2.振动和波考试重点和习题答案
大学物理振动与波练习题与答案

【解】:(1) y 5cos(20 4x) 厘米
(2) y 5cos(3t 11) 厘米
(3) y 5cos3(t 4 x 5) , c 3 (cm/ s)
33
4
(4) y 5cos(3t 9) , yI 15 sin(3t 9) 0
23、一平面简谐波沿 x 轴正方向传播,波速 c=8 m/s, 若 t=0 时的波形曲线如图 2-23 所示 (1)写出波动方程 (2)画出 t=1.25 s 时的波形曲线 【解】:
t=0 时,y=0, v>0 cm T=5s
所以 2 。 波长= 40
y 4.0 cos[0.4t ] (cm) 2
B 点的振动方程
yA
(t)
5 c os [10
(t
20) 300
2
]
5 c os (10t
7 6
)cm
(2)
A,B 相位相同
(3) 或 O 点的振动方程
yo
(t)
5
cos(10t
2
)
(cm)
O 点相位
o
2
OB,OA 间的相位差
oA
oB
2 3
O 比 A 超前
oA
o
A
2 3
A
7 6
同时 B 点
13、已知一个谐振动的振幅 A 0.02 米,园频率 4 弧度/秒,初相 / 2 。 (1)
写出谐振动方程; (2) 以位移为纵坐标,时间为横坐标,画出谐振动曲线。
【解】: x 0.02cos(4 t 2) (m) ,
T
2
1 2
机械振动和波 试题及答案

一、填空题1、质量为0.10kg 的物体,以振幅1cm 作简谐运动,其角频率为110s -,则物体的总能量为, 周期为 。
2、一平面简谐波的波动方程为y 0.01cos(20t 0.5x)ππ=-( SI 制),则它的振幅为 、角频率为 、周期为 、波速为 、波长为 。
3、一弹簧振子系统具有1.0J 的振动能量,0.10m 的振幅和1.0m/s 的最大速率,则弹簧的倔强系数为 ,振子的振动角频率为 。
4、一横波的波动方程是y = 0.02cos2π(100t – 0.4x)( SI 制)则振幅是_________,波长是_ ,频率是 ,波的传播速度是 。
5、两个谐振动合成为一个简谐振动的条件是 。
6、产生共振的条件是振动系统固有频率与驱动力频率 (填相同或不相同)。
7、干涉相长的条件是两列波的相位差为π的 (填奇数或偶数)倍。
8、弹簧振子系统周期为T 。
现将弹簧截去一半,仍挂上原来的物体,作成一个新的弹簧振子,则其振动周期为 。
9、作谐振动的小球,速度的最大值为 ,振幅为 ,则振动的周期为 ;加速度的最大值为 。
10、广播电台的发射频率为 。
则这种电磁波的波长为 。
11、已知平面简谐波的波动方程式为 ,则 时,在X=0处相位为 ,在 处相位为 。
12、若弹簧振子作简谐振动的曲线如下图所示,则振幅 ;圆频率初相 。
13、一简谐振动的运动方程为2x 0.03cos(10t )3ππ=+( SI 制),则频率ν为 、周期T 为 、振幅A 为 ,初相位ϕ为 。
14、一质点同时参与了两个同方向的简谐振动,它们的振动方程分别为10.05cos(4)()x t SI ωπ=+和20.05cos(1912)()x t SI ωπ=+,其合成运动的方程x = .15、A 、B 是在同一介质中的两相干波源,它们的位相差为π,振动频率都为100Hz ,产生的波以10.0m/s 的速度传播。
波源A 的振动初位相为3π,介质中的P 点与A 、B 等距离,如图所示。
大学物理复习题答案(振动与波动)

大学物理1复习题答案一、单选题(在本题的每一小题备选答案中,只有一个答案是正确的,请把你认为正确答案的题号,填入题干的括号内)1.一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。
将它们拿到月球上去,相应的周期分别为'T 1和'T 2。
则有 ( B )A .'T T >11且 'T T >22B .'T T =11且 'T T >22C .'T T <11且 'T T <22D .'T T =11且 'T T =222.一物体作简谐振动,振动方程为cos 4x A t ⎛⎫=+⎪⎝⎭πω,在4Tt =(T 为周期)时刻,物体的加速度为 ( B )A. 2ω B 。
2ω C 。
2ω D2ω3.一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A -,且向x 轴的正方向 运动,代表此简谐振动的旋转矢量图为 ( D )AAAAAAC)AxxAAxA B C D4。
两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为)cos(1αω+=t A x .当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动方程为 ( B )A. )π21cos(2++=αωt A x B. )π21cos(2-+=αωt A x . C 。
)π23cos(2-+=αωt A x D. )cos(2π++=αωt A x . 5.波源作简谐运动,其运动方程为t y π240cos 100.43-⨯=,式中y 的单位为m ,t 的单位为s ,它所形成的波形以s m /30的速度沿一直线传播,则该波的波长为 ( A )A .m 25.0B .m 60.0C .m 50.0D .m 32.06.已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.则此简谐振动的振动方程为: ( B )A .cos x t ππ⎛⎫=+ ⎪⎝⎭22233B .cos x t ππ⎛⎫=+ ⎪⎝⎭42233C .cos x t ππ⎛⎫=- ⎪⎝⎭22233D .cos x t ππ⎛⎫=- ⎪⎝⎭42233二. 填空题(每空2分)1. 简谐运动方程为)420cos(1.0ππ+=t y (t 以s 计,y 以m 计),则其振幅为 0.1 m ,周期为 0。
振动、波动部分答案(新)

大学物理学——振动和波振 动班级 学号 姓名 成绩内容提要1、简谐振动的三个判据(1);(2);(3)2、描述简谐振动的特征量: A 、T 、γ;T1=γ,πγπω22==T3、简谐振动的描述:(1)公式法 ;(2)图像法;(3)旋转矢量法4、简谐振动的速度和加速度:)2cos()sin(v00πϕωϕωω++=+-==t v t A dt dx m ; a=)()(πϕωϕωω±+=+=0m 0222t a t cos -dtxd A 5、振动的相位随时间变化的关系:6、简谐振动实例弹簧振子:,单摆小角度振动:,复摆:0mgh dt d 22=+θθJ ,T=2mghJπ 7、简谐振动的能量:222m 21k 21A A Eω==系统的动能为:)(ϕωω+==t sin m 21mv 212222A E K ;系统的势能为:)ϕω+==t (cos k 21kx 21222A E P8、两个简谐振动的合成(1)两个同方向同频率的简谐振动的合成合振动方程为:)(ϕω+=t cos x A其中,其中;。
*(2) 两个同方向不同频率简谐振动的合成拍:当频率较大而频率之差很小的两个同方向简谐运动合成时,其合振动的振幅表现为时而加强时而减弱的现象,拍频:12-γγγ=*(3)两个相互垂直简谐振动的合成合振动方程:)(1221221222212-sin )(cos xy 2y x ϕϕϕϕ=--+A A A A ,为椭圆方程。
练习一一、 填空题1.一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1。
若将此弹簧截去一半的长度,下端挂一质量为m/2的物体,则系统的周期T 2等于 。
2.一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为:A = ;=ω ;=ϕ 。
3.如图,一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,做成一复摆。
已知细棒绕过其一端的轴的转动惯量J =3/2ml ,此摆作微小振动的周期为 。
振动和波动要点习题

振动和波一、选择题1.(3分,答D )已知一平面简谐波的表达式为cos()y A at bx =-(,a b 为正值常量),则 (A )波的频率为a (B )波的传播速度为/b a (C )波长为/b π (D )波的周期为2/a π2.(本题3分,答B )一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为A 21,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为[]3. (3分,答B )一质点在x 轴上作简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取作坐标原点,若t =0时刻质点第一次通过x =-2cm 处,且向x 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为(A) 1s (B) (2/3)s (C)(4/3)s (D) 2s4. (3分,答D )一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1.若将此弹簧截去一半的长度,下端挂一质量为m 21的物体,则系统振动周期T 2等于 (A) 2 T 1 (B) T 1(C)T 12/ (D) T 1 /2 (E) T 1 /45.(本题3分,答A )轴一简谐波沿Ox 轴正方向传播,t = 0 时刻的波形曲线如图所示,已知周期为 2 s ,则 P 点处质点的振动速度v 与时间t 的关系曲线为:6.(3分,答B )一平面简谐波在弹性媒质时,某一时刻媒质中某质元在负最大位移处,则它的能量是(A ) 动能为零 势能最大 (B )动能为零 势能为零 (C ) 动能最大 势能最大 (D )动能最大 势能为零v (m/s)O 1 t (s)ωA(C)· v (m/s)O1 t (s)ω A(A)·1 v (m/s)t (s)(D)O-ω A1 v (m/s) t (s)-ωA(B) O ··x o A x A 21 ω(A)A 21ω(B) A 21-(C) (D)o oo A 21-xxxAxAxAxω ω2O 1 y (m)x (m)t =0 A u图17.(3分,答D )沿相反方向传播的两列相干波,其波动方程为y 1=A cos2π (νt -x /λ)y 2=A cos2π (νt + x /λ) 叠加后形成的驻波中,波节的位置坐标为(A)x =±k λ.(B)x =±k λ/2 .(C)x =±(2k +1)λ/2 .(D)x =±(2k +1)λ/4 . 其中k = 0 , 1 , 2 , 3…….8.(3分,答D )如图所示,有一平面简谐波沿x 轴负方向传播,坐标原点O 的振动规律为y =A cos(ω t+φ0),则B 点的振动方程为 (A )y =A cos[ω t-(x/u )+φ0] (B )y =A cos ω[ t+(x/u )] (C )y =A cos{ω [t-(x/u ) ]+φ0} (D )y =A cos{ω[ t+(x/u ) ]+φ0}9.(3分,答D )一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:(A )它的动能转换成势能. (B )它的势能转换成动能. (C )它从相邻的一段质元获得能量,其能量逐渐增大. (D )它把自己的能量传给相邻的一段质元,其能量逐渐减小. 10.(3分,答B )在波长为λ的驻波中,两个相邻波腹之间的距离为 (A )λ/4 (B )λ/2 (C )3λ/4 (D )λ11.(3分,答C )某时刻驻波波形曲线如图所示,则a 、b 两点振动的相位差是 (A )0 (B )/2π (C )π (D )5/4π12.(本题3分,答B)在驻波中,两个相邻波节间各质点的振动(A )振幅相同,相位相同 (B )振幅不同,相位相同 (C )振幅相同,相位不同 (D )振幅不同,相位不同 二、填空题1. (3分)已知一个简谐振动的振幅A=2cm, 角频率14s ωπ-=,以余弦函数表达式运动规律时的A -Ayxλ λ/2O ··a b · · · · · · · · ··x 2A A/2x 1初相12φπ=,试画出位移和时间的关系曲线(振动图线) 2.(4分)两个简谐振动方程分别为x 1=Acos(ω t ) ;x 2=Acos(ω t +π/3) 在同一坐标上画出两者的x-t 曲线.3. (3分)有两相同的弹簧,其劲度系数均为k .(1)把它们串联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为;(2)把它们并联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为.[答案:(1)22m k π,(2)22mkπ] 4.(4分)一弹簧振子系统具有1.0J 的振动能量,0.10m 的振幅和1.0m/s 的最大速率,则弹簧的劲度系数,振子的振动频率.[答案:2210N/m,1.6Hz ⨯]5.(3分)一平面机械波沿x =-1m 轴负方向传播,已知处质点的振动方程cos()y A t ωϕ=+,若波速为u ,求此波的波函数.[答案:cos{[(1)/]}y A t x u ωϕ=+++]6.(3分)一作简谐振动的振动系统,振子质量为2kg ,系统振动频率为1000Hz ,振幅为0.5cm ,则其振动能量为.(答案:29.9010J ⨯ )7.(3分)两个同方向同频率的简谐振动211310cos(),3x t ωπ-=⨯+221410cos()(SI)6x t ωπ-=⨯-,它们的合振幅是. (答案:2510m -⨯ )8.(3分)一平面简谐波沿Ox 轴正方向传播,波动表达式为cos[(/)/4]y A t x u ωπ=-+,则1x L =处质点的振动方程是;2x L =-处质点的振动和1x L =处质点的振动相位差为21φφ-=. (答案:1cos[(/)/4]y A t L u ωπ=-+,12()/L L u ω+)9.(5分)一余弦横波以速度u 沿x 轴正向传播,t 时刻波形曲线如图所示.试分别指出图中A ,B ,C 各质点在该时刻的运动方向.A 向下 ,B 向上 ,C 向上.10. (本题4分)一平面简谐波的表达式cos (/)cos(/)y A t x u A t x u ωωω=-=-其中/x u 表示,/x u ω表示,y 表示.[答案:波从坐标原点传至x 处所需时间(2分),x 处质点此原点处质点滞后的相位(1分),t 时刻x 处质点的振动位移(1分)]11. (本题3分)如图所示,两相干波源S 1和S 2相距为3λ/4,λ为波长,设两波在S 1 S 2连O Cyxu · · · A B线上传播,它们的振幅都是A ,并且不随距离变化,已知在该直线上S 1左侧各点的合成波强度为其中一个波强度的4倍,则两波源应满足的相位条件是__π/2_ 12. (3分)一驻波的表达式为y =2A cos(2πx/λ) cos(2πνt ),两个相邻波 腹之间的距离是.(答案:λ/2) 三、计算题1. (5分)一质点作简谐运动,其振动方程为110.24cos()()23x t SI ππ=+,试用旋转矢量法求出质点由初始状态运动到x =-0.12 m ,v <0的状态所经过的最短时间. 解:旋转矢量如图所示.图3分 由振动方程可得π21=ω,π=∆31φ1分667.0/=∆=∆ωφt s 1分2(本题10分)一质量m =0.25kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点,弹簧的劲度系数k =25N/m.(1)求振动的周期T 和频率ω. (2)如果振幅A =15cm ,t =0时物体位于x =7.5cm 处,且物体沿x 轴反方向运动,求初速度v 0及初相φ.(3)写出振动的数值表达式. 解:(1)12/10k m s ωπ-== (2分)2/0.63T s πω== (1分)(2) A=15cm , 在t =0时,07.5cm x =,00v < 由2200(/)A x v ω=+得2200 1.3m/s v A x ω=--=- (2分)100(/)/3/3tg v x φωππ-=-=或400,/3x φπ>∴=(3分)(3)21510cos(10/3)(SI)x t π-=⨯+(2分)3.(10分)在一轻弹簧下端悬挂0100g m =砝码时,弹簧伸长8cm. 现在这根弹簧下端悬挂0250g m =物体,构成弹簧振子,将物体从平衡位置向下拉动4cm ,并给以向上的21cm/s 的初速度(令这时t=0).选x 轴向下,求振动方程的数值式.解:k = m 0g / ∆l 25.12N/m 08.08.91.0=⨯=N/mx (m) ωωπ/3π/3t = 0t0.12 0.24 -0.12 -0.24 OAAO xS 1S 211s 7s 25.025.12/--===m k ω(2分) 5cm )721(4/2222020=+=+=ωv x A cm (2分) 4/3)74/()21()/(tg 00=⨯--=-=ωφx v ,φ = 0.64 rad (3分))64.07cos(05.0+=t x (SI) (1分)4.(8分)在一竖直轻弹簧的下端悬挂一小球,弹簧被拉长0 1.2cm l =而平衡.再经拉动后,该小球在竖直方向作振幅为2cm A =的振动,试证此振动为简谐振动;选小球在正最大位移处开始计时,写出此振动的数值表达式.解:设小球的质量为m ,则弹簧的劲度系数(图参考上题)0/k mg l = 选平衡位置为原点,向下为正方向. 小球在x 处时,根据牛顿第二定律得202()d x mg k l x m dt -+=将k 代入整理后得 220d x g x dt l =-所以振动为简谐振动,其角频率为0/28.589.1(rad/s)g l ωπ===(5分)设振动表达式为 c o s ()x A t ωφ=+ 由题意:t=0时,200210m0x A v -==⨯=解得:0φ=2210cos(9.1)x t π-∴=⨯m (3分)5.(10分)在一轻弹簧下端悬挂m 0=100g 的砝码时,弹簧伸长8cm,现在这根弹簧下端悬挂m =250g 的物体, 构成弹簧振子. 将物体从平衡位置向下拉动4cm,并给以向上的21cm/s 的初速度(这时t =0) ,选x 轴向下,求振动方程的数值式. 解:物体受向下的重力和向上的弹性力.k=m 0g/∆l , x 0=4×10-2m, v 0=-21×10-2m/sω=()m l g m m k Δ0==7s -1A=22020ω/v x +=5×10-2m因A cos ϕ=4×10-2m, A sin ϕ=-v 0/ω=3×10-2m,有 ϕ=0.64rad 所以x=5×10-2cos(7t +0.64) (SI)6.(本题5分)一质量为0.2kg 的质点作简谐振动,其振动方程为10.6cos(5)(SI)2x t π=-求:(1)质点的初速度;(2)质点在正向最大位移一半处所受的力.解:(1)003.0sin(5)()0, 3.0m/s 2dx v t SI t v dt π==--==(2分) (2)2F ma m x ==-ω12x A =时, 1.5N F =-(无负号扣1分) (3分) 7.(5分)一平面简谐波沿x 轴正方向传播,波速为1m/s ,在x 轴上某质点的振动频率为1Hz ,振幅为0.01m. t = 0时该质点恰好在正最大位移处,若以该质点的平衡位置为x 轴的原点. 求此一维简谐波的表达式.解. 0.01cos[2()](m)y t x =-π8.(本题10分)某质点作简谐振动,周期为2s ,振幅为0.06m ,t =0时刻,质点恰好处在负最大位移处,求(1)该质点的振动方程.(2)此振动以波速u =2m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3)该波的波长. 解:(1)振动方程 00.06cos(2/2)0.06cos()(SI)y t t ππππ=+=+3分 (2)0.06cos[((/))0.06cos[(/2))(SI)y t x u t x ππππ=-+=-+ 4分(3)波长4m uT λ==9.(10分)一列平面简谐波在以波速5m/s u =,沿x 轴正向传播,原点O 处质点的振动曲线如图所示.1)求解并画出25cm x =处质元的振动曲线 2)求解并画出3s t =时的波形曲线 解:1)原点O 处质元的振动方程为211210cos(),(SI)22y t ππ-=⨯-(2分)波的表达式 (2分)211210cos((/5)),(SI)22y t x ππ-=⨯--x =25m 处质元的振动方程21210cos(3),(SI)2y t ππ-=⨯-振动曲线如右y-t 图 (2分)2)t=3s 时的波形曲线方程2210cos(/10),(SI)y x ππ-=⨯-(2分)波形曲线见右y-x 图 (2分)10.(10分)某质点作简谐振动,周期为2s ,振幅为0.6m ,t =0时刻,质点恰好处在负最大4O2 y(cm)t (s)2位移处,求(1)该质点的振动方程;(2)此振动以波速u =2m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3)该波的波长.解:(1) 振动方程)22cos(06.00π+π=ty )cos(06.0π+π=t (SI) (3分) (2) 波动表达式])/(cos[06.0π+-π=u x t y (4分)])21(cos[06.0π+-π=x t (SI)(3) 波长4==uT λm (3分)11.(5分)如图所示,一简谐波向x 轴正向传播,波速0500/,1,u m s x m P ==点的振动方程为10.03cos(500)(SI)2y t ππ=-. (1) 按图所示坐标系,写出相应的波的表达式; (2) 在图上画出t=0时刻的波形曲线.解:(1) 2m )250/500(/===νλu m 波的表达式 ]/2)1(21500cos[03.0),(λπ--π-π=x t t x y110.03cos[500(1)2/2]0.03cos(500)(SI)22t x t x =π-π--π=π+π-π(3分)(2) t = 0时刻的波形曲线x x x y π=π-π=sin 03.0)21cos(03.0)0,( (SI) (2分)12.(10分)图示一平面余弦波在t = 0 时刻与t = 2 s 时刻的波形图(波向左传播).已知波速为u ,波的周期大于2 s ,求(1) 坐标原点处介质质点的振动方程;(2) 该波的波动表达式. 解:(1) 比较t = 0 时刻波形图与t = 2 s 时刻波形图,可知此波向左传播.在t = 0时刻,O 处质点φcos 0A =,φωsin 00A -=<v ,故2πφ-= 又t = 2 s ,O 处质点位移为)24cos(2/ππ-=νA A 所以244πππ-=-ν,ν = 1/16 Hz 振动方程为)28/cos(0ππ-=t A y (SI)(2) 波速u = 20 /2 m/s = 10 m/s,波长λ = u /ν = 160 m 波动表达式]21)16016(2cos[π-+π=x t A y (SI) x (m)uP y (m)O-2-112-0.030.03x (m)O160A y (m)8020t =0t =2 s2A。
高考物理总复习专题练习:振动和波

高考物理复习振动和波专题训练及其答案一、单项选择题1.如图所示为一列简谐横波t时刻的图象,已知波速为0.2m/s,以下说法正确的是()A.经过0.5s,质点a、b、c通过的路程均为75cmB.若从t时刻起质点a比质点b先回到平衡位置,则波沿x轴正方向传播C.图示时刻质点a、b、c所受的回复力大小之比为2∶1∶3D.振源的振动频率为0.4Hz2.一列向右传播的简谐横波在某一时刻的波形如图所示,该时刻,两个质量相同的质点P、Q 到平衡位置的距离相等。
关于P、Q两个质点,以下说法正确的是()A.P较Q先回到平衡位置B.再经14周期,两个质点到平衡位置的距离相等C.两个质点在任意时刻的动量相同D.两个质点在任意时刻的加速度相同3.图为一列简谐波在0=t时刻的波形图,此时质点Q正处于加速运动过程中,且质点N在1st=时第一次到达波峰。
则下列判断正确的是()A.此时质点P也处于加速运动过程B.该波沿x轴负方向传播C.从0=t时刻起,质点P比质点Q晚回到平衡位置D.在0=t时刻,质点N的振动速度大小为1m/s4.如图所示为一列机械波在t=0时刻传播的波形图,此刻图中P点速度沿y轴正方向,t=2s 时刻,图中Q点刚好在x轴上。
则下列说法正确的是()A.该机械波沿x轴正方向传播B.该机械波周期不可能是8s3C.无论周期是多少,当Q点在x轴时,P点一定离x轴最远D.P点振幅是10cm5.如图所示是沿x轴传播的一列简谐横波在t=0时刻的波形图,已知波的传播速度为16.0m/s,从此时起,图中的P质点比Q质点先经过平衡位置.那么下列说法中正确的是()A.这列波一定沿x轴正向传播B.这列波的频率是3.2HzC.t=0.25s时Q质点的速度和加速度都沿y轴负向D.t=0.25s时P质点的速度和加速度都沿y轴负向6.如图(a)所示为波源的振动图象(在t=0时刻之前波源就已经开始振动了),图(b)为xy 平面内沿x轴传播的简谐横波在t=0时刻的波形图象,t=0时刻P点向y轴负方向运动,关于图(b)上x=0.4m处的Q点的说法正确的是().A.t=0时,速度最大,其大小为0.1m/s,方向沿y轴正方向B.t=0到t=5s内,通过的路程为20cmC.t=2s时,运动到x=0.2m处D.t=3s时,加速度最大,且方向向下7.一列简谐横波在某时刻的波形图如图所示,已知图中质点b的起振时刻比质点a延迟了0.5s,b和c之间的距离是5m,以下说法正确的是()A.此列波的波长为2.5mB.此列波的频率为2HzC.此列波的波速为2.5m/sD.此列波的传播方向为沿x轴正方向传播8.P、Q、M是某弹性绳上的三个质点,沿绳建立x坐标轴。
振动、波动练习题及答案

振动、波动练习题一.选择题1.一质点在X 轴上作简谐振动,振幅A=4cm。
周期T=2s。
其平衡位置取作坐标原点。
若t=0 时刻质点第一次通过x= -2cm 处,且向X 轴负方向运动,则质点第二次通过x= -2cm 处的时刻为()。
A 1sB 2sC 4sD 2s332.一圆频率为ω的简谐波沿X 轴的正方向传播,t=0 时刻的波形如图所示,则t=0 的波形t=0 时刻,X 轴上各点的振动速度υ与X轴上坐标的关系图应()3.图示一简谐波在 t=0 时刻的波形图,波速υ =200m/s ,则图中O 点的振动加速度的表达式为()2A a 0.4 2 cos( t ) 2 23B a 0.4 2 cos( t )22C a 0.4 2cos(2 t ) 4.频率为 100Hz ,传播速度为 300m/s 的平面简谐波,波线上两 点振动的相位差为 3 ,则这两点相距( )A 2mB 2.19mC 0.5mD 28.6m5.一平面简谐波在弹性媒质中传播,媒质质元从平衡位置运动到最大位置处的过程中, ( )。
A 它的动能转换成势能B它的势能转换成动C 它从相邻的一段质元获得能量其能量逐渐增大Da20.4 2 cos(2 t2)υ (m/s)Bυ (m/s)DX(m)D 它把自己的能量传给相邻的一段质元,其能量逐渐减小6.在下面几种说法中,正确的说法是:()。
A 波源不动时,波源的振动周期与波动的周期在数值上是不同的B 波源振动的速度与波速相同C 在波传播方向上的任一质点振动位相总是比波源的位相滞后D 在波传播方向上的任一质点振动位相总是比波源的位相超前7.一质点作简谐振动,周期为T,当它由平衡位置向X 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为()。
A TBTCTDT4 12 6 88.在波长为λ的驻波中两个相邻波节之间的距离为()。
A λB 3 λ/4C λ/2D λ /49.在同一媒质中两列相干的平面简谐波的强度之比I1I 4是,则两列波的振幅之比是:()A A1 4 BA1 2 CA1 16 DA11A2 A2 A2 A2 410.有二个弹簧振子系统,都在作振幅相同的简谐振动,二个轻质弹簧的劲度系数K 相同,但振子的质量不同。
振动与波专题(2024高考真题及解析)

振动与波专题1.[2024·安徽卷] 某仪器发射甲、乙两列横波,在同一均匀介质中相向传播,波速v大小相等.某时刻的波形图如图所示,则这两列横波()A.在x=9.0 m处开始相遇B.在x=10.0 m处开始相遇C.波峰在x=10.5 m处相遇D.波峰在x=11.5 m处相遇1.C[解析] 由题意可知两列波的波速相同,所以相同时间内传播的距离相同,故两列横波在x=11.0 m处开始相遇,故A、B错误;甲波峰的坐标为x1=5 m,乙波峰的坐标为x2=16 m,m=10.5 m处相遇,故C正确,D错误.由于两列波的波速相同,所以波峰在x'=5 m+16-522.[2024·北京卷] 图甲为用手机和轻弹簧制作的一个振动装置.手机加速度传感器记录了手机在竖直方向的振动情况,以向上为正方向,得到手机振动过程中加速度a随时间t变化的曲线为正弦曲线,如图乙所示.下列说法正确的是()A.t=0时,弹簧弹力为0B.t=0.2 s时,手机位于平衡位置上方C.从t=0至t=0.2 s,手机的动能增大D.a随t变化的关系式为a=4sin (2.5πt) m/s22.D[解析] 由题图乙知,t=0时,手机加速度为0,由牛顿第二定律得弹簧弹力大小为F=mg,A错误;由题图乙知,t=0.2 s时,手机的加速度为正,则手机位于平衡位置下方,B错误;由题图乙知,从t=0至t=0.2 s,手机的加速度增大,手机从平衡位置向最大位移处运动,速度=2.5π rad/s,则a随t变化的关系减小,动能减小,C错误;由题图乙知T=0.8 s,则圆频率ω=2πT式为a=4sin (2.5πt) m/s2,D正确.3.[2024·福建卷] 某简谐运动的y -t 图像如图所示,则以下说法正确的是( )A .振幅为2 cmB .频率为2.5 HzC .0.1 s 时速度为0D .0.2 s 时加速度方向竖直向下3.B [解析] 根据图像可知,振幅为1 cm,周期为T =0.4 s,则频率为f =1T =10.4 Hz=2.5 Hz,故A 错误,B 正确;根据图像可知,0.1 s 时质点处于平衡位置,此时速度最大,故C 错误;根据图像可知,0.2 s 时质点处于负向最大位置处,此时加速度方向竖直向上,故D 错误.4.[2024·甘肃卷] 如图为某单摆的振动图像,重力加速度g 取10 m/s 2,下列说法正确的是 ( ) A .摆长为1.6 m,起始时刻速度最大 B .摆长为2.5 m,起始时刻速度为零 C .摆长为1.6 m,A 、C 点的速度相同 D .摆长为2.5 m,A 、B 点的速度相同4.C [解析] 由单摆的振动图像可知振动周期为T =0.8π s,由单摆的周期公式T =2π√lg 得摆长为l =gT 24π2=1.6 m,A 、C 点的速度相同,A 、B 点的速度大小相同,方向不同;综上所述,可知C 正确.5.[2024·广东卷] 一列简谐横波沿x 轴正方向传播,波速为1 m/s,t =0时的波形如图所示.t =1 s 时,x =1.5 m 处的质点相对平衡位置的位移为 ( )A .0B .0.1 mC .-0.1 mD .0.2 m5.B [解析] 由图像可知,波长λ=2 m,周期T =λv =2 s,由于1 s-0=T2,故t =1 s 时,x =1.5 m 处的质点运动到波峰,相对平衡位置的位移为0.1 m,B 正确.6.[2024·河北卷] 如图所示,一电动机带动轻杆在竖直框架平面内匀速转动,轻杆一端固定在电动机的转轴上,另一端悬挂一紫外光笔,转动时紫外光始终竖直投射至水平铺开的感光纸上,沿垂直于框架的方向匀速拖动感光纸,感光纸上就画出了描述光点振动的x -t 图像.已知轻杆在竖直面内长0.1 m,电动机转速为12 r/min .该振动的圆频率和光点在12.5 s 内通过的路程分别为 ( )A .0.2 rad/s,1.0 mB .0.2 rad/s,1.25 mC .1.26 rad/s,1.0 mD .1.26 rad/s,1.25 m6.C [解析] 根据题意可知,紫外光笔的光点在纸面上沿x 轴方向做简谐运动,光点的振动为受迫振动,其振动周期等于电动机转动周期,故该振动的圆频率ω=2πT =2πn =0.4π rad/s≈1.26 rad/s,A 、B 错误;该振动的周期T =1n =5 s,由于轻杆长0.1 m,故振幅A =0.1 m,因12.5 s=(2+12)T ,故12.5 s 内光点通过的路程s =(2+12)×4A =1.0 m,C 正确,D 错误.7.[2024·湖南卷] 如图所示,健身者在公园以每分钟60次的频率上下抖动长绳的一端,长绳自右向左呈现波浪状起伏,可近似为单向传播的简谐横波.长绳上A 、B 两点平衡位置相距6 m,t 0时刻A 点位于波谷,B 点位于波峰,两者之间还有一个波谷.下列说法正确的是 ( )A .波长为3 mB .波速为12 m/sC .t 0+0.25 s 时刻,B 点速度为0D .t 0+0.50 s 时刻,A 点速度为07.D [解析] 由题意知A 、B 的平衡位置之间的距离x =32λ=6 m,解得λ=4 m,A 错误;波源的振动频率为f =6060 Hz=1 Hz,则波速v =λf =4 m/s,B 错误;质点的振动周期T =1f =1 s,由于0.25 s=T 4,故B 点在t 0+0.25 s 时刻即14周期后由波峰运动至平衡位置,速度最大,C 错误;由于0.50 s=T2,故A 点在t 0+0.50 s 时刻即12周期后由波谷运动至波峰,速度为0,D 正确.8.[2024·江西卷] 如图甲所示,利用超声波可以检测飞机机翼内部缺陷.在某次检测实验中,入射波为连续的正弦信号,探头先后探测到机翼表面和缺陷表面的反射信号,分别如图乙、丙所示.已知超声波在机翼材料中的波速为6300 m/s.关于这两个反射信号在探头处的叠加效果和缺陷深度d,下列选项正确的是 ()A.振动减弱;d=4.725 mmB.振动加强;d=4.725 mmC.振动减弱;d=9.45 mmD.振动加强;d=9.45 mm8.A[解析] 根据题图乙可知,超声波的传播周期T=2×10-7 s,又波速v=6300 m/s,则超声波在机翼材料中的波长λ=vT=1.26×10-3 m,结合题图乙和题图丙可知,两个反射信号传播到λ,解探头处的时间差为Δt=1.5×10-6 s,故两个反射信号的路程差为2d=vΔt=9.45×10-3 m=152得d=4.725×10-3 m;由题图乙和题图丙可知,这两个反射信号的起振方向相同,振动周期相同,传播到探头处的路程差为半波长的奇数倍,则这两个反射信号发生干涉且在探头处振动方向相反,故这两个反射信号在探头处振动减弱,A正确.9.(多选)[2024·山东卷] 甲、乙两列简谐横波在同一均匀介质中沿x轴相向传播,波速均为2 m/s.t=0时刻二者在x=2 m处相遇,波形图如图所示.关于平衡位置在x=2 m处的质点P,下列说法正确的是()A.t=0.5 s时,P偏离平衡位置的位移为0B.t=0.5 s时,P偏离平衡位置的位移为-2 cmC.t=1.0 s时,P向y轴正方向运动D.t=1.0 s时,P向y轴负方向运动9.BC [解析] 由于两波的波速均为2 m/s,故t =0.5 s 时,两波均传播了Δx =v Δt =2×0.5 m=1 m,题图所示平衡位置在x =1 m 处和x =3 m 处两质点的振动形式传到P 点处,由波的叠加原理可知,t =0.5 s 时,P 偏离平衡位置的位移为-2 cm,A 错误,B 正确;同理,t =1 s 时,题图所示平衡位置在x =0处和x =4 m 处两质点的振动形式(均向y 轴正方向运动)传到P 点处,根据波的叠加原理可知,t =1 s 时,P 向y 轴正方向运动,C 正确,D 错误.10.(多选)[2024·新课标卷] 位于坐标原点O 的波源在t =0时开始振动,振动图像如图所示,所形成的简谐横波沿x 轴正方向传播.平衡位置在x =3.5 m 处的质点P 开始振动时,波源恰好第2次处于波谷位置,则 ( )A .波的周期是0.1 sB .波的振幅是0.2 mC .波的传播速度是10 m/sD .平衡位置在x =4.5 m 处的质点Q 开始振动时,质点P 处于波峰位置10.BC [解析] 波的周期和振幅与波源振动的周期和振幅一致,可知波的周期为T =0.2 s,振幅为A =0.2 m,故A 错误,B 正确;质点P 开始振动时,波源第2次到达波谷,可知波从波源传到质点P 所用的时间为t =34T +T =0.35 s,则波速为v =x OP t=3.5-00.35 m/s=10 m/s,故C 正确;质点Q 的平衡位置在x =4.5 m 处,波从质点P 传到质点Q 需要的时间为t'=x PQ v=4.5-3.510 s=0.1 s=12T ,所以质点Q 开始振动时,质点P 处于平衡位置,故D 错误.11.[2024·浙江6月选考] 如图所示,不可伸长的光滑细线穿过质量为0.1 kg 的小铁球,两端A 、B 悬挂在倾角为30°的固定斜杆上,间距为 1.5 m .小球平衡时,A 端细线与杆垂直;当小球受到垂直纸面方向的扰动做微小摆动时,等效于悬挂点位于小球重垂线与AB 交点的单摆,重力加速度g 取10 m/s 2,则 ( )A .摆角变小时,周期变大B .小球摆动周期约为2 sC .小球平衡时,A 端拉力为√32 ND.小球平衡时,A端拉力小于B端拉力11.B[解析] 单摆的周期T=2π√Lg,与摆角无关,故A错误.光滑细线穿过小铁球,则小铁球两侧细线上拉力大小相等,所以A端拉力与B端拉力大小相等,平衡时对小球受力分析如图所示,根据数学关系可知F A=F B=mg2cos30°=√33N,故C、D错误.根据几何关系可知,细线与竖直方向夹角为30°,两侧细线夹角为60°,等效摆长为L=d AB cot60°cos30°=1 m,则小球摆动周期T=2π√Lg≈2 s,故B正确.12.[2024·浙江6月选考] 频率相同的简谐波源S1、S2和接收点M位于同一平面内,S1、S2到M的距离之差为6 m.t=0时,S1、S2同时垂直平面开始振动,M点的振动图像如图所示,则()A.两列波的波长为2 mB.两列波的起振方向均沿x正方向C.S1和S2在平面内不能产生干涉现象D.两列波的振幅分别为3 cm和1 cm12.B[解析] 由图像知,t=4 s时一列波传到M点且使M点沿x正方向振动,振幅A1=3 cm,t=7 s时这列波使M点沿x负方向振动且振幅变小为A=1 cm,说明此时另一列波也传到M点且其使M点沿x正方向振动,这列波的振幅A2=A1-A=2 cm,所以两列波刚传到M 时均使M点沿x正方向振动,即两列波的起振方向均沿x正方向,B正确,D错误;S1、S2到M的距离之差为Δx=6 m,由图像可知两列波传到M的时间之差为Δt=7 s-4 s=3 s,则波速v=ΔxΔt=2 m/s,由图像可知振动周期T=2 s,则波长λ=vT=4 m,A错误;S1、S2频率相等,所以在平面内能产生干涉现象,C错误.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 振动和波下面重点要考试内容:1.掌握简谐振动的基本概念、简谐振动的余弦表达式2.掌握旋转矢量表示法、振幅、相位概念、掌握振动能量的公式3.掌握同方向同频率谐振动的合成4.掌握平面简谐波的表达式及其意义、掌握波的能流密度和波的干涉5.理解机械波的产生和传播、惠更斯原理、波的衰减;;理解拍、相互垂直谐振动的合成8-1 试解释下列名词:简谐振动、振幅、频谱分析、基频、频谱图、波动、横波、纵波、波阵面、波的强度。
答: ①简谐振动:质点在弹性力(或准弹性力)作用下所作的振动叫简谐振动,其加速度与离开平衡位置的位移成正比,且方向相反。
②振幅:振动物体离开平衡位置的最大距离称为振幅。
③频谱分析:将任一周期性振动分解为多个简谐振动之和的过程,称为频谱分析。
④基频:一个复杂的振动可以分解为若干个频率不同的简谐振动之和,这些分振动频率中最低的频率称为基频,它与原振动的频率相同。
⑤频谱图:将组成一个复杂振动的各分振动的频率和振幅找出来,按振幅与频率关系列出谱线,这种图称为频谱图。
⑥波动:振动在介质中的传播现象叫波动,它也是一种重要的能量传播过程。
其中简谐振动在介质中传播所形成的波叫简谐波。
⑦横波:波在介质中传播时,如果介质中各质点振动的方向与波的传播方向垂直,则该波叫做横波。
⑧纵波:如果介质中各质点振动的方向与波的传播方向相互平行,则这种波称为纵波。
⑨波阵面:在波传播的介质中,质点振动相位相同的各点连成的面称为波阵面。
⑩波的强度:单位时间内通过垂直于波的传播方向单位面积上的平均能量,称为波的强度。
8-2 有一质点作简谐振动,试分析它在下列位置时的位移、速度、加速度的大小和方向:①平衡位置,向正方向运动;②平衡位置,向负方向运动;③正方向的端点;④负方向的端点。
解: 设该质点的振动方程为:)cos(ϕω+=t A x将它对时间t 分别求一阶导数、二阶导数,可得到速度v 和加速度a 的表达式:)2cos()sin(πϕωωϕωω++=+-==t A t A dt dx v)cos()cos(2222πϕωωϕωω++=+-==t A t A dtxd a 由此可以看出,速度的相位超前位移2π,加速度与位移的相位相反。
下面根据上面三式来回答本题中的四个问题。
①质点在平衡位置,向正方向运动时: x=0, v=A ω, a =0②质点在平衡位置,向负方向运动时: x=0, v=-A ω, a =0③质点在正方向的端点时: x=A , v =0, a=-A ω2 ④质点在负方向的端点时: x=-A , v =0, a=A ω28-3 一个作简谐振动的质点,在t=0时,离开平衡位置6cm 处,速度为零,振动周期为2s ,求该简谐振动的位移、速度、加速度的表达式。
解:根据题意,t=0时,质点速度为零,离开平衡位置6cm ,这说明该振动的振幅为A=6cm ,这时质点可能位于平衡点右侧6cm 处,或位于平衡点左侧6cm 处。
下面分这两种情况进行讨论,设该振动方程为:)cos(ϕω+=t A x (a )①第一种情况:位于平衡点右侧6cm 处,这时位移x=6cm ,将t =0,A =6cm ,x=6cm 代入(a )式得ϕcos 66= 6解之得,ϕ =0。
已知T =2秒,则ππω==22,将A 、ω、ϕ值代入(a )式可得第一种情况的位移表达式为t x πcos 6=(cm ) (b )再将(b )式对时间求一阶导数、二阶导数,可分别得第一种情况的速度、加速度表达式t dtdxv ππsin 6-==(cm ·s -1 ) t dtx d a ππcos 6222-==(cm ·s -2 ) ②第二种情况:位于平衡点左侧6cm 处,这时位移x=-6cm ,将t =0,A =6cm ,x=-6cm 代入(a )式得-6=6cos φ解之得,ϕ =π。
已知ϕ=π,ω=π,A=6cm ,代入(a )式可得第二种情况的位移表达式t t x πππcos 6)cos(6-=+= (c )再将(c )式对时间求一阶导数、二阶导数,可分别得第二种情况的速度、加速度表达式t dtdxv ππsin 6==(cm ·s -1 ) t dt x d a ππcos 6222==(cm ·s -2 )8-4 两个物体作简谐振动,它们的振幅相同、周期相同,分别是0.1m 和2s ,当t=0时,一物体的位移为0.1m ,另一物体的位移为-0.1m ,问两者的相位差是多少?当t=1s 时,它们的位移各是多少?解: ①已知A =0.1m ,T =2s ,则ω=2πT =πrad ·s -1 ,设它们的振动方程分别为)cos(11ϕω+=t A x (a ))cos(22ϕω+=t A x (b )已知t=0时,x 1 =0.1m ,x 2 =-0.1m ,则由(a )式和(b )式可得x 1 =0.1cos φ 1 =0.1 x 2 =0.1cos φ 2 =-0.1分别解上面两式得φ 1 =0,φ 2 =π,因此两者的相位差φ 2 -φ 1 =π。
两振动的方程分别为x 1 =0.1cos (πt ) (c ) x 2 =0.1cos (πt +π) (d )②当t=1s ,由上面的(c )式和(d )式可得到它们的位移分别为x 1 =0.1cos (π+0)m=-0.1m x 2 =0.1cos (π+π)m=0.1m8-5 两个同频率、同方向的简谐振动,周期为20ms ,振幅分别为1.0cm 和3.0cm ,求:①两者合振动的圆频率;②当两者的相位差分别为0、π3、π2、π时,合振动的振幅各是多少? 解: ①由于是两个同频率、同方向的振动合成,所以合振动的频率不变,即其圆频率为02.014.32221⨯====T πωωωrad·s -1 =100πrad ·s -1 ≈314rad ·s -1②已知分振动的振幅A 1 =1.0cm ,A 2 =3.0cm ,合振动的振幅A 与两个分振动的振幅A 1 、A 2 及相位差φ 1 -φ 2 有以下关系:)cos(221212221ϕϕ-++=A A A A A当相位差φ 2 -φ 1 =0时,两个分振动同相位,合振动的振幅为 A =A 1 +A 2 =(1.0+3.0)cm=4.0cm 当相位差312πϕϕ=-时,合振动的振幅为)3cos(3123122π⨯⨯⨯++=A cm=13cm ≈3.6cm当相位差φ 2 -φ 1 =2π时,合振动的振幅为 )2cos(3123122π⨯⨯⨯++=A cm=10cm ≈3.2cm当相位差φ 2 -φ 1 =π时,两个分振动相位相反,合振动的振幅为A =|A 1 -A 2 |=|1.0-3.0|cm=2.0cm8-6 有三个同方向的简谐振动,它们的频率分别为100Hz 、200Hz 、300Hz ,问:①三者合成后是否仍为简谐振动?②合振动的周期是多少? 解: ①由于分振动的频率不同,所以它们合成后将不是简谐振动。
②合振动的频率为100Hz ,周期T=1001s=0.01s 。
8-7 弹簧振子作简谐振动时,若其振幅增为原来的两倍,而频率降为原来的一半,它们的能量怎样改变?答: 弹簧振子作简谐振动时,其能量为2221A m E ω=,若其振幅A 增为原来的两倍,而频率降为原来的一半,结果能量没有改变。
8-8 什么叫阻尼振动、受迫振动、共振?在受迫振动中振子受到哪三个力的作用?受迫振动达到稳定时有什么特点?答: ①在振动中,由于各种因素的影响,能量会减少,振幅也随之减小,这种振幅随时间而减小的振动,称为阻尼振动。
②振动系统在周期性外力的持续作用下发生的振动,叫做受迫振动。
在受迫振动中,振子同时受到三个力的作用:弹性力、阻尼力、周期性外力。
受迫振动达到稳定状态时,振幅保持一定,如果外力是按简谐运动规律变化,则稳定后的受迫振动也是简谐振动,且振动频率等于外力变化的频率。
③在受迫振动中,当周期性外力的频率接近系统的固有频率时,振动的振幅急剧增大,这种现象叫做共振。
8-9 要产生机械波必须具备哪两个条件?当波动在通过不同介质时,它的波长、频率、速度中哪些会发生变化?哪些不会改变?答: ①要产生机械波必须具备两个条件:第一,要有作机械振动的物体,即波源;第二,要有能够传播这种机械振动的弹性介质。
②当波动通过不同的介质时,波长和波速会发生变化,而频率不会改变。
8-10 已知波动方程式y=M sin (bt -ax ),试求该波的振幅、波速、频率和波长。
解: 先将题目给的波动方程进行变换:]2)(cos[)(sin )sin(π--=-=-=b ax t b M b ax t b M ax bt M y (a )而波动方程的通用形式为)(cos cxt A y -=ω (b )将(a )式和(b )式比较可得振幅: A=M 波速:ab u =频率: π2b f = 波长: aπλ2=。
8-11 有一沿X 轴正方向传播的简谐波,在原点处质点的振动方程为t TA y π2cos=,已知A=0.02m ,T=3s ,波速u=2m ·s -1 。
求:①波动方程;②在X 轴正方向离原点5m 处质点的振动方程;③当t=2.5s 时,原点处质点的位移;④当t=2.5s 时,在X 轴正方向离原点5m 处质点的位移。
解: ①已知A=0.02m ,T=3s ,则ω=2πT=2π3,根据题意,可得原点的振动方程为t t T A y ππ32cos 02.02cos== 已知波速c=2m ·s -1 ,由上式可进一步得到波动方程为)2(32cos 02.0xt y -=π (1)②已知x=5m ,可得在X 轴正方向离原点5m 处质点的振动方程为)3532cos(02.0)25(32cos02.0πππ-=-=t t y )332cos(02.0ππ+=t③已知在(1)式中,t=2.5s ,x=0,则有)32cos(02.035cos 02.0πππ-==y m =0.01m④已知在(1)式中,t=2.5s ,x=5m ,有)255.2(32cos 02.0-=πy m =0.02m8-12 在空气中P 点声波的强度为2.0×10 5 W ·m -2 ,振动幅度为2mm ,空气的密度为1.29kg ·m -3 ,波速为344m ·s -1 。
求:①声波的波长;②P 点的平均能量密度。
解: ①求波长:已知I =2.0×10 5 W ·m -2 ,A =2mm=2×10 -3 m ,ρ=1.29kg ·m -3 ,由声波强度公式2221A u I ωρ=,可得角频率ω 2352)102(34429.1100.222-⨯⨯⨯⨯⨯==uA I ρω rad ·s -1 =1.5×10 4 rad·s -1由ω=2πf ,可得f =ω/2π=1.5×10 4 /6.28=2.39×10 3 Hz 。