勾股定理的证明

合集下载

勾股定理的十种证明方法

勾股定理的十种证明方法

勾股定理的十种证明方法勾股定理是我们初中时就接触到的重要定理,也是数学史上最为著名的定理之一,在几何运算和三角函数中都有广泛应用。

其说法是:在直角三角形中,直角边上的平方和等于斜边上的平方,即 a^2+b^2=c^2。

本文将会介绍十种不同的证明方法,每种证明方法都体现了数学思维中的不同角度与方法。

1. 几何证明方法这种证明方法是最早的证明方法之一,它主要通过图形来证明定理的正确性。

我们可以通过构建一条边长为 a 和一条边长为 b 的正方形,再以这两条正方形的对角线为直角边构建一个直角三角形,即可证明勾股定理。

2. 相似三角形证明方法这种证明方法主要通过相似三角形来证明勾股定理的正确性。

我们可以画出一系列相似的三角形,来证明斜边和直角边之间的关系。

3. 数学归纳法证明方法根据数学归纳法,证明当 n=1 时定理成立,当 n=k 时定理成立,则推出 n=k+1 时定理也成立。

此证明方法需要适当运用代数知识来完成。

4. 三角函数证明方法使用三角函数来证明勾股定理也是一种有效的证明方法。

通过使用正弦、余弦、正切等函数来证明斜边和直角边之间的关系。

5. 向量证明方法通过考虑向量的长度和夹角关系,证明斜边和直角边之间的关系。

此方法依赖于向量的基本运算和性质。

6. 代数证明方法这种证明方法主要依赖于代数计算的过程,可以通过平方、开方、因式分解等方法来证明定理的正确性。

7. 微积分证明方法从微积分的角度来考虑勾股定理,可以通过求导和积分的运算关系来证明斜边和直角边之间的关系。

8. 数组和矩阵证明方法运用数组和矩阵的运算来证明勾股定理的正确性,需要适当了解数组和矩阵的基本运算和性质。

9. 物理学应用证明方法勾股定理在物理学中也有广泛的应用,比如在机械学中,勾股定理可以用来计算质点的速度和加速度。

10. 函数图像证明方法运用函数图像的特点来证明勾股定理的正确性,需要适当了解函数图像的特点和性质。

对于一些特殊的函数,也可以通过对其函数图像进行研究来证明定理的正确性。

勾股定理500种证明方法

勾股定理500种证明方法

勾股定理500种证明方法勾股定理是数学中的一条重要定理,它是说对于任意直角三角形,斜边的平方等于两个直角边的平方之和。

具体表达式如下:\[a^2+b^2=c^2\]这里,a和b是直角三角形的两条直角边,c是斜边。

欧几里得给出了最早的证明方法,他使用了几何构造和演绎的方法来证明这个定理。

1.欧氏证明方法:欧几里得通过将两个直角边的平方进行拼贴,得到一个正方形,并证明这个正方形的面积等于斜边的平方。

2.平行线切割法:通过平行线的切割,将直角三角形分割为几个图形,然后利用这些图形的面积关系证明勾股定理。

3.三角形面积法:通过计算直角三角形各个边上的高,然后将两个直角边的长度和其对应的高代入三角形面积公式,证明勾股定理。

4.变形推导法:将勾股定理移项变形,推导出其他几何定理,再反推回来证明勾股定理。

5.相似三角形法:利用两个直角三角形的相似性质,建立它们之间的边长比例,然后通过约分和乘法证明勾股定理。

6.余弦定理法:利用三角形的余弦定理,将三角形的边长和夹角之间的关系表达式代入勾股定理,然后进行化简证明。

7.对角线法:通过划分直角三角形的对角线,构造与角度相关的图形,然后运用几何性质证明勾股定理。

......(继续列举)这些只是勾股定理证明的几种常见方法,还有很多其他方法,涉及不同的数学分支和概念。

基于这三个基本量的几何关系,有许多方法可以推导出这个定理,每种证明方法都有其独特之处,展示了数学的丰富性和多样性。

通过探究不同的证明方法,我们可以增加对数学的理解和思维能力。

勾股定理是一个基本而重要的定理,它在数学和物理等领域中都有广泛的应用,所以了解多种证明方法可以帮助我们更好地理解和应用这个定理。

勾股定理五种证明方法

勾股定理五种证明方法

勾股定理五种证明方法
1. 代数证明:假设直角三角形的两条直角边分别为a和b,斜
边为c。

根据勾股定理,我们有a^2 + b^2 = c^2。

将三条边的
长度代入该等式,进行计算验证即可证明。

2. 几何证明:通过绘制直角三角形,并利用几何原理证明。

例如,可以画一个正方形,然后在其两条相对边上各画一个相等的直角三角形,再使用平行四边形的性质可以得出a^2 + b^2
= c^2。

3. 相似三角形证明:假设两个直角三角形,已知其斜边比例为m:n,利用相似三角形的性质可以得出直角边的比例也是m:n,进而得到a^2 + b^2 = c^2。

4. 平行四边形法证明:利用平行四边形的性质,可通过画出一个具有相等对边的平行四边形来证明勾股定理。

通过平行四边形的性质可以得出a^2 + b^2 = c^2。

5. 微积分证明:利用微积分的知识可以证明勾股定理。

通过对直角三角形边长进行微分,并进行适当的运算,可以得到a^2 + b^2 = c^2。

这种证明方法比较复杂,需要较高的数学知识和
技巧。

十种方法证明勾股定理

十种方法证明勾股定理

十种方法证明勾股定理勾股定理是中学数学中最基本的定理之一,解决了数学中的许多问题。

它是一个既基础且实用的定理,有许多方法可以证明它,下面介绍十种方法:1.欧拉定理证明法:构造出一个直角三角形,把它的两条直角边对应的两个正方形放在直角三角形外面,另一条边对应的正方形放在直角三角形内部,再利用欧拉定理计算出三个正方形的面积,可以证明勾股定理。

2.代数证明法:利用代数的平方公式,把直角三角形的两条直角边平方相加,再把斜边平方,然后再将两者相减,得到一个等式,即可证明勾股定理。

3.数学归纳法证明:用数学归纳法证明勾股定理,证明当n为正整数时,定理成立。

4.相似三角形证明法:构造出相似的三角形,利用相似三角形的性质,可以推导出勾股定理。

5.向量证明法:用向量的几何意义证明勾股定理,首先利用向量的长度和夹角的公式计算出向量的长度和夹角,再利用向量的点积公式计算出勾股定理中的各个变量,最后推导出勾股定理。

6.割圆术证明法:利用割圆术将直角三角形对角线作为半径画圆,利用圆上弧角定理,可以得到勾股定理。

7.平面几何证明法:用平面几何证明勾股定理,利用平面几何图形的形状和大小关系,推导出勾股定理。

8.解析几何证明法:用解析几何证明勾股定理,利用平面直角坐标系,将三角形的三个点用坐标表示出来,推导出勾股定理。

9.三角函数证明法:用三角函数证明勾股定理,利用三角函数的性质,将三角形分离出直角三角形和非直角三角形,再用三角函数计算出各个变量,推导出勾股定理。

10.古希腊证明法:古希腊人对勾股定理有自己的证明方法,即利用几何图形的形状和大小,通过构造几何图形推导出勾股定理。

这些证明方法都可以证明勾股定理的正确性,它们有不同的适用范围和难度级别,可以根据自己的水平和兴趣选择合适的证明方法。

勾股定理的证明方法5种

勾股定理的证明方法5种

勾股定理的证明方法5种勾股定理是几何学中最为经典的定理之一,它揭示了直角三角形中直角边与斜边的关系。

勾股定理有多种不同的证明方法,下面我们将依次介绍其中五种不同的证明方法。

方法一:几何法证明这种证明方法是最为直观的,它通过几何形状的变换来证明勾股定理。

首先,我们先画出一个直角三角形ABC,然后作出辅助线AD ⊥BC,将三角形ABC分成两个小三角形ΔABD和ΔADC。

根据相似三角形的性质,我们可以得到BD/AB=AB/AC,即BD*AC=AB^2。

同理,我们可以得到CD*AB=AC^2。

将这两个式子相加起来,我们就可以得到BD*AC+CD*AB=AB^2+AC^2,根据平行四边形的性质,我们可以得到BC*AD=AB^2+AC^2,而BC*AD就是直角三角形ABC的斜边的平方AC^2。

因此,通过几何法证明,我们可以得到勾股定理成立。

方法二:代数法证明这种证明方法是使用代数运算来证明勾股定理。

我们可以用直角三角形的三条边的长度来表示三角形的面积。

假设直角三角形的三条边分别为a、b、c,其中c 为斜边,利用面积公式S=1/2*底*高,我们可以得到三角形面积的两种表达式:S=1/2* a*bS=1/2* c*h通过这两个表达式,我们可以得到c*h=a*b,即c^2=a^2+b^2。

方法三:相似三角形法证明这种证明方法利用相似三角形的性质来证明勾股定理。

我们可以在直角三角形ABC中找到一个与之全等的直角三角形DEF。

然后我们可以发现直角三角形ABC和DEF分别是直角三角形ACB和EDF的相似三角形。

由于相似三角形的对应边成比例,我们可以得到AB/DE=BC/EF=AC/DF。

利用这个性质,我们可以得到AB^2=DE^2+DF^2和AC^2=DE^2+EF^2。

将这两个式子相加起来,我们可以得到AB^2+AC^2=DE^2+DF^2+DE^2+EF^2,根据平行四边形的性质,我们可以得到AB^2+AC^2=2*DE^2+2*DF^2。

勾股定理9种证明(有图)

勾股定理9种证明(有图)

勾股定理的9种证明(有图)【证法1】(邹元治证明)以a 、b 为直角边,以c 为斜边做四个全等的直角三角形, 则每个直角三角形的面积 等于2ab .把这四个直角三角形拼成如图所示形状, 使A 、E 、B 三点在一条直线上,B 、F 、 C 三点在一条直线上,C G D 三点在一条直线上.v Rt △ HAE 坐 Rt △ EBF, ••• / AHE = / BEF.v / AEH + / AHE = 90o, • / AEH + / BEF = 90o.• / HEF = 180o — 90o= 90o.•四边形EFGH 是一个边长为c 的 正方形.它的面积等于c 2.v Rt △ GDH 坐 Rt △ HAE, • / HGD = / EHA. v / HGD + / GHD = 90o,• / EHA + / GHD = 90o. 又v / GHE = 90o, • / DHA = 90o+ 90o= 180o.2• ABCD 是一个边长为a + b 的正方形,它的面积等于(a + b ).21 2a b 4 ab c222•2. • a b = c .【证法2】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为 a 、b ,斜边长为c.把它 们拼成如图那样的一个多边形,使 D E 、F 在一条直线上.过C 作AC 的延长线交DF 于/ EGF + / GEF = 90°, / BED + / GEF = 90 ° , / BEG =18(b — 90o= 90 o. 又 v AB = BE = EG = GA = c• / ABC + / CBE = 90o.v Rt △ ABC 坐 Rt △ EBD, • / ABC = / EBD.• / EBD + / CBE = 90o. 即 / CBD= 9Gb. 又 v / BDE = 90o ,Z BCP = 90o ,D 、E 、F 在一条直线上,且Rt △ GEF 幻Rt △ EBD, ABEG 是一个边长为c 的正方形.a b HH匕DA FbaP bCBC = BD = a.••• BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCB 的面积为S,则21 b S2 ab, 2 1=S 2 ab2 ,a 2 +b 2 =c 2【证法3】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为 a 、b (b>a )c.再做一个边长为c 的正方形.把它们拼成如图所示的多边形,使 直线上. 过点Q 作QP// BC 交AC 于点P. 过点B 作BML PQ 垂足为M ;再过点 F 作FNL PQ 垂足为N.v / BCA = 90o , QP// BC • / MPC = 90o , v BM 丄 PQ• / BMP = 90o ,• BCPM 是一个矩形,即/ MBC = 90o.v / QBM + / MBA = / QBA = 90o , / ABC + / MBA = / MBC = 90o , • / QBM = / ABC又 v / BMP = 90o ,/ BCA = 90o , BQ = BA = c , • Rt △ BMQ 坐 Rt △ BCA.同理可证Rt △ QNF 幻Rt △ AEF.从而将问题转化为【证法4】(梅文鼎证明). 【证法4】(欧几里得证明)做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使 在一条直线上,连结BF CD.过 C 作 CL L DE 交AB 于点M 交DE 于点L.v AF = AC , AB = AD,/ FAB = / GAD• △ FAB 坐△ GADE 、A ,斜边长为C 三点在一条 H 、C B 三点 v △ FAB 的面积等于K△ GAD 的面积等于矩形ADLM 的面积的一半,二矩形ADLM 的面积二 同理可证,矩形 MLEE 的面积 v 正方形ADEB 勺面积 =矩形ADLM!勺面积+ /. c 2 a 2 b 2,即 a 2 -【证法5】(杨作玫证明) 做两个全等的直角三角形,设它们的两条直角边长分别为 a 、b (b>a ),斜边长为c. 再做一个边长为c 的正方形.把它们拼成如图所示的多边形.过A 作AF 丄AC AF 交GT 于F , AF 交DT 于 R.过B 作BP 丄AF,垂足为 E , DE 交 AF 于 H. v / BAD = 90o ,Z PAC = 90o , ••• / DAH = / BAC. 又 v / DHA = 90o ,Z BCA = 90o , AD = AB = c ,• Rt △ DHA 坐 Rt △ BCA. • DH = BC = a , AH = AC = b. 由作法可知,PBCA 是一个矩形, 所以 Rt △ APB 坐 Rt △ BCA.即 PB = CA = b , AP= a ,从v Rt △ DGT 坐 RtRt △ DHA 坐 Rt• Rt △ DGT 坐 Rt • DH = DG = a , 又 v / DGT = 90o ,2 a . =b 2 矩形MLEB 勺面积 b 2 =c 2. PH = b — a. △ BCA , △ BCA. △ DHA . / GDT = / HDA . / DHF = 90o ,P.过D 作DE 与CB 的延长线垂直,垂足为 / GDH = / GDT + / TDH = / HDA+Z TDH = 90o ,• DGFH 是一个边长为a 的正方形.• GF = FH = a . TF 丄AF , TF = GT — GF = b — a .• TFPB 是一个直角梯形,上底 TF=b-a ,下底BP= b ,高FP=a + (b —a ).用数字表示面积的编号(如图),则以c 为边长的正方形的面积为 c 2 = Si S 2 S 3 S 4 S 51S 8 +S 3 +S 4 =- b + (b - a )】• a + (b -a /v2S5 - S 8' S 9丄21 .S 3S 4-b 2 ab・・ 2把②代入①,得c^S iS 2b 2 -S^S 8S 8S 9①b 2 -1 ab2 ,2=bS2S 9 = b 2 川 a 2【证法6】(李锐证明)设直角三角形两直角边的长分别为 a 、b (b>a ),斜边的长为c.做三个边长分别为a 、 b 、c 的正方形,把它们拼成如图所示形状,使 A 、E 、G 三点在一条直线上.用数字表示 面积的编号(如图).v / TBE = / ABH = 900, ••• / TBH = / ABE. 又 v / BTH = / BEA = 900,BT = BE = b , • Rt △ HBT 坐 Rt △ ABE. • HT = AE = a. • GH = GT — HT = b — a. 又 v / GHF + / BHT = 900,/ DBC + / BHT = / TBH + • / GHF = / DBC.v DB = EB — ED = b — a , / HGF = / BDC = 90o , • Rt △ HGF 坐 Rt △ BDC.即 S ^ S 2.过 Q 作 QM L AG 垂足是 M.由/ BAQ = / BEA = 90o ,可知 / ABE =/ QAM 而 AB = AQ = c ,所以 Rt △ ABE 幻 Rt △ QAM .又 Rt △ HBT 幻Rt △ ABE.所以 Rt △ HBT 幻 Rt △ QAM .即 S 8 二 S 5.由 Rt △ ABE 坐 Rt △ QAM 又得 QM = AE = a ,/ AQM = / BAE.v / AQM + / FQM = 90o ,Z BAE + / CAR = 90o ,Z AQM = / BAE • / FQM = / CAR.【证法7】(利用多列米定理证明)• Rt △ QMF 坐 Rt △ ARC.即 S 4 =S6.• • c 2 =S 1 S 2 S 3 S 4 S 5 a 2 S 6又v S 7 二 S 2 S g 二 S 5 S 4 二 S 6> > >• a 2 b 2 = S ! S 6 S 3 S 7 S 8=S iS 4 S 3 S 2 S 52=c ,即a 2 + b 2 =c 2.又 v / QMF = / ARC = 90o , QM = AR = a , b^ S 3 S 7 S 8R a A在Rt △ ABC 中,设直角边 BC= a , AC= b ,斜边AB = c (如图).过点A 作AD// CB, 过点B 作BD//CA 则ACBD 为矩形,矩形ACBD 内接于一个圆.根据多列米定理,圆内接 四边形对角线的乘积等于两对边乘积之和,有AB ・DC 二 AD ・BC AC *BD ,AB = DC = c , AD = BC = a , AC = BD = b ,AB 2 =BC 2 +AC 2,即 c 2 =a 2 +b 2 a 2 +b 2 =c 2【证法8】(利用反证法证明) 如图,在Rt △ ABC 中,设直角边 AG点C 作CDL AB 垂足是D.假设a 2 b 2=c 2,即假设AC 2 BC —AB 2,则由AB^AB *AB =AB AD BD =AB ・AD AB * BD可知 AC 2 式 AB ・AD ,或者 BC 2 式 AB ・BD .即 AD : AO AG AB 或者 BD : BO BC AB. 在厶ADC 和△ ACB 中, v / A = / A,.若 AD : AW AC AB 」 / AD 字/ ACB.在厶CDB 和△ ACB 中, v / B = / B ,.若 BD BW BC AB,贝S / CDB^Z ACB. 又v / ACB = 90o ,. / AD& 90o ,Z CD 字 90o. 这与作法CDLAB 矛盾.所以,/. a 2 b 2 = c 2.【证法9](辛卜松证明)设直角三角形两直角边的长分别为 a 、b,斜边的长为c.作边长是a+b 的正方形ABCD. 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为 (a +bf =a +b +2ab ;把正方形ABCD 划分成上方右图所示的几个部分,则正方形 ABCD 勺21 2,.十.(a +b 『=4 乂一ab+c 2面积为 2= 2ab c .2 2 2.. a b 2ab 二 2ab c ,BC 的长度分别为a 、b ,斜边AB 的长为c ,过 AC 2 • BC 2 = AB 2的假设不能成立..a2+b2=c2.。

3个证明勾股定理的方法

3个证明勾股定理的方法

3个证明勾股定理的方法勾股定理可神奇啦,就是直角三角形两条直角边的平方和等于斜边的平方,那怎么证明它呢?今天就给你分享三种超有趣的方法哦。

一、拼图法证明勾股定理咱就拿四个完全一样的直角三角形来玩一玩。

直角边设为a和b,斜边是c。

把这四个直角三角形拼成像一个大正方形中间套着一个小正方形的样子。

这个大正方形的边长就是a + b。

那它的面积就是(a + b)²。

展开这个式子就是a²+ 2ab+ b²。

再看看这个图形,大正方形其实是由四个直角三角形和中间那个小正方形组成的。

四个直角三角形的面积就是4×(1/2)ab = 2ab,小正方形的边长是c,它的面积就是c²。

所以大正方形的面积也可以表示成2ab + c²。

因为这两种方法表示的都是大正方形的面积呀,所以a²+ 2ab + b² = 2ab + c ²,两边的2ab一抵消,就得到a² + b² = c²啦,勾股定理就这么证明出来啦,是不是像玩拼图游戏一样好玩呢?二、利用相似三角形证明勾股定理在直角三角形ABC里,角C是直角,过点C作CD垂直于AB于D。

这样就形成了三个相似的三角形,大的直角三角形ABC,还有小一点的直角三角形ACD和BCD。

根据相似三角形的性质,对应边成比例。

在三角形ABC和ACD里,AC/AB = AD/AC,也就是AC² = AD×AB。

在三角形ABC和BCD里,BC/AB = BD/BC,也就是BC² = BD×AB。

把这两个式子加起来,AC²+ BC² = AD×AB + BD×AB = (AD + BD)×AB,而AD + BD就是AB呀,所以就得到AC² + BC² = AB²啦,是不是感觉很巧妙呢?三、总统证法(加菲尔德证法)这个可有意思啦。

勾股定理的500种证明方法

勾股定理的500种证明方法

勾股定理的500种证明方法1.几何推导:这是最著名的证明方法。

它通过将直角三角形切割、旋转、重新拼合,利用几何图形的性质,推导出勾股定理。

2. 代数证明:假设直角三角形的两条直角边长度分别为a和b,斜边长度为c。

则根据勾股定理,我们有c² = a² + b²。

我们可以将这个等式写成(a + b)² = c² + 2ab。

将c² = a² + b²代入,得到(a + b)² = a² + b² + 2ab。

再进一步化简,得到a² + 2ab + b² = a² + b² +2ab。

最后,化简为a² + b² = a² + b²。

我们可以发现,等式两边完全相等,从而验证了勾股定理。

3.数学归纳法证明:我们首先证明直角三角形边长为3,4,5时,满足勾股定理。

然后,假设对于边长小于n的所有直角三角形,都满足勾股定理。

接下来,我们考虑直角三角形边长为n的情况。

我们可以将这个三角形切割成由三个直角子三角形组成的形状。

根据归纳假设,这三个子三角形满足勾股定理。

我们可以对这些子三角形应用基本的代数运算和性质,进一步证明整个直角三角形也满足勾股定理。

4.平行四边形法证明:将一个直角三角形内切于正方形中,然后根据正方形的性质和等式关系,利用平行四边形的性质推导出勾股定理。

5.反证法证明:假设存在一个直角三角形,它的三条边无法满足勾股定理。

然后,通过对无法满足定理的条件进行分析,得出矛盾,从而证明了勾股定理的正确性。

6.数学几何方法:通过利用数学几何的原理和定理,如相似三角形、垂直直角等,推导出勾股定理的等式。

7.三角函数法证明:将三角函数引入到勾股定理的等式中,然后根据三角函数的性质,推导出等式成立。

以上仅为部分常见的证明勾股定理的方法,实际上有无数种证明方法可供选择。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∴S矩形ADNM=2S△ADC.
又∵正方形ACHK和△ABK同底(AK)、等高(即 平行线AK和BH间的距离), ∴S正方形ACHK=2S△ABK. ∵AD=AB,AC=AK,∠CAD=∠KAB, ∴△ADC≌△ABK. 由此可得S矩形ADNM=S正方形ACHK .
K A b M H C a
G F
c
3、将纸板Ⅱ翻转后与Ⅰ拼成其 它的图形
图2
4、比较第一个和最后一个多边 形的面积,你能验证勾股定理吗? 请试试
传说中毕达哥拉斯的证法
关于勾股定理的证明,现在人类保存下来的最早的 文字资料是欧几里得(公元前300年左右)所著的《几 何原本》第一卷中的命题47:“直角三角形斜边上的正 方形等于两直角边上的两个正方形之和”.其证明是用 面积来进行的. G
已知:如图,以在Rt△ABC中, ∠ACB=90°,分别以a、b、c 为边向外作正方形.
1 2 1 1 2 1 1 2 a ab c ab b 2 2 2 2 2
b
A
a c c
D
E
a-b
B
b
C
从而得到 : a 2 b2 c 2
注:这一方法是向常春 于1994年3月20日构想发 现的新法.
设△ABC为一直角三角形,其直角为∠CAB。 其边为BC、AB和CA,依序绘成矩形CBDE、BAGF和 ACIH。 画出过点A之BD、CE的平行线。此线将分别与BC和DE 直角相交于K、L。 分别连接CF、AD,形成两个三角形△BCF、△BDA。 由于∠CAB和∠BAG都是直角,因此C、A 和G 都是线 性对应的。同理可证B、A和H。 又因为∠CBD和∠FBA皆为直角,所以∠ABD等于 ∠FBC。 因为 AB 和 BD 分别等于FB 和 BC,所以△ABD 必须全 等于△FBC。 因为A 与K 和 L在同一直线上,所以矩形BDLK 必须二倍 面积于△ABD。 因为C、A和G在同一直线上,所以正方形BAGF必须二 倍面积于△FBC。 因此四边形BDLK 必须有相同的面积。S(正方形BAGF )=(AB)² 。 同理可证,四边形 CKLE 必须有相同的面积。S(正方 形ACIH)=(AC)² 把这两个结果相加, (AB)² +(AC)²= BD· BK + KL· KC 由于BD=KL,BD· BK + KL· KC =BD(BK +KC) =BD· BC 由于CBDE是个正方形,因此(AB)²+ (AC)²=(BC)² 。
朱实 中黄实 b a
返回
( b- a) 2
ab 那么: c 4 ( b a )2 2
2
得: c2 =a2+ b2.
刘徽的证法
刘徽在《九章算术》中对勾股定理的证明: 勾自乘为朱方,股自乘为青方,令出入相补,各 从其类,因就其余不移动也.合成弦方之幂,开 方除之,即弦也.
I
令正方形ABCD为朱方,正方 形BEFG为青方.在BG间取一点H, 使AH=BG,裁下△ADH,移至 △CDI,裁下△HGF,移至△IEF,
总统巧证勾股定理
D
a
Ccbຫໍສະໝຸດ cbAE a B
美国第二十任 总统伽菲尔德
返回
向常春的证明方法
S梯形ABCD 1 1 1 (a b b )(a b ) a 2 ab 2 2 2
S梯形ABCD S四边形AECD S EBC 1 2 1 c (a b )b 2 2 1 2 1 1 2 c ab b 2 2 2
K A H C b c a B F
求证:a2 +b2=c2.
D E
传说中毕达哥拉斯的证法
证明:从Rt△ABC的三边向外各作一个正方形(如图),作CN⊥DE 交AB于M,那么正方形ABED被分成两个矩形.连结CD和KB. ∵由于矩形ADNM和△ADC同底(AD),等高(即平行线AD和CN间的距离),
5.其他证法
A
B
这棵树漂亮吗?如果在树上挂上 几串彩色灯泡,再挂上些小铃铛、小 彩球、小礼盒、小的圣诞老人,是不 是更像一棵圣诞树. 也许有人会问:“它与勾股定理 有什么关系吗?” 仔细看看,你会发现,奥妙在树 干和树枝上,整棵树都是由下方的这 个基本图形组成的:一个直角三角形 以及分别以它的每边为一边向外所作 的正方形.
B
同理可证S矩形MNEB=S正方形CBFG.
∴S矩形ADNM+S矩形MNEB=S正方形ACHK+S正方形CBFG. 即S正方形ADEB=S正方形ACHK+S正方形CBFG , 也就是 a2+b2=c2.
D N E
返回
赵爽弦图的证法
我国对勾股定理的证明采取的是 割补法,最早的形式见于公元三、四 世纪赵爽的《勾股圆方图注》.在这 篇短文中,赵爽画了一张他所谓的 c “弦图”,其中每一个直角三角形称 为“朱实”,中间的一个正方形称为 “中黄实”,以弦为边的大正方形叫 “弦实”,所以,如果以a、b、c分别 表示勾、股、弦之长,
勾股定理的证明
32
42
52
勾股定理的证明
两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定
理太贴近人们的生活实际,以至于古往今来,下至平民百姓,上
至帝王总统都愿意探讨和研究它的证明.因此不断出现关于勾股 定理的新证法.
1.传说中毕达哥拉斯的证法 2.赵爽弦图的证法
3.刘徽的证法 4.美国第20任总统茄菲尔德的证法
D E C F
是为“出入相补,各从其类”,其
余不动,则形成弦方正方形 DHFI.勾股定理由此得证.
A
B
H
G
返回
总统巧证勾股定理
学过几何的人都知道勾股定理.它是几何中一个比较重要的定理,应用十分广 泛.迄今为止,关于勾股定理的证明方法已有500余种.其中,美国第二十任总统伽 菲尔德的证法在数学史上被传为佳话. 总统为什么会想到去证明勾股定理呢?难道他是数学家或数学爱好者?答案是 否定的.事情的经过是这样的: 1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步, 欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德.他走着走着,突 然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争 论,时而小声探讨.由于好奇心驱使伽菲尔德循声向两个小孩走去,想搞清楚两个 小孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角 形.于是伽菲尔德便问他们在干什么?只见那个小男孩头也不抬地说:“请问先生, 如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答到: “是5呀.”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的 斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方 加上7的平方.”小男孩又说道:“先生,你能说出其中的道理吗?”伽菲尔德一时 语塞,无法解释了,心理很不是滋味. 于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题.他经过 反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法.
达· 芬奇,意大利人,欧洲文艺复兴时期的著名画家。主要作品 《自画像》《岩间圣母》《蒙娜丽莎》等
自画像
A
a
B O C F
1、 在一张长方形的纸板上画 两个边长分别为a、b的正方形, 并连接BC、FE,设长度为c 2、沿ABCDEF剪下,得两个大小 相同的纸板Ⅰ、Ⅱ
Ⅰ Ⅱ
c
E
b
D
A1
图F 11
B1 E1 C1 Ⅰ D1 Ⅰ
相关文档
最新文档