储罐设计计算

合集下载

4000m3大型低压储罐设计计算

4000m3大型低压储罐设计计算

4000m3大型低压储罐设计计算
储罐的设计计算需要考虑以下几个方面:容积计算、结构设计和压力计算。

下面是一个简单的设计计算步骤:
1. 容积计算:
首先,根据储罐的使用需求确定其容积。

对于一个4000m3的低压储罐,可以假设其直径为D,高度为H。

容积(V)= 面积(A)* 高度(H)
储罐的底部为一个圆形,面积(A)= π* (D/2)^2
根据容积V=4000m3,可以计算出储罐的高度H。

2. 结构设计:
根据储罐的容积计算结果,可以确定储罐的直径D和高度H。

结构设计包括材料选择、支撑结构设计和防腐处理等。

根据设计要求,选择适合的材料和结构。

3. 压力计算:
低压储罐需要进行压力计算,以确保其在正常操作范围内能够承受内部压力。

根据储罐的设计压力和使用要求,计算出储罐的壁厚和支撑结构。

这只是储罐设计计算的简单步骤,并且可能需要根据具体要求和设计规范进行进一步的计算和验证。

设计一个大型低压储罐需要经验和专业知识,建议寻求专业
工程师的协助。

GB50341储罐设计计算

GB50341储罐设计计算
目录
封面 罐壁计算 顶部抗风圈计算 中间抗风圈计算 自支撑拱顶计算 自支撑锥顶计算 抗震计算 罐顶分片 储罐顶平台标高及盘梯计算 附录A
注:计算将不需打
的工作表、目录隐藏(步骤:格式-
罐顶分片及盘梯部分未设置打印计算
否则“总页码”不对 建议文件“另
本表除附录A有一定疑问外,其他表
附录A编写还参考了化工设备设计全
(*^__^*) 由于本人EXCEL水平有限 在使用过程中发现问题请联系
若有人进行更好的整理及完善也请发
此计算表格中:罐壁、中间抗风圈、
表格为蓝本修改整理而成,在此感谢
此表格可直接打印,作为计算书使用
数据,蓝色为自动生成数据。
且将不需打印的
计算书使用。
骤:格式-工作表-隐藏),
置打印计算书里,打印时请隐藏
议文件“另存”使用,防止删除
外,其他表格自校没有什么问题
设备设计全书中《球罐和大型储罐》一书
水平有限,不懂宏等高级应用,叫大家见笑了!
liuayou@
完善也请发电子邮件给我,谢谢
间抗风圈、拱顶、抗震4部分以网络上热心网友上传某
,在此感谢所有热心且有共享精神的网友们。

立式储罐抗震设计计算

立式储罐抗震设计计算
2.5.9 锚固螺栓的拉应力σbt(Pa) 2.5.10 锚固螺栓拉应力校核 2.5.11 锚固罐底部压应力校核(有锚固时)
2.5.12 罐壁其它各圈壁厚抗震设计要求
2.6、液面晃动波高计算 序号 2.6.1 罐内液面晃动波高hv(m) 2.6.2 罐顶设计结构 2.6.3 浮顶影响系数ζ1 2.6.4 阻尼修正系数ξ2 2.6.5 罐顶缓冲高度校核
三、计算总结及优化设计建议
计算项目
0.000817 147000000 129705822.9
合格 合格
参见《钢结构》附表11 第4.1.5条 公式7.5.3-3 公式7.5.3-4 公式7.5.3-2
根据上述抗震验算所得的第一圈罐壁厚度大于根据静液压力计算所得的厚度(两 者均不包括腐蚀余量)时,其他各圈罐壁壁厚可在按静液压力计算所得厚度的基 础上,以同样的比例增大,否则上面各圈罐壁也应进行抗震计算,并验算各圈底 部的抗失稳能力。
公式7.3.1-1 公式7.3.3
计算值 27033108.52 0.178959178 18022072.35
1.00
公式7.4.1-1 公式7.4.1-2 第7.4.2条 表4.1.2
说明
计算值 69236.71238 28314.7992 1293058.917 0.41594686 1.37608616 7648666.895
合格 请设计锚固螺栓
公式7.5.1 公式7.5.2-1 公式7.5.2-2 A1=∏*D1*δ1 Z1=0.785*D12*δ1 公式7.5.4-1/2 公式7.5.3-2
说明
13.41 M36 24
第 3 页,共 4 页
2.5.9.4 锚固螺栓的有效截面积Abt(m2) 2.5.9.5 锚固螺栓许用拉应力[σbt](Pa)

GB50341储罐设计计算

GB50341储罐设计计算
储罐设计计算书
1.设计基本参数:
设计规 范设:计压 力设:计温 度设:计风 压:
GB50341-2003《立式圆筒形钢制焊接油罐设计规范》
P
2000 Pa
-490 Pa
T
70 °C
ω0
500 Pa
设计雪压
Px
350 Pa
附加荷 载地:震烈 度罐:壁内 径罐:壁高 度充:液高 度液:体比 重罐:顶半 径焊:缝系 数腐:蚀裕 量钢:板负偏 差:
ths=0.42RsPower(Pw/2.2,0.5)+C2+
设计外载 荷
C1 Pw=Ph+Px+Pa
9.15 mm 4.98 KPa
注:按保守计算加上雪压值。
实际罐顶取用厚度为
th=
6
mm
本设计按加肋板结构
顶板及加强筋(含保温层)总质量 md=
53863 kg
罐顶固定载荷 4.2顶板计算
Pa
3429.03 N/m2
罐体总高
H'=H1+Hg
17.89 m
拱顶高度
Hg=Rs(1-COSθ)
1.89 m
7.2.2.空罐时,1.25倍试验压力产生的升举力之和:
N3=PtπD2/4
384845 N
罐体试验压力 7.2.3.储液 在最高液
7.3地脚螺栓计算:
Pt=1.25P N4=1.5PQπD2/4
2500.00 Pa 738841 N
μz—风压高度变化系数,
顶部抗风圈的实际截面模数 W=
∵ W>Wz故满足要求
0.690 KPa 0.500 KPa 1.00 1.00 1.38 500.00 cm3

大型立式储罐计算

大型立式储罐计算

大型立式储罐计算1.结构设计:2.承载能力计算:大型立式储罐承受的力主要有罐内液体压力、风载荷、地震力等。

液体压力是主要的载荷,在计算时需要考虑罐壁和罐底的强度和稳定性。

风载荷是罐体受到的风压力,在计算时需要考虑罐体表面积、风速和风压系数。

地震力是由地震产生的水平力,在计算时需要考虑地震加速度和罐体的地震反应。

3.容积计算:大型立式储罐的容积取决于其结构形状和尺寸。

对于圆筒形罐身,可以使用体积公式V=π*r^2*h计算容积,其中r为罐身半径,h为罐身高度。

对于锥形或平底罐底,需要额外考虑底部的容积。

容积计算对于储罐的使用和管理非常重要,通常需要精确计算并定期校验。

4.材料厚度计算:大型立式储罐的材料厚度是保证其结构强度和安全性的重要因素。

材料厚度计算需要考虑储罐的最大内压力、最大外压力、材料的强度参数和安全系数等。

一般来说,材料厚度计算需要满足强度条件、稳定条件和安全条件,同时也要满足相关规范和标准的要求。

5.其他计算参数:大型立式储罐还需要计算其他一些参数,如罐体温度、密封性和防腐蚀措施等。

罐体温度需要考虑储罐内液体的蒸发和凝结情况,以及外部环境温度的影响。

密封性是为了保证储罐内外压力不会互相干扰和泄漏,需要考虑密封材料和结构的选择。

防腐蚀措施是为了延长储罐的使用寿命,需要选择合适的防腐蚀涂层和防腐蚀材料。

综上所述,大型立式储罐计算涉及结构设计、承载能力、容积、厚度等多个方面。

通过合理计算和分析这些参数,可以确保储罐的安全性、可靠性和经济性。

当进行大型立式储罐计算时,需要仔细考虑并遵守相关规范和标准,以确保储罐的设计和使用符合行业要求和安全要求。

大型储罐计算GB50341-2014

大型储罐计算GB50341-2014

1.506 1.669 -0.163
1
抗风圈规格 Laxbxc (mm)
1
一个加强圈质量 (kg) 966
加强圈总质量 (kg)
966
二、 拱顶 计算
拱顶曲率半径 Rs (mm) 罐顶腐蚀裕量 C2 (mm) 雪载荷 (kPa) 拱顶瓜皮板数量 Nr B (mm) 拱顶材料弹性模量 E(MPa)
40000 1.5 0.4 32 20
顶储罐计算
焊接接头系数 φ
0.9 地震设防烈度
7
保保温温材厚料度密(m度m) (顶kg圈/m壁3)板上沿距包边 角钢的距离 Ar (mm)
0 设计地震分组 0 设计基本地震加速度
场地土类别 20 地面粗糙度类别
2 0.15
3 A
用应力 (MPa) Q245R 板厚>16~36 142.1 157.0
[σ]t
217 217 217 150 150 150 150 150 150
17.840
盘梯质量 (kg)
2100
2. 罐壁加强圈计算
风压高度变化系数 μz
1.576
查GB50341第6.4.5-1
壁板编号 (自下而
上)
罐壁板有效厚 度(mm)
1
22.70
2
20.70
3
18.70
4
14.25
5
12.35
6
10.35
7
8.35
8
6.40
9
6.40
当量高度Hei (m)
0.084 0.105 0.136 0.268 0.383 0.595 1.018 1.980 1.980
总当量高度
HE (m)

石油储罐设计计算(石油工程)

石油储罐设计计算(石油工程)

石油储罐设计计算(石油工程)石油储罐设计计算(石油工程)
介绍
本文档旨在介绍石油储罐的设计计算方法,涉及了石油工程领
域的相关知识。

通过正确的设计计算,可以确保储罐的安全运行。

储罐设计参数
在进行石油储罐设计计算时,需要考虑以下参数:
1. 储罐容量:确定所需储存的石油的体积。

2. 储罐类型:选择适合储存石油的储罐类型,例如固定式储罐、浮顶储罐等。

3. 储罐材料:选择耐腐蚀性能好的材料,以确保储罐的使用寿命。

4. 储罐结构设计:根据储罐容量和类型,进行结构设计,包括
底板设计、壁板设计等。

储罐设计计算方法
以下是石油储罐设计计算中常用的方法:
1. 储罐容量计算:根据所需储存的石油体积和储罐类型,通过公式计算出储罐的容量。

2. 底板设计计算:确定储罐的底板厚度和支座数量。

根据储罐容量、底板材料和设计参数,进行相应的计算。

3. 壁板设计计算:确定储罐的壁板厚度和支撑结构。

根据储罐容量、壁板材料和设计参数,进行相应的计算。

4. 稳定性计算:确保储罐在受到外力作用时的稳定性。

通过计算储罐的稳定性参数,如压力、重心位置等,判断储罐是否具有足够的稳定性。

5. 安全设施设计:为了确保储罐的安全运营,还需要考虑安全设施的设计,如泄漏检测系统、火灾报警系统等。

结论
石油储罐设计计算是石油工程中的重要环节。

正确的设计计算可以确保储罐在使用过程中的安全性和可靠性。

通过合理选择储罐类型、材料和进行相应的计算,可以满足储存石油的需求,并保障储罐的长期运行。

卧式储罐体积计算公式

卧式储罐体积计算公式

卧式储罐体积计算公式卧式储罐是一种常见的储存液体或气体的设备,广泛应用于石油、化工、食品等行业。

储罐的体积计算是设计和运营过程中非常重要的一环,它直接关系到储罐的容量和使用效果。

下面将介绍几种常见的卧式储罐体积计算公式。

图形上看,卧式储罐的截面通常是一个椭圆形,因此椭圆罐容积计算公式是储罐设计中最常用的一种。

V=π*L*(b/2)^2*(1-(h/b*(2-h/b))^(1/2))其中,V表示储罐的容积,L表示储罐的长度,b表示椭圆的长轴长度,h表示液体的高度。

有些卧式储罐的底部是平坦的,这种情况下可以使用平底罐容积计算公式。

V=L*(b*c*d/3+d*h^2/2)其中,V表示储罐的容积,L表示储罐的长度,b表示椭圆的长轴长度,c表示椭圆的短轴长度,d表示椭圆的高度,h表示液体的高度。

另一种常见的卧式储罐底部是圆形的,这种情况下可以使用圆底罐容积计算公式。

V = L * (π * R^2 * (1 - cos(θ)) + R^2 * sin(θ) * h)其中,V表示储罐的容积,L表示储罐的长度,R表示圆底的半径,θ表示液体高度与L轴的夹角,h表示液体的高度。

需要注意的是,以上公式中的参数有些是设计过程中确定的,有些需要根据实际情况进行计算。

例如,椭圆罐容积计算中的L、b和h通常是设计参数,而平底罐容积计算中的c和d则需要根据椭圆的长轴和短轴长度计算得到。

此外,还有其他一些特殊形状的卧式储罐,例如锥底罐、双重底罐等,其容积计算公式略有不同,需要根据具体的形状和参数进行计算。

总之,卧式储罐的体积计算是设计和运营过程中非常重要的一步,它需要根据储罐的几何形状和液体高度来确定。

不同形状的储罐有不同的计算公式,设计和运营人员需要根据实际情况选择合适的公式进行计算,以保证储罐容量的准确性和安全性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

注:此处的设计压力应为设计内压,不可等同于按液柱所确定的设计压力。

15.94133MPa
1罐底部垂直载荷
0.8639206MN A1=πDt 0.5145929m 2
翘离影响系数取C L 1.4底部罐壁
断面系数
1.8010751m 318.348435MN.m
2.5483937MN.m
综合影响系数C z 一般取
0.4α=0.450.1319782s
R=D/27m
Kc 0.000432δ30.0192m αmax=0.45
罐体影响系数
Y 1一般取 1.1m=m 1Fr
1311995.4kg 罐内储液总质量
2265967.9kg Fr
0.579其中:
D/H
0.875
25.05576MPa 199875MPa t------罐底圈壁板有
0.0117m
σ1<[σcr]
合格
0.447985m 0.042665Tg 0.35s
储液晃动基本周期
4.0971148s Ks= 1.095
产生地震作用力的等效储液质量T c =K c H (R/δ3)0.5=6.2.1.地震作用下罐壁底产生的最大轴向应力
总水平地震力在罐底部产生的水平剪力
7. 地脚螺栓(锚栓)计算
竖向地震影响系数C v (7,8度地震区取1;9度地震区取1.45) N1=(m d +m t )g Z1=πD 2t/4
总水平地震力在罐底部产生的地震弯矩M L =0.45Q 0H 罐壁横截面积(其中t 为底部罐壁有效厚度)罐内液面晃动高度
h v =1.5αR
储罐内半径
储液耦连振动基本周期Q 0=10-6C z αY 1mg 地震影响系数(据Tc ,Tg ,αmax 按图D.3.1选取)
反应谱特征周期(按表D.3.1-1)耦连振动周期系数(据D/H 按表D.3.2选取)
距底板1/3高度处罐壁有效厚度
6.2.4.罐内液面晃动高度计算:地震影响系数(据Tw ,αmax 按图D.3.1选取)Tw=KsD 0.5
α
最大地震影响系数
E-----设计温度下材料的弹性模量6.2.3.应力校核条件
m 1=0.25ρπD 2
H
动液系数(由D/H ,查D.3.4确定)
6.2.2.罐壁许用临界应力
[σcr ]=0.15Et/D
晃动周期系数(据D/H 按表D.3.3选取)
M 56mm 地脚螺栓根径:
d 150.67mm D b 24.256m n 48个σs
235
MPa
831152N
8511171N 369338
N
2239667N.m 8203294N 迎风面积250.42m 2罐体总高17.89m 拱顶高度
1.89
m
384845
N
2500.00Pa 7.2.3.储液在最高液738841
N
8511171N 863921
N
159318N A=2016.47mm 2
单个地脚螺栓应
σ=N b /A=
79.01
MPa
罐体总重量
N 4=1.5P Q πD 2/4
地脚螺栓直径:7.1地脚螺栓参数:N e =Aσ7.3.2.单个地脚螺栓所承受的载荷:
A H =H'D H'=H 1+H g Hg=Rs(1-COSθ)
7.3.1.罐体总的锚固力为7.2.1,7.2.2.,7.2.3所计算升举力中的最大值
W <N ,由于罐体自重不能抗倾覆力,故需要设置地脚螺栓W=(m t +m d )g
罐体试验压力
P t =1.25P
N 2=PπD 2/4+Ne
7.3地脚螺栓计算:
N 3=P t πD 2/4
7.2罐体抗提升力计算:
地脚螺栓圆直径:地脚螺栓个数:N 1=1.5PπD 2/4+N w 空罐时,设计压力与地震载荷产生的升举力之和
地脚螺栓许用应力:
地震载荷产生的升举力N b =N/n d -W/n d N=Max[N 1,N 2,N 3,N 4]
7.2.1.空罐时,1.5倍设计压力与设计风压产生的升举力之和:
7.2.2.空罐时,1.25倍试验压力产生的升举力之和:
设计风压产生的升举力N w =4M w /D b 设计风压产生的风弯矩M w =ω0A H H’σ<2/3σs,合格
7.4.地脚螺栓(锚栓)校核条件:
每个地脚螺栓的承压面积:。

相关文档
最新文档