3×3 pile group subjected to axial loads in a two-layer soil system is carried out to verify the proposed approach discussed above. A layout of the foundation is shown in Fig.4. Each of the concrete testing pile has anelastic modulus (E) of 20 GPa with a diameter (d) of 62.5 mm and a length (L)pof 2 000 mm. All the piles are placed at an identical space of 4d (d is the pile diameter) and connected at the pile top by a rigid cap made of high-strength organic glass with a elastic modulus E c=60 GPa. The soil includes the silty clay layer and clay layer with the basic properties listed in Table 1, where w,γ, c, , μrepresent water content, unit weight, internal cohesion, friction angle, and Poisson ratio, respectively.Fig.4 Experimental model of 3×3 pile-group:(a)Plan view; (b) Cross-sectional viewTable1 Basic properties of soils in model testThe vertical displacements of the cap also defined as the settlement of pile group are measured by four dial indicators located at each corner of the cap inthe loading process, and the average value is considered as the settlement of pile group. A series of tests for pile group are conducted under various vertical loads applied at the center of the cap. Figure 5 shows the comparison between the measured settlements of pile group and the predicted settlements calculated based on the previously presented approach. As it can be seen, the computedresults are basically in good agreement with the measurements. Only small differences between them are observed, especially at small loading level, which is similar to the work loading of pile group in actual engineering.Fig.5 Comparison of computed and measured load settlementcurve for pile group in test5 Parametric studiesIn the design process of pile group, pile space and pile length are two important parameters that determine the cost and the construction difficulty. In order to gain a foundational understanding of the effects of these two parameters on the settlement of pile group, a parametric study for the settlement of pile group is conducted. The basic parameters required are as follows: the piles with=27 GPa, are placed pile length L=25 m, diameter d=1.2 m, elastic modulus Ep=6 MPa, in an isotropic and homogeneous soil with the shear modulus GsPoisson ratioμ=0.35, whereas the loading located at the top is kept as asconstant P=1 000 kN.5.1 Influence of pile spaceFigure 6 shows the settlements of two kinds of pile groups, 3×3 and 2×2 pile groups, with different pile spaces subjected to the same vertical load. The pile spaces vary from 3d to 9d. It can be seen from the both cases that the settlement of pile group decreases with the increase of pile space if the amount of the piles in pile group is a constant. The reason is that the interaction between individual piles is weakened with the increase of pile space, which indicates that the settlement of pile group induced by other piles has been reduced. Therefore, the pile space of individual pile should be kept as a high value appropriately in the design of pile group.Fig.6 Influence of pile space on settlement of pile-group5.2 Influence of pile lengthThe settlements of a 2×2 pile group with different pile lengths are obtained by using the presented approach, as illustrated in Fig.7, where the slenderness of pile is defined as the ratio of the length to diameter of pile. Obviously, the relative settlement decreases with the increase of pile length because more shaft frictional force is mobilized. However, only slight changes can be observed as the pile length reaches a certain value, which indicates that there exists a criticalpile length of pile group. In other words, the part of the pile exceeding the critical length only has negligible contributions to the bearing capacity of the pile group. Therefore, the reasonable pile length should be smaller than the critical length which is related to the load, the characteristic of pile and surrounding soil, and the arrangement of pile group.Fig.7 Influence of pile length on settlement of pile group6 ConclusionsBy developing two models to simulate the load-transfer behavior of pile groups in both vertical and lateral directions, a simplified approach for estimating the settlement of pile groups considering the pile-to-pile interaction is presented. Then, pile-group loading test is conducted to verify the proposed approach. Two conclusions can be drawn from the parametric study:1) The settlement of pile groups decreases with the increase of the pile space when the total amount of the individual piles is kept as a constant.2) There exists a critical pile length in a fixed arrangement pile group undera certain load. The shaft frictional force pile beyond the critical pile length cannot be mobilized.附录2在层状土中考虑桩与桩相互作用的群桩的一种沉降计算的简化方法1 引言桩,通常是以群桩的形式存在,使用在各种应用中来支持承受竖向荷载的结构。