2017中考数学17题专项演练

合集下载

2017年中考数学真题试题与答案(word版)

2017年中考数学真题试题与答案(word版)

XX★ 启用前2017 年中考题数学试卷一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上)1、计算2( 1) 的结果是()1B、2C、1D、 22、若∠α的余角是30°,则 cosα的值是()A 、213C、2D、3A 、B 、23223、下列运算正确的是()A 、2a a 1 B、a a2a2C、a a a2 D 、( a)2a24、下列图形是轴对称图形,又是中心对称图形的有()A、4 个B、3 个5、如图,在平行四边形∠1=()C、2 个D、1 个ABCD 中,∠ B=80 °, AE平分∠BAD交 BC于点E, CF∥ AE交 AE于点F,则A、 40°B、 50°C、 60°D、80°6、已知二次函数y ax2的图象开口向上,则直线y ax 1 经过的象限是()A 、第一、二、三象限 B、第二、三、四象限7、如图,你能看出这个倒立的水杯的俯视图是(C、第一、二、四象限)D、第一、三、四象限A B C D8、如图,是我市 5 月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是()A 、 28℃, 29℃B 、 28℃, 29.5℃C、 28℃, 30℃D 、 29℃, 29℃9、已知拋物线 y1 x2 2,当 1 x 5 时, y 的最大值是()2 35 7 A 、 2C 、B 、3D 、3 310、小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为 1)的一块碎片到玻璃店,配制成形状、 大小与原来一致的镜面, 则这个镜面的半径是 ( )A 、 2B 、 5C 、22D 、311、如图,是反比例函数yk 1x和 yk 2 x( k 1k 2 )在第一象限的图象,直线AB ∥ x轴,并分别交两条曲线于A 、B 两点,若S AOB2 ,则k 2k 1 的值是()A 、 1B 、 2C 、 4D 、 812、一个容器装有1 升水,按照如下要求把水倒出:第1 次倒出1升水,第2 次倒出的水量是1升的1 ,223第 3 次倒出的水量是1 升的314,第4 次倒出的水量是14升的1 ,⋯按照这种倒水的方法,倒了5 10 次后容器内剩余的水量是()A 、10 升11B 、1 升9C 、110升D 、111升二、填空题(本大题共6 小题,每小题3 分,共 18 分 .把答案填在答题卡中的横线上)13、 2011的相反数是 __________14、近似数 0.618 有__________个有效数字.15、分解因式:a 3= __________16、如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为 __________C 'D 17、如图,等边△ ABC 绕点 B 逆时针旋转30°时,点 C 转到 C ′的位置, 且 BC ′与 AC 交于点 D ,则CD的值为 __________16 题图17 题图18 题图18、如图, AB 是半圆 O 的直径,以 0A 为直径的半圆O ′与弦 AC 交于点 D ,O ′ E ∥ AC ,并交 OC 于点E .则下列四个结论:①点 D 为 AC 的中点;② S O 'OE1S AOC ;③ AC 2AD;④四边形 O'DEO 是菱形.其中正确的结2论是 __________.(把所有正确的结论的序号都填上)三、解答题(本大题共 8 小题,满分共 66 分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤) .19、计算: (1) 1(5) 034 .220、假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为 60°,已知风筝线 BC 的长为 10 米,小强的身高 AB 为 1.55 米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到 1 米,参考数据2 ≈ 1.41 , 3≈ 1.73 )21、如图, △ OAB 的底边经过⊙ O 上的点 C ,且 OA=OB ,CA=CB ,⊙O 与 OA 、OB 分别交于 D 、E 两点.( 1)求证: AB 是⊙ O 的切线;( 2)若 D 为 OA 的中点,阴影部分的面积为33,求⊙ O 的半径 r .22、一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子 3 个(分别用白 A 、白 B 、白 C 表示),若从中任意摸出一个棋子,是白色棋子的概率为3 .4( 1)求纸盒中黑色棋子的个数;( 2)第一次任意摸出一个棋子(不放回) ,第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.23、上个月某超市购进了两批相同品种的水果,第一批用了 2000 元,第二批用了 5500 元,第二批购进水果的重量是第一批的 2.5 倍,且进价比第一批每千克多 1 元.( 1)求两批水果共购进了多少千克?( 2)在这两批水果总重量正常损耗 10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于 26%,那么售价至少定为每千克多少元?利润(利润率 =100%)进价AG为边作一个正方形AEFG ,24、如图,点G 是正方形ABCD 对角线 CA 的延长线上任意一点,以线段线段 EB 和 GD 相交于点 H.( 1)求证: EB=GD ;( 2)判断 EB 与 GD 的位置关系,并说明理由;( 3)若AB=2 , AG=2,求EB的长.25、已知抛物线y ax22ax 3a ( a 0) 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点 D 为抛物线的顶点.(1)求 A 、 B 的坐标;(2)过点 D 作 DH 丄 y 轴于点 H,若 DH=HC ,求 a 的值和直线 CD 的解析式;(3)在第( 2)小题的条件下,直线 CD 与 x 轴交于点 E,过线段 OB 的中点 N 作 NF 丄 x 轴,并交直线CD 于点 F,则直线 NF 上是否存在点 M ,使得点 M 到直线 CD 的距离等于点 M 到原点 O 的距离?若存在,求出点M 的坐标;若不存在,请说明理由.中考数学试题答案一、选择题题号123456789101112答案B A C C B D B A C B C D二、填空题13. 201114. 315.a(3 a)(3 a)°17.2318.①③④16. 144三、解答题19. 解:原式 =2-1-3+2 ,=0 .故答案为: 0 .20.解:∵一元二次方程 x2-4x+1=0 的两个实数根是 x1、 x2,∴ x1 +x 2=4 , x1?x2=1 ,∴( x1+x 2)2÷()=4 2÷2=4 ÷421.解:在 Rt △ CEB 中,sin60 °=,∴CE=BC?sin60°=10×≈8.65m,∴CD=CE+ED=8.65+1.55=10.≈210m,答:风筝离地面的高度为 10m .22.( 1)证明:连 OC ,如图,∵ OA=OB , CA=CB ,∴OC ⊥AB,∴AB 是⊙ O 的切线;(2)解:∵ D 为 OA 的中点, OD=OC=r ,∴ OA=2OC=2r ,∴∠ A=30°,∠ AOC=60°, AC=r,∴∠ AOB=120°, AB=2r,∴ S 阴影部分 =S △OAB -S 扇形ODE = ?OC?AB-=-,∴?r?2r- r2=-,∴ r=1 ,即⊙ O 的半径 r 为 1 .23. 解:( 1) 3÷-3=1 .答:黑色棋子有 1 个;( 2)共12 种情况,有 6 种情况两次摸到相同颜色棋子,所以概率为.24. 解:( 1)设第一批购进水果x 千克,则第二批购进水果 2.5 千克,依据题意得:,解得 x=200 ,经检验 x=200 是原方程的解,∴x+2.5x=700 ,答:这两批水果功够进 700 千克;( 2)设售价为每千克 a 元,则:,630a≥ 7500× 1.26,∴,∴a≥15,答:售价至少为每千克 15 元.25.( 1 )证明:在△ GAD 和△ EAB 中,∠ GAD=90° +∠ EAD ,∠ EAB=90° +∠ EAD ,∴∠ GAD= ∠ EAB ,又∵ AG=AE , AB=AD ,∴△ GAD ≌△ EAB ,∴EB=GD ;( 2) EB ⊥ GD ,理由如下:连接BD ,由( 1 )得:∠ ADG= ∠ ABE ,则在△ BDH 中,∠DHB=180° - (∠ HDB+ ∠ HBD )=180°-90 °=90°,∴EB⊥GD ;( 3)设BD与AC交于点O,∵ AB=AD=2在 Rt △ABD中, DB=,∴ EB=GD=.26. 解:( 1)由y=0得, ax 2-2ax-3a=0,∵ a≠0,∴ x2 -2x-3=0,解得1=-1,x2=3,∴点 A 的坐标( -1, 0),点 B 的坐标( 3,0);(2)由 y=ax 2 -2ax-3a ,令 x=0 ,得 y=-3a ,∴ C ( 0, -3a ),又∵ y=ax 2 -2ax-3a=a ( x-1 )2-4a ,得 D (1 , -4a ),∴ DH=1 , CH=-4a- ( -3a ) =-a ,∴ -a=1 ,∴ a=-1 ,∴C(0, 3),D(1,4),设直线 CD 的解析式为y=kx+b ,把 C、 D 两点的坐标代入得,,解得,∴直线 CD 的解析式为y=x+3 ;( 3)存在.由( 2)得, E(-3,0),N(-,0)∴F(,),EN= ,作 MQ⊥CD 于 Q,设存在满足条件的点M(,m),则FM=-m ,EF==,MQ=OM=由题意得: Rt △ FQM ∽ Rt △ FNE ,∴=,整理得 4m 2+36m-63=0 ,∴m2+9m=,m 2+9m+=+(m+ )2=m+ =±∴ m1=,m2=-,∴点 M 的坐标为M1(,),M2(,-).”可见,一个人的心胸和眼光,决定了他志向的短浅或高远;一个清代“红顶商人”胡雪岩说:“做生意顶要紧的是眼光,看得到一省,就能做一省的生意;看得到天下,就能做天下的生意;看得到外国,就能做外国的生意。

河北省2017年中考数学试题含答案

河北省2017年中考数学试题含答案

河北省2017年中考数学试题及答案
一、选择题:本大题共16个小题,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.下列运算结果为正数的是()
5.图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是()
A.①B.②C.③D.④6.如图为张小亮的答卷,他的得分应是()
A.100分B.80分C.60分D.40分
&
11.如图是边长为10的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:)不正确的()
12.如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是()
14.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,比较5月份两组家庭用水量的中位数,下列说法正确的是()
A.甲组比乙组大B.甲、乙两组相同C.乙组比甲组大 D.无法判断
A.1.4 B.1.1 C.0.8 D.0.5
二、填空题(本题共有3个小题,满分10分,将答案填在答题纸上)
]
答案:一、选择题
一、填空题
17.100 18. 560 19. ;2或-1 .
三、解答题。

浙江省中考数学复习 第一部分 考点研究 第四单元 三角形 第17课时 三角形的基础知识试题-人教版初

浙江省中考数学复习 第一部分 考点研究 第四单元 三角形 第17课时 三角形的基础知识试题-人教版初

第四单元三角形第17课时三角形的基础知识(建议答题时间:40分钟)基础过关1.(2017某某)若一个三角形的两边长分别为2和4,则该三角形的周长可能是( )A. 6B. 7C. 11D. 122.(2017某某模拟)△ABC的外心在三角形的外部,则△ABC是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法判断3.(2017某某改编)三角形的内心是( )A. 三角形三条边上中线的交点B. 三角形三条边上高线的交点C. 三角形三条边垂直平分线的交点D. 三角形三条内角平分线的交点4.(2017德阳)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于点E,∠BAC=60°,∠ABE=25°,则∠DAC的大小是( )° B. 20° C. 25° D. 30°第4题图5.如图,在△ABC中,∠1=∠2,G为AD的中点,延长BG交AC于点E,F为AB上的一点,CF⊥AD于点H.下列判断正确的有( )第5题图①AD是△ABE的角平分线;②BE是△ABD边AD上的中线;③CH是△ACD边AD上的高.A. 1个B. 2个C. 3个D. 0个6.如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点E作垂线交BC 于点F,已知BC=10,△ABD的面积为12,则EF的长为( )B. 2.4 C第6题图7.(2017某某)如图,△ABC中,E为BC边的中点,CD⊥AB,AB=2,AC=1,DE=32,则∠CDE+∠ACD=( )第7题图A.60° B.75° C.90° D.105°8.(2017某某)如图,△ABC中,E是BC的中点,AD是∠BAC的平分线,EF∥AD交AC 于点F.若AB=11,AC=15,则FC的长为( )A. 11B. 12C. 13D. 14第8题图9.(2017某某)在△ABC中,∠A∶∠B∶∠C=2∶3∶4,则∠A的度数为__________.第10题图10.(2017某某)如图,△ABC中,D,E分别是边AB,AC的中点,连接DE,若DE=3,则线段BC的长等于________.11.(2017某某)在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1=________°.第11题图12.(2017来宾)如图,在△ABC中,∠ACB=90°,∠ABC的平分线BD交AC于点D,已知AC=3,AD=2,则点D到AB边的距离为________.第12题图13.(2017某某)已知一副三角板按如图所示的方式放置,其中AB//DF,∠A=45°,∠D=30°,∠C=∠F=90°,则∠α+∠β=________.第13题图14.(2017宿迁)如图,在△ABC中,∠ACB=90°,点D、E、F分别是AB、BC、CA的中点.若CD=2,则线段EF的长是________.第14题图15.(2017某某)如图,在△A B C中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a、b的代数式表示△ABC的周长为______.第15题图16.如图,△ABC 的中线AE ,BD 交于点G ,过点D 作DM ∥BC 交AE 于点M ,则△AMD ,△DMG 和△BEG 的面积之比为________.第16题图17.如图,在△ABC 中,CD 是AB 边上的高,CE 是∠ACB 的平分线.(1)若∠A =40°,∠B =80°,求∠DCE 的度数;(2)若∠A =α,∠B =β,求∠DCE 的度数(用含α、β的式子表示).第17题图满分冲关1.(2017某某)如图,Rt △ABC 中,∠ACB =90°,斜边AB =9,D 为AB 的中点,F 为CD 上一点,且CF =13CD ,过点B 作BE ∥DC第1题图交AF的延长线于点E,则BE的长为( )A. 6B. 4C. 7D. 122.(2017某某)在△ABC中,已知BD和CE分别是边AC,AB上的中线,且BD⊥CE,垂足为O,若OD=2 cm,OE=4 cm,则线段AO的长度为________cm.第3题图3.(2018原创)如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…;∠A2017BC和∠A2017CD的平分线交于点A2018,则∠A2018=________.4.(1)如图①,在△ABC中,∠A=α,∠ABC和∠ACB的平分线交于点P,则∠BPC的度数是________;(2)类比探究:如图②,在△ABC中,∠ABC的平分线和∠ACB的外角∠ACE的角平分线交于点P,则∠BPC与∠A的关系是________;(3)类比延伸:如图③,在△ABC中,∠ABC的外角∠CBF的角平分线和∠ACB的外角∠BCE的角平分线交于点P,请直接写出∠BPC与∠A的关系是________.第4题图冲刺名校1.(1)如图①,已知,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=30°,∠C=50°.求∠DAE的度数;(2)如图②,已知AF平分∠BAC,交边BC于点E,过F作FD⊥BC,若∠B=x°,∠C =(x+36)°,①∠CAE=________;(用含x的代数式表示)②求∠F的度数.第1题图答案基础过关1.C 【解析】由三角形三边关系可知,该三角形第三边取值X围为4-2<x<4+2,即2<x<6.∵该三角形周长为2+4+x=6+x,∴该三角形的周长取值X围为大于8,小于12,故选C.2.C 【解析】根据三角形的外心的位置可断定三角形的形状:若外心在三角形的外部,则三角形是钝角三角形;若外心在三角形的内部,则三角形是锐角三角形;若外心在三角形的边上,则三角形是直角三角形,且这条边是斜边.3.D 【解析】根据三角形的内心的定义:三角形的三个内角的平分线交于一点,这点叫三角形的内心即可判定.4.B 【解析】∵BE 是∠ABC 的角平分线,∠ABE =25°,∴∠ABC =50°,又∵∠BAC =60°,∴∠C =180°-∠ABC -∠BAC =180°-50°-60°=70°,∴∠DAC =180°-∠ADC -∠C =180°-90°-70°=20°.5.A 【解析】①根据三角形的角平分线的概念,知AD 是△ABC 的角平分线,AG 是△ABE 的角平分线,故此说法错误;②根据三角形的中线的概念,知BG 是△ABD 的边AD 上的中线,故此说法错误;③根据三角形的高的概念,知CH 是△ACD 边AD 上的高,故此说法正确.6.B 【解析】∵AD 是BC 边上的中线,△ABD 的面积为12,∴△ADC 的面积为12,∵点E 是AD 中点,∴△CDE 的面积为6,∵BC =10,AD 是BC 边上的中线,∴DC =5,∴EF =2S △EDC DC =2×65=2.4. 7.C 【解析】∵点E 为BC 边的中点,CD ⊥AB ,DE =32,∴BE =CE =DE =32,即∠CDE =∠DCE ,∴BC = 3.在△ABC 中,AC 2+BC 2=1+(3)2=4=AB 2,∴∠ACB =90°,∴∠CDE +∠ACD =90°,故选C.8.C 【解析】∵AD 平分∠BAC,∴AB AC =BD CD =1115.设BD =11x ,CD =15x ,则BC =26x ,CE =12BC =13x .∵EF ∥AD ,∴CF AC =CE CD ,∴FC 15=13x 15x,解得FC =13. 9.40° 【解析】根据三角形内角和定理,∵∠A +∠B +∠C =180°,∠A ∶∠B ∶∠C =2∶3∶4,∴∠A =29×180°=40°. 10.6 【解析】∵D ,E 分别是AB ,AC 的中点,∴DE 是△ABC 的中位线,∴BC =2DE =6.11.120 【解析】由三角形的外角的性质可知,∠1=90°+30°=120°.12.1 【解析】如解图,过点D 作DE ⊥AB 于点E ,∵BD 平分∠ABC ,∴根据角平分线定理,得DE =DC =AC -ADD 到AB 边的距离为1.第12题解图13.210° 【解析】∵∠α=∠D +∠1=30°+∠1,∠β=∠F +∠2=90°+∠2,而∠1=∠A ,∠2=∠B ,∴∠α+∠β=120°+∠A +∠B ,又∵在Rt △ABC 中,∠A +∠B =90°,∴∠α+∠β=120°+90°=210°.第13题解图14.2 【解析】如解图,连接DF 、DE ,∵点D 、E 、F 分别是AB 、BC 、CA 的中点,∴DF ∥CE ,DE ∥CF ,∵∠ACB =90°,∴四边形CEDF 是矩形,∴EF =CD =2.第14题解图【一题多解】由三角形中位线的性质,可得EF =12AB ,在Rt △ABC 中,CD = 12AB ,∴CD =EF =2.15.2a +3b 【解析】∵在△ABC 中,AB =AC ,∠BAC =36°,∴∠ABC =∠ACB =72°,∵DE 垂直平分AC ,∴CE =AE ,∴∠ECA =∠A =36°,∴∠BEC =∠A +∠ECA =72°,∴∠BEC =∠B ,∴BC =CE =b ,∴△ABC 的周长=AB +AC +BC =2AB +BC =2(a +b )+b =2a +3b .16.2∶1∶4 【解析】∵点D 是AC 的中点,DM ∥BC ,∴MD 是△AEC 的中位线,∴MD =12CE .∵AE 是△ABC 的中线,∴BE =CE ,∴BE =2MD ,∵MD ∥BC ,∴△DMG ∽△BEG ,∴MG ∶EG =MD ∶EB =1∶2,∴AM =ME =2MG ,∴S △AMD =2S △MDG ,S △BGE =4S △MDG ,∴△AMD ,△DMG ,△BEG 的面积比为2∶1∶4.17.解:(1)∵∠A =40°,∠B =80°,∴∠ACB =60°,∵CE 是∠ACB 的平分线,∴∠ECB =12∠ACB =30°, ∵CD 是AB 边上的高,∴∠BDC =90°,∴∠BCD =90°-∠B =10°,∴∠DCE =∠ECB -∠BCD =30°-10°=20°;(2)∵∠A =α,∠B =β,∴∠ACB =180°-α-β,∵CE 是∠ACB 的平分线,∴∠ECB =12∠ACB =12(180°-α-β), ∵CD 是AB 边上的高,∴∠BDC =90°, ∴∠BCD =90°-∠B =90°-β, ∴∠DCE =∠ECB -∠BCD=12β-12α. 满分冲关1.A 【解析】在Rt △ABC 中,∠ACB =90°,AB =9,D 是AB 的中点,∴CD =12AB =92,∵CF =13CD ,∴CF =13×92=32,∴DF =CD -CF =92-32=3,∵D 是AB 的中点,BE ∥DF 交AF 的延长线于点E ,∴BE =2DF =6.2. 【解析】如解图,连接AO 并延长,交BC 于点H ,由勾股定理得,DE =OE 2+OD 2=2 5 cm ,∵BD 和CE 分别是边AC ,AB 上的中线,∴BC =2DE =4 5 cm ,∵O 是△ABC 的重心,∴AH 是中线,又∵BD ⊥CE ,∴OH =12BC =2 5 cm ,∵O 是△ABC 的重心,∴AO =2OH =4 5 cm.第2题解图3.(m 22018)° 【解析】∵A 1B 平分∠ABC ,A 1C 平分∠ACD ,∴∠A 1BC =12∠ABC ,∠A 1CA =12∠ACD ,∵∠A 1CD =∠A 1+∠A 1BC ,即12∠ACD =∠A 1+12∠ABC ,∴∠A 1=12(∠ACD -∠ABC ),∵∠A +∠ABC =∠ACD ,∴∠A =∠ACD -∠ABC ,∴∠A 1=12∠A ,∠A 2=12∠A 1=122∠A ,…,以此类推可知∠A 2018=122018∠A =(m 22018)°, 4.(1)90°+12α; 【解法提示】∵∠A =α,∴∠ABC +∠ACB =180°-α,∵∠ABC 和∠ACB 的平分线交于点P ,∴∠PBC =12∠ABC ,∠PCB =12∠ACB ,∴∠BPC =180°-12(∠ABC +∠ACB )=90°+12α; (2)∠BPC =12∠A ; 理由如下:∵∠ACE 是△ABC 的外角,∠PCE 是△PBC 的外角,∴∠ACE =∠ABC +∠A ,∠PCE =∠PBC +∠BPC ,∵BP 平分∠ABC ,CP 平分∠ACE ,∴∠PBC =12∠ABC ,∠PCE =12∠ACE , ∴12∠ACE =12∠ABC +∠BPC , ∴∠BPC =12∠AEC -12∠ABC =12(∠ACE -∠ABC ), ∴∠BPC =12∠A , (3)∠BPC =90°-12∠A . 冲刺名校1.解:(1)∵∠B =30°,∠C =50°,∴∠CAB =180°-∠B -∠C =100°,∵AE 是△ABC 的角平分线,∴∠CAE =12∠CAB =50°, ∵AD 是△ABC 的高,∴∠ADC =90°,∴∠CAD =90°-∠C =40°,∴∠DAE =∠CAE -∠CAD =50°-40°=10°;(2)①72°-x °;【解法提示】∵∠B =x °,∠C =(x +36)°,AF 平分∠BAC ,∴∠EAC =∠BAF ,∴∠CAE =12×[180°-x °-(x +36)°]=72°-x °; ②∵∠AEC =∠BAE +∠B =72°,∵FD ⊥BC ,∴∠F =90°-72°=18°.。

2017届中考数学专题选择填空压轴题总复习最新版

2017届中考数学专题选择填空压轴题总复习最新版

A.1.5cm C.1.8cm
B.1.2cm D.2cm
首页
末页
6.如图,点G、E、A、B在一条直线上,Rt△EFG 从如图所示的位置出发,沿直线AB向右匀速运动 ,当点G与B重合时停止运动.设△EFG与矩形 ABCD重合部分的面积为S,运动时间为t,则S与t 的图象大致是( D )
首页
末页
二、填空题
专题一 选择填空压轴题
一、选择题
1.二次函数y=ax2+bx+c(a≠0)的部分图象如图,
图象过点(﹣1,0),对称轴为直线x=2,下列结
论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④
当x>﹣1时,y的值随x值的增大而增大.其中正 确的结论有( B )
A.1个
B.2个
C.3个
D.4个
7.如图-1,三个正方形的边长分别为2,6,8; 则图中阴影部分的面积为 21 .
8.如图-2,D是△ABC的边BC上任意一点,E、F分 别是线段AD、CE的中点,且△ABC的面积为20cm2 ,则△BEF的面积是 5 cm2.
首页
末页
9.如图-3,在矩形ABCD中,AD=9cm,AB=3cm,
将其折叠,使点D与点B重合,则重叠部分 (△BEF)的面积为 7.5cm2 .
A.
B.
C.
D.
首页
末页
4.如图,一根长5米的竹杆AB斜立于墙AC的右侧 ,底端B与墙角C的距离为3米,当竹杆顶端A下滑x 米时,底端B便随着向右滑行y米,反映y与x变化 关系的大致图象是( A )
首页
末页
5.如图1,在Rt△ABC中,∠ACB=90°,点P以每 秒1cm的速度从点A出发,沿折线AC﹣CB运动,到 点B停止,过点P作PD⊥AB,垂足为D,PD的长y (cm)与点P的运动时间x(秒)的函数图象如图 2所示,当点P运动5秒时,PD的长是( B )

2017中考数学《压轴题》专题训练含答案解析

2017中考数学《压轴题》专题训练含答案解析

压轴题1、已知,在平行四边形OABC 中,OA=5,AB=4,∠OCA=90°,动点P 从O 点出发沿射线OA 方向以每秒2个单位的速度移动,同时动点Q 从A 点出发沿射线AB 方向以每秒1个单位的速度移动.设移动的时间为t 秒. (1)求直线AC 的解析式;(2)试求出当t 为何值时,△OAC 与△PAQ 相似; (3)若⊙P 的半径为58,⊙Q 的半径为23;当⊙P 与对角线AC 相切时,判断⊙Q 与直线AC 、BC 的位置关系,并求出Q 点坐标。

解:(1)42033y x =-+ (2)①当0≤t≤2.5时,P 在OA 上,若∠OAQ=90°时, 故此时△OAC 与△PAQ 不可能相似.当t>2.5时,①若∠APQ=90°,则△APQ ∽△OCA ,∵t>2.5,∴符合条件.②若∠AQP=90°,则△APQ ∽△∠OAC ,∵t>2.5,∴符合条件.综上可知,当时,△OAC 与△APQ 相似.(3)⊙Q 与直线AC 、BC 均相切,Q 点坐标为(109,531)。

2、如图,以矩形OABC 的顶点O 为原点,OA 所在的直线为x 轴,OC 所在的直线为y 轴,建立平面直角坐标系.已知OA =3,OC =2,点E 是AB 的中点,在OA 上取一点D ,将△BDA 沿BD 翻折,使点A 落在BC 边上的点F 处. (1)直接写出点E 、F 的坐标;(2)设顶点为F 的抛物线交y 轴正半轴...于点P ,且以点E 、F 、P 为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x 轴、y 轴上是否分别存在点M 、N ,使得四边形MNFE 的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.解:(1)(31)E ,;(12)F ,.(2)在Rt EBF △中,90B ∠=o, 2222125EF EB BF ∴=+=+=.设点P 的坐标为(0)n ,,其中0n >,Q 顶点(12)F ,, ∴设抛物线解析式为2(1)2(0)y a x a =-+≠.①如图①,当EF PF =时,22EF PF =,221(2)5n ∴+-=.解得10n =(舍去);24n =.(04)P ∴,.24(01)2a ∴=-+.解得2a =. ∴抛物线的解析式为22(1)2y x =-+(第2题)②如图②,当EP FP =时,22EP FP =,22(2)1(1)9n n ∴-+=-+. 解得52n =-(舍去).③当EF EP =时,53EP =<,这种情况不存在. 综上所述,符合条件的抛物线解析式是22(1)2y x =-+. (3)存在点M N ,,使得四边形MNFE 的周长最小. 如图③,作点E 关于x 轴的对称点E ',作点F 关于y 轴的对称点F ',连接E F '',分别与x 轴、y 轴交于点M N ,,则点M N ,就是所求点.(31)E '∴-,,(12)F NF NF ME ME '''-==,,,.43BF BE ''∴==,.FN NM ME F N NM ME F E ''''∴++=++=22345+=.又5EF =Q ,∴55FN NM ME EF +++=+,此时四边形MNFE 的周长最小值是553、如图,在边长为2的等边△ABC 中,A D ⊥BC,点P 为边AB 上一个动点,过P 点作PF//AC 交线段BD 于点F,作PG ⊥AB 交AD 于点E,交线段CD 于点G,设BP=x . (1)①试判断BG 与2BP 的大小关系,并说明理由;②用x 的代数式表示线段DG 的长,并写出自变量x 的取值范围;(2)记△DEF 的面积为S,求S 与x 之间的函数关系式,并求出S 的最大值;(3)以P 、E 、F 为顶点的三角形与△EDG 是否可能相似?如果能相似,请求出BP 的长,如果不能,请说明理由。

2017年中考初三数学经典试题及答案

2017年中考初三数学经典试题及答案

2017年中考初三数学经典试题及答案2017年中考数学经典试题集一、填空题:1、已知01x ≤≤.(1)若62=-y x ,则y 的最小值是 ;(2).若223x y +=,1xy =,则x y -= .答案:(1)-3;(2)-1.2、用m 根火柴可以拼成如图1所示的x 个正方形,还可以拼成如图2所示的2y 个正方形,那么用含x 的代数式表示y ,得y =_____________.答案:y =53x -51. 3、已知m 2-5m -1=0,则2m 2-5m+1 m 2= .答案:28.4、____________________范围内的有理数经过四舍五入得到的近似数3.142.答案:大于或等于3.1415且小于3.1425.5、如图:正方形ABCD 中,过点D 作DP 交AC 于图1 图2第19题图P N M D C B A点M 、交AB 于点N ,交CB 的延长线于点P ,若MN =1,PN =3,则DM 的长为 .答案:2.6、在平面直角坐标系xOy 中,直线3+-=x y 与两坐标轴围成一个△AOB。

现将背面完全相同,正面分别标有数1、2、3、21、31的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P 的横坐标,将该数的倒数作为点P 的纵坐标,则点P 落在△AOB 内的概率为 . 答案:53.7、某公司销售A 、B 、C 三种产品,在去年的销售中,高新产品C 的销售金额占总销售金额的40%。

由于受国际金融危机的影响,今年A 、B 两种产品的销售金额都将比去年减少20%,因而高新产品C 是今年销售的重点。

若要使今年的总销售金额与去年持平,那么今年高新产品C 的销售金额应比去年增加 %.答案:30.8、小明背对小亮按小列四个步骤操作:(1)分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌现有的张数相同;(2)从左边一堆拿出两张,放入中间一堆;(3)从右边一堆拿出两张,放入中间一堆;(4)左边二、选择题:1、图(二)中有四条互相不平行的直线L1、L2、L3、L4所截出的七个角。

2017年中考数学模拟试题及答案

2017年中考模拟试题数学试题卷本卷共六大题,24小题,共120分。

考试时间120分钟一、选择题(本大题共6小题,每小题3分,共18分)1、比-2013小1的数是()A、-2012B、2012C、-2014 D、20142、如图,直线l1∥l2,∠1=40°,∠2=75°,则∠3=()A、70°B、65°C、60°D、55°3、从棱长为a的正方体零件的一角,挖去一个棱长为0.5a的小正方体,得到一个如图所示的零件,则这个零件的左视图是()A、 B、 C、 D、4、某红外线遥控器发出的红外线波长为0.000 00094m,用科学计数法表示这个数是()A、9.4×10-7mB、9.4×107mC、9.4×10-8mD、9.4×108m5、下列计算正确的是()A、(2a-1)2=4a2-1B、3a6÷3a3=a2C、(-2)4=-a4b6D、-2a+(2a-1)=-16、某县盛产枇杷,四星级枇杷的批发价比五星级枇杷的批发价每千克低4元。

某天,一位零售商分别用去240元,160元来购进四星级与五星级这两种枇杷,其中,四星级枇杷比五星级枇杷多购进10千克。

假设零售商当天购进四星级枇杷x千克,则列出关于x的方程为()A、+4=B、-4=C、+4=D、-4=二、填空题(本大题共8小题,每小题3分,共24分)7、因式分解:2-x=。

8、已知x=1是关于x的方程x2+x+2k=0的一个根,则它的312l1l2FCBGDE正面另一个根是 。

9、已知=,则分式的值为 。

10、如图,正五边形,∥交的延长线于点F ,则∠= 度。

11、已知x =-1,2) ,y =+1,2) ,则x 2++y 2的值为 。

12、分式方程+=1的解为。

13、现有一张圆心角为108°,半径为作成一个底面半径为10的圆锥形纸帽(接缝处不重叠),则剪去的扇形纸片的圆心角θ为 。

2017山东数学中考真题,分类汇编-,几何综合大题

2017山东数学中考真命题分类会哦变——几何综合大题一、选择题:1、(德州,11.)如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=b﹣;③△ABM≌△NGF;④S=a2+b2;⑤A,M,P,D四点共圆,其中正确的个数是()四边形AMFNA.2 B.3 C.4 D.52、(东营,10.)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC其中正确的是()A.①②③④B.②③C.①②④D.①③④3、(泰安,19.)如图,四边形ABCD是平行四边形,点E是边CD上一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC,其中正确结论的个数为()A.1 B.2 C.3 D.44、(威海,10.)如图,在▱ABCD中,∠DAB的平分线交CD于点E,交BC的延长线于点G,∠ABC的平分线交CD于点F,交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误的是()A.BO=OH B.DF=CE C.DH=CG D.AB=AE5、(威海,12.)如图,正方形ABCD的边长为5,点A的坐标为(﹣4,0),点B在y轴上,若反比例函数y=(k ≠0)的图象过点C ,则该反比例函数的表达式为( ) A .y= B .y= C .y= D .y=2、填空题1、(东营,14.)如图,AB 是半圆直径,半径OC ⊥AB 于点O ,D 为半圆上一点,AC ∥OD ,AD 与OC 交于点E ,连结CD 、BD ,给出以下三个结论:①OD 平分∠COB ;②BD=CD ;③CD 2=CECO ,其中正确结论的序号是 .2、(潍坊,18.)如图,将一张矩形纸片ABCD 的边BC 斜着向AD 边对折,使点B 落在AD 边上,记为B′,折痕为CE ,再将CD 边斜向下对折,使点D 落在B′C 边上,记为D′,折痕为CG ,B′D′=2,BE=BC .则矩形纸片ABCD 的面积为 .三、解答题:1、(菏泽,23.)正方形ABCD 的边长为cm 6,点M E 、分别是线段AD BD 、上的动点,连接AE 并延长,交边BC 于F ,过M 作AF MN ,垂足为H ,交边AB 于点N .(1)如图1,若点M 与点D 重合,求证:MN AF =;(2)如图2,若点M 从点D 出发,以s cm /1的速度沿DA 向点A 运动,同时点E 从点B 出发,以s cm /2的速度沿BD 向点D 运动,运动时间为ts . ①设ycm BF =,求y 关于t 的函数表达式; ②当AN BN 2=时,连接FN ,求FN 的长.2、(德州,23.)如图1,在矩形纸片ABCD 中,AB=3cm ,AD=5cm ,折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ,过点E 作EF ∥AB 交PQ 于F ,连接BF . (1)求证:四边形BFEP 为菱形;(2)当点E 在AD 边上移动时,折痕的端点P 、Q 也随之移动; ①当点Q 与点C 重合时(如图2),求菱形BFEP 的边长;②若限定P 、Q 分别在边BA 、BC 上移动,求出点E 在边AD 上移动的最大距离.3、(临沂,25.(11分))数学课上,张老师出示了问题:如图1,AC ,BD 是四边形ABCD 的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC ,CD ,AC 三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB 到E ,使BE=CD ,连接AE ,证得△ABE ≌△ADC ,从而容易证明△ACE 是等边三角形,故AC=CE ,所以AC=BC+CD .小亮展示了另一种正确的思路:如图3,将△ABC 绕着点A 逆时针旋转60°,使AB 与AD 重合,从而容易证明△ACF 是等边三角形,故AC=CF ,所以AC=BC+CD . 在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC ,CD ,AC 三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明. (2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC ,CD ,AC 三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.4、(青岛,24.)(本小题满分12分)已知:Rt △EFP 和矩形ABCD 如图①摆放(点P 与点B 重合),点F ,B (P ),C 在同一条直线上,AB =EF =6cm ,BC =FP =8cm ,∠EFP =90°。

中考数学复习考点知识讲解与练习17 一次函数与反比例函数综合训练(基础篇)

中考数学复习考点知识讲解与练习专题17 一次函数与反比例函数综合训练(基础篇)中考中,一次函数与反比例函数相结合的题型是必考点,难度分为中档和偏难两个考点,分值点比高,也是期末考试的必考点,因此,本中考数学复习考点知识讲解与练习 专题汇编了一次函数与反比例函数综合训练中考数学复习考点知识讲解与练习 专题,有针对性训练学生的能力,也是教学辅导学生的较好的参考资料,本中考数学复习考点知识讲解与练习 专题分为两部分,基础篇以中档偏下难度为主,以填空和选择题形式出现,提高篇以综合解答题为本,着重培养学生综合能力,本中考数学复习考点知识讲解与练习 专题着眼于数形结合思想解题,提升学生数学思想。

一、单选题1.若0ab >,则一次函数y ax b =-与反比例函数aby x=在同一坐标系数中的大致图象是()A .B .C .D .2.一次函数y =ax -a 与反比例函数y =ax(a ≠0)在同一平面直角坐标系中的图象可能是( )A .B .C .D .3.一次函数y=ax+b 与反比例函数cy x=的图象如图所示,则( )A .a >0,b >0,c >0B .a <0,b <0,c <0C .a <0,b >0,c >0D .a <0,b <0,c >04.(2022·监利县新沟新建中学九年级月考)已知反比例函数y =kx的图象过一、三象限,则一次函数y =kx +k 的图象经过( ) A .一、二、三象限 B .二、三、四象限 C .一、二、四象限D .一、三、四象限5.对于一次函数3y mx =+,如果y 随x 的增大而减小,那么反比例函数my x=满足() A .当0x >时,0y > B .在每个象限内,y 随x 的增大而减小 C .图像分布在第一、三象限D .图像分布在第二、四象限6.如图,已知点A 是一次函数y =x 的图象与反比例函数的图象在第一象限内的交点,点B 在x 轴的负半轴上,且OA=OB ,那么△AOB 的面积为()A.2 B. C. D.7.已知反比例函数kyx(k≠0),当x>0时,y随x的增大而增大,那么一次函数y=kx﹣k的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限8.(2022·河南九年级期末)已知一次函数y1=kx+b((k≠0)与反比例函数y2=mx(m>0)的图象如图所示,则当y1>y2时,自变量x满足的条件是()A.1<x<3 B.1≤x≤3C.x>1 D.x<39.(2014·甘肃九年级期末)如图,某反比例函数的图象过点(-2,1),则此反比例函数表达式为()A .B .C .D . 10.(2022·河南郑州外国语中学九年级期中)如图,反比例函数y=kx的图象经过点M ,则此反比例函数的解析式为()A .y=-12xB .y=12xC .y=-2xD .y=2x11.(2017·江苏八年级期末)如图,反比例函数y=kx的图象经过点M ,则此反比例函数的解析式为()A .y=-12xB .y=12xC .y=-2xD .y=2x12.一次函数y ax a =-与反比例函数(0)a y a x=≠在同一坐标系中的图象可能是() A . B .2y x =2y x =-12y x =12y x=-C .D .13.(2016·河南九年级月考)反比例函数和一次函数在同一直角坐标系中的图象大致是()A .B .C .D .14.(2016·山西九年级期末)一次函数与反比例函数在同一平面直角坐标系中的图象可能是()A .B .C .D .15.(2022·山西八年级月考)如图,一次函数()0y kx b k =+≠与反比例函数()0m y m x =≠分别交于,A B 两点,则不等式mkx b x+<的解集是()A .2x <-B .4x >C .2x <-或04x <<D .24x -<<16.已知一次函数y k kx =-与反比例函数ky x=,当k 0<时,它们的图像在同一直角坐标平面内大致是()A .B .C .D .17.如图,一次函数23y x =-+分别与x 轴y 轴交于A ,B 两点,AC y ∥轴,BC x ∥轴,反比例函数(0)k y x x=>经过点C ,则k 的值为().A .92B .92-C .94D .94-18.(2022·全国九年级单元测试)如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值大于一次函数的值的x 的取值范围是( )A .x <﹣1B .x >2C .﹣1<x <0或x >2D .x <﹣1或0<x <219.(2011·贵州中考真题)一次函数y=kx+k (k≠0)和反比例函数(0)ky k x=≠在同一直角坐标系中的图象大致是( )A .B .C .D .20.一次函数y =ax +a(a 为常数,a≠0)与反比例函数y =ax(a 为常数,a≠0)在同一平面直角坐标系内的图像大致为( )A .B .C .D .二、填空题21.(2022·全国九年级单元测试)如图,一次函数与反比例的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是________.22.(2022·黑龙江九年级期末)已知一次函数23y x =-与反比例函数ky x=的图象交于点()2,3P a -,则k =________.23.如图,一次函数y 1=﹣x ﹣1与反比例函数y 2=﹣2x 的图象交于点A (﹣2,1),B(1,﹣2),则使y 1>y 2的x 的取值范围是_____.24.如图,一次函数y 1=ax +b 和反比例函数y 2=xk的图象相交于A ,B 两点,则使y 1>y 2成立的x 取值范围是_____.25.(2022·四川中考模拟)一次函数y 1=k 1x +b 和反比例函数y 2=2k x(k 1•k 2≠0)的图象如图所示,若y 1>y 2,则x 的取值范围是_______.26.一次函数图象过点()0,2-日与直线23y x =-平行,则一次函数解析式__________. 27.如图,一次函数y kx b =+与反比例函数ky x=交于点()1,A m -、()3,B n ,要使一次函数值大于反比例函数值,则x 的范围是________.28.反比例函数ky x=的图象与一次函数y mx b =+的图象交于()1,3A ,(),1B n -两点.则反比例函数的解析式是________,一次函数的解析式是________.29.(2017·山东中考模拟)如图,反比例函数的图象与一次函数y =x +2的图象交于A 、B 两点. 当x __________时,反比例函数的值小于一次函数的值.30.如图,已知一次函数y kx b =+与反比例函数my x=(0m <)图象在第二象限相交于A (﹣4,12),B (n ,2)两点,当x 满足条件:_____时,一次函数大于反比例函数的值.31.如图,一次函数的图象y x b =-+与反比例函数的图象ay x=交于A(2,﹣4),B(m, 2)两点.当x 满足条件______________时,一次函数的值大于反比例函数值.32.(2022·浙江八年级单元测试)已知反比例函数2ky x=和一次函数,y=2x-1,其中一次函数图象经过(a, b)和(a+1,b+k) 两点,则反比例函数的解析式是__________.三、解答题33.如图,一次函数y x b =+和反比例函数()0ky k x=≠交于点()2,1A .()1求反比例函数和一次函数的解析式; ()2求AOB 的面积;()3根据图象写出一次函数的值大于反比例函数的值的x 的取值范围.34.如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于点()1,6A -,(),2B a .求一次函数和反比例函数的解析式.35.(2022·保定市第三中学分校九年级期末)已知:如图,反比例函数ky x=的图象与一次函数y x b =+的图象交于点(1,4)A 、点(4,)B n -. (1)求一次函数和反比例函数的解析式; (2)求OAB ∆的面积;(3)直接写出一次函数值大于反比例函数值的自变量x 的取值范围.36.如图,一次函数y kx b =+的图象与反比例函数m y x =的图象交于()A 2,3-,B ()4,n 两点.(1)求一次函数与反比例函数的解析式; (2)结合图形,直接写出一次函数大于反比例函数时自变量x 的取值范围.37.如图,一次函数y kx b =+的图象与反比例函数m y x=的图象交于()2,1A -,()1,B n 两点.(1)试确定上述反比例函数和一次函数的表达式; (2)当x 为何值时反比例函数值大于一次函数的值;(3)当x 为何值时一次函数值大于比例函数的值;(4)求AOB ∆的面积.38.(2022·山西九年级期末)如图,反比例函数k y x=(0k ≠)的图象与一次函数y ax b =+的图象交于(1,3)A ,(3,)B m -两点. (1)分别求出反比例函数与一次函数的表达式.(2)当反比例函数的值大于一次函数的值时,请根据图象直接写出x 的取值范围.39.(2022·江西九年级)如图,一次函数y =kx +b 的图象与反比例函数y =m x的图象交于A (﹣2,1),B (1,n )两点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值>反比例函数的值的x 的取值范围.40.如图,一次函数y kx b =+的图象与反比例函数m y x=的图象交于(21)(1)A B n -,,,两点.(1)试确定上述反比例函数和一次函数的表达式;(2)求AOB 的面积.(3)根据图象写出反比例函数y≥n 的x 取值范围.。

山东省诸城市桃林镇2017届中考数学压轴题专项汇编 专题17 一线三等角模型

专题17 一线三等角模型破解策略在直线AB 上有一点P ,以A ,B ,P 为顶点的∠1,∠2,∠3相等,∠1,∠2的一条边在直线AB 上,另一条边在AB 同侧,∠3两边所在的直线分别交∠1,∠2非公共边所在的直线于点C ,D .1.当点P 在线段AB 上,且∠3两边在AB 同侧时. (1)如图,若∠1为直角,则有△ACP ∽△BP D .321DBPAC(2)如图,若∠1为锐角,则有△ACP ∽△BP D .3CDBPA证明:∵∠DPB =180°-∠3-∠CPA ,∠C =180°-∠1-∠CPA ,而∠1=∠3 ∴∠C =∠DPB ,∵∠1=∠2,∴△ACP ∽△BPD(3)如图,若∠1为钝角,则有△ACP ∽△BP D .231DBPAC2.当点P 在AB 或BA 的延长线上,且∠3两边在AB 同侧时. 如图,则有△ACP ∽△BP D .321CPDBA证明:∵∠DPB =180°-∠3-∠CPA ,∠C =180°-∠1-∠CPA ,而∠1=∠3 ∴∠C =∠DPB ,∵∠1=∠2=∠PBD ,∴△ACP ∽△BPD3.当点P 在AB 或BA 的延长线上,且∠3两边在AB 异侧时. 如图,则有△ACP ∽△BP D .321CDBAP证明:∵∠C =∠1-∠CPB ,∠BPD =∠3-∠CPB ,而∠1=∠3 ∴∠C =∠BP D .∵∠1=∠2,∴∠PAC =∠DBP .∴△ACP ∽△BP D . 例题讲解例1:已知:∠EDF 的顶点D 在△ABC 的边AB 所在直线上(不与点A ,B 重合).DE 交AC 所在直线于点M ,DF 交BC 所在直线于点N .记△ADM 的面积为S 1,△BND 的面积为S 2.(1)如图1,当△ABC 是等边三角形,∠EDF =∠A 时,若AB =6,AD =4,求S 1S 2的值; (2)当△ABC 是等腰三角形时,设∠B =∠A =∠EDF =α.①如图2,当点D 在线段AB 上运动时,设AD =a ,BD =b ,求S 1S 2的表达式(结果用a ,b 和a 的三角函数表示).②如图3,当点D 在BA 的延长线上运动时,设AD =a ,BD =b ,直接写出S 1S 2的表达式.NFC ME BDAF NM E BDACFN DABEM C图1 图2 图3 解:(1)如图4,分别过点M ,N 作AB 的垂线,垂足分别为G ,H .H G ADBE MC FN则S 1S 2=12MG AD12NH BD =14AD AM sin A BD BN sinB .由题意可知∠A =∠B =60º,所以sin A =sin B. 由“一线三等角模型”可知△AMD ∽△BDN . ∴AM ADBD BN,从而AM BN =AD BD =8,∴S 1S 2=12.(2)①如图5,分别过点M ,N 作AB 的垂线,垂足分别为G ,H .HG CADBE M N F则S 1S 2=12MG AD 12NH BD =14AD AM sin ABD BN sinB .由“一线三等角模型”可得△AMD ∽△BDN , 所以AM ADBD BN=,从而AM BN =AD BD =ab , 所以S 1S 2=14a ²b ²sin²a ; ②如图6,分别过点M ,N 作AB 的垂线,垂足分别为G ,H .HGCM EBA DN F则S 1S 2=12MG AD12NH BD =14AD AM sin A BD BN sinB .由“一线三等角模型”可得△AMD ∽△BDN , 所以AM ADBD BN=,从而AM BN =AD BD =ab , 所以S 1S 2=14a ²b ²sin²a ; 例2:如图,在等腰三角形ABC 中,∠BAC =120°,AB =AC =2,点D 是BC 边上的一个动点(不与B 、C 重合),在AC 上取一点E ,使∠ADE =30°.(1)设BD =x ,AE =y ,求y 关于x 的函数关系式并写出自变量x 的取值范围; (2)当△ADE 是等腰三角形时,求AE 的长.ECD B A解(1)∵△ABC 是等腰三角形,且∠BAC =120°, ∴∠ABD =∠ACB =30°, ∴∠ABD =∠ADE =30°,∵∠ADC =∠ADE +∠EDC =∠ABD +∠DAB ,∴∠EDC =∠DAB , ∴△ABD ∽△DCE ;∵AB =AC =2,∠BAC =120°, 过A 作AF ⊥BC 于F , ∴∠AFB =90°,∵AB =2,∠ABF =30°, ∴AF =12AB =1, ∴BF∴BC =2BF= 则DC=x ,EC =2-y ∵△ABD ∽△DCE , ∴AB DCBD CE =,∴2x =,化简得:2122y x =+(0x <<. ECDBA(2)①当AD =DE 时,如图2, △ABD ≌△DCE ,则AB =CD ,即2=x ,x=2,代入2122y x =+解得:y=4-AE=4- ②当AE =ED 时,如图,∠EAD =∠EDA =30°,∠AED =120°, 所以∠DEC =60°,∠EDC =90°则ED =12 EC ,即y =12 (2-y ) 解得y =23,即AE =23;③当AD =AE 时,有∠AED -∠EDA =30°,∠EAD =120°此时点D和点B重合,与题目不符,此情况不存在.所以当△是ADE等腰三角形时,AE=4-AE=23AB C进阶训练1.如图,在△ABC中,AB=AC,点E在BC边上移动(不与点B,C重台).满足∠DEF=∠B,且点D,F.分别在边AB,AC上.当点E移动到BC的中点时,求证:FE平分∠DF C.1.略【提示】由题意可得∠B=∠DEF=∠C.由“一线三等角模型”可得△BDE∽△CEF,可得BECF=DEEF.而BE=CE·所以CECF=DEEF,从而△DEF∽ECF.所以∠DEF=∠EFC,即FE平分∠DF C.2.如图,在等边△ABC中,点D,E分别在AB,BC边上,AD=2BE=6.将DE绕点E顺时针旋转60°,得到EF.取EF的中点G,连结AG.延长CF交AG于点H.若2AH=5HG,求BD的长.B2.BD=9.【提示】如图,过点F作FI∥AC交BC于点I.则∠FIE=∠ACB=∠AB C.易证△DBE≌△E IF,则IF=BE,IE=BD,所以BC+BE=AD,即IC=BE=IF,则∠ACH=∠BCH=30°.延长CH变AB于点J,则CJ⊥AB,.A=BJ分别过点G,E作AB的垂线段,垂足为K,L,·则KL=KJ·AJJK=AHHG=52,所以AJ:JK:KL:BL=5:2:2:l.因为BE=3,∠LEB= 30°,所以BL=1.5.AB=15.所以BD =9.IB本文档仅供文库使用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017中考数学17题专项演练
1.计算:02
)36(2218)
3(----+--。

.先化简,再求值:1
4
)1151(--÷--+x x x x ,其中425-=x 。

(06沈阳)
2.计算:(π-3)0-|5-3|+(-13)-
2-5.(07沈阳)
3.计算:1
01(1)52-⎛⎫
π-+-+ ⎪⎝⎭08沈阳)
4.计算:|12|3181
--⎪⎭

⎝⎛-+-.(09沈阳)
5. 先化简,再求值:32-x x +x
x
-3,其中x = -1。

(10沈阳)
6.先化简,再求值(x +1)2-(x +2)(x -2),x ,且x 为整数.(11沈阳)
7.计算:2
16sin3022-⎛⎫-︒++ ⎪⎝⎭
(-2) (13沈阳)
8.计算:.(2015沈阳)
9.(2016•沈阳)计算:(π﹣4)0
+|3﹣tan60°|﹣()﹣2
+

10(2017沈阳)计算| 2﹣1|+3﹣2﹣2sin45°+(3﹣π)0

11.
(12大连)
12 (12丹东)
先化简,再求值: ,其中
1
1)1)4
--x x x x 1)111(2÷-+-1
2-=x
14先化简,再求值:,其中 .(12
本溪)
15.(本题满分5分)计算:1212)23(1
32-+--︒---+︒60tan 。

16.(2013•抚顺)计算:= .
17.(6分)(2013•鞍山)先化简,再求值:,其中x=

18(13盘锦).先化简,再求值.,其中
19(2016本溪)先化简,再求值:
()
,请在﹣3,0,1,3中选择一个适当的数作为x 值.
2
-x 4
-444-422x x x x x x ÷++++2-21-60sin 2)(︒=x a a a a a a 1)22(2-÷---︒-⎪⎭

⎝⎛=-45tan 211
a
20(2016•抚顺)先化简,再求值:÷(1+),其中x=﹣1.
21(2016阜新)(1)计算:|
﹣1|+(﹣2016)0﹣2sin60°; (2)先化简,再求值:÷(1﹣
),其中x=﹣3.
22(2016大连).计算:(5 +1)(5﹣1)+(﹣2)

3
27.
23(2015丹东)先化简,再求值:
,其中,=a 3.
24(2015•锦州)先化简,再求值:(1+)÷,其中:x=3﹣3.
25(2017•葫芦岛)先化简,再求值:(+x ﹣1)÷
,其中x=(
)﹣
1+(﹣3)0.
26.(2017鞍山)先化简,再求值:÷(1﹣),其中x=.
()2
1
2112+-÷+-
a a a
27.(2017大连)计算:( 2+1)2﹣ 8+(﹣2)2.
28(2017阜新)(1)计算:(π﹣3)0+(12
)﹣1+4sin45°﹣ 8.
29(2017锦州)先化简,再求值:(x ﹣)÷,其中x=2.
30.(2017辽阳)先化简,再求值:(
x x 2+x
﹣1)÷
x 2−1x 2+2x +1

其中x= 8﹣4sin45°+(12
)﹣1.
31.(2017铁岭)先化简,再求值:(x x−y
﹣1)÷
y x −y ,其中x= 3﹣2,y=(1
2
)﹣1
.。

相关文档
最新文档