多普勒效应
多普勒效应

超声波 应用6、超声波探伤:由于超声波的穿透能力很强, 可以制成超声波探伤仪,用来探查金属、陶瓷、混 凝土制品,甚至水库大坝,检查内部是否有气泡、 空洞和裂纹等缺陷。 应用7、B超:就是利用超声波的发射,来探查人体 内部的各种器官、组织等有无异常,还可以确定肿 瘤的有无、位置和大小等等.
超声波 应用8、利用超声波清洗污垢:金属零件、玻璃和陶 瓷制品的除垢是件麻烦事,但如果在放有这些物品 的清洗液中通入超声波,清洗液的剧烈振动冲击物 品上的污垢,能够很快清洗干净。 应用9、声呐:超声波在水中传播 的距离要比光波和无线电波远得多。 水声测位仪就是根据超声波的这种 特性制成的装置,这种装置既能发 出短促的超声波脉冲.又能接收被 潜艇、鱼群或海底反射回来的超声 波,根据反射波滞后的时间和波速, 就可以确定潜艇、鱼群的位置或海 水深度
次声波 1、次声波的特点:次声波由于频率小 ,故波长较 长,易发生衍射,传播距离较远。 2 、次声波的应用:通过次声波探知几千千米外的 核武器试验和导弹的发射,或预报破坏性很大的 海啸、台风。 3、次声波对人体的影响
1)次声波1-3Hz:可以使人产生恐惧,地震前动物的不安, 也是这个频率的次声波引起; 2)次声波3-6Hz:能使人精神失常,失去理智; 3)次声波8-12Hz:可以使人思维集中,增强记忆力; 4)太强的次声波将使人感到烦躁、耳鸣、头痛、恶心和心 悸,人的晕船和晕车就是由于机械振动、空气和海浪摩擦发 生的次声波引起;特别强的次声波还会使人四肢麻木、耳聋、 鼻孔出血、内脏破裂,直至死亡。
(2)临床上应用多普勒效应:彩色多普勒超声诊断系统 医生向人体内发射频率已知的超声波,超声波被 血管中的血流反射后又被仪器接收,测出反射波 的频率变化,就能知道血流的速度.这种方法俗 称“彩超”,可以检查心脏、大脑和眼底血管的 病变.
多普勒效应

③观察者静止,波源以VS向着观察者运动时
u
u
u VS
u
u VS
频率升高
④ 观察者静止,波源以VS离 开观察者运动时
u u u u VS u VS
频率降低
S VS
VsTs
3. 波源与观测者均运动 综合以上两种情况, 当观测者与波源同时相对于介质运动时, 观
一、波源不动,而观察者以速度 vo 相对于介质运动
观察 者接
ν' u υ0 u υ0 u vo ν 观察者向
b
u / νb
u
波源运动
收的 频率
ν' u vo ν u
观察者远离波源
①波源静止,观察者以速率vO向着波源运动:
u
u vO u vO u vO
测者实际观测的频率 u v0
u vs
式中, 观测者向着波源运动时, v0前取正号, 离 开时取负号;波源向着观测者运动时, vs前取 负号, 离开时取正号.
vo 观察者向波源运动 + ,远离 .
vs 波源向观察者运动 ,远离 + .
让子弹飞!
超音速的子弹 在空气中形成 的激波 (马赫数为2 )
声学在现代技术帮助下得到了进一步的发展. 人类的声音对每一个人都是独一无二的, 人 在健康和非健康状态声音也会有区别, 显然, 对声音的研究可以帮助人类了解自己. 次声 波、超声波是人类听不到的声波, 人类现在 可以借助现代技术了解那些一直围绕在我们 身边我们却无法感觉的到的世界.
u
u
频率升高
S VS 0
什么是多普勒效应

什么是多普勒效应
多普勒效应是一种物理现象,描述了当光源或声源相对于观察者发生相对运动时,观察者所感知到的频率或波长的变化。
多普勒效应分为多普勒频移和多普勒波长变化两种形式,分别用于描述光学和声学的情况。
多普勒频移(Doppler Frequency Shift):
1. 光学多普勒效应:
•描述:当光源或观察者相对于彼此运动时,观察者测量到的光频率会有所改变。
•频率变化:如果光源和观察者相向运动,光频率升高(蓝移);如果它们远离彼此,光频率降低(红移)。
•应用:光学多普勒效应在天文学中广泛应用,用于测量星体的运动速度和方向。
多普勒波长变化(Doppler Wavelength Shift):
1. 声学多普勒效应:
•描述:当声源或听者相对于彼此运动时,听者感知到的声音波长会发生变化。
•波长变化:声源和听者相向运动时,听者感知到的声音波长缩短;相远离运动时,波长延长。
•应用:声学多普勒效应在实际生活中广泛应用,例如警车、救护车的声音变化。
数学表达:
多普勒效应的数学表达式取决于具体情境,但一般可以用下面的公式来表示频率变化:
f′=v∓vsf(v±v0)
其中:
•f′ 是观察者测量到的频率,
• f 是光源或声源的固有频率,
• v 是波在介质中的传播速度,
• v0 是观察者相对于介质的速度(正表示远离,负表示相向运动),
• vs 是光源或声源相对于介质的速度(正表示远离,负表示相向运动)。
多普勒效应的重要性在于它使我们能够测量和理解运动物体的速度,同时也应用于通信、雷达技术等领域。
大学物理多普勒效应

波的传播介质
波的传播介质会影响多普勒效应的频率变化。在密度较大 的介质中,波的传播速度较慢,观察者接收到的频率变化 较小;在密度较小的介质中,波的传播速度较快,观察者 接收到的频率变化较大。
传播介质的性质对多普勒效应的影响较为复杂,需要具体 问题具体分析。
波的频率
波的频率也会影响多普勒效应的频率 变化。高频率的波更容易受到多普勒 效应的影响,而低频率的波则相对较 为稳定。
01
02
03
声波应用
在日常生活中,多普勒效 应在声波领域的应用非常 广泛,如超声波诊断、声 呐、雷达测速等。
光波应用
在光学领域,多普勒效应 可以用于测量天体的运动 速度和宇宙中的距离。
交通领域应用
多普勒效应也被广泛应用 于交通领域,如测速雷达 、移动通信中的信号传输 等。
02
多普勒效应的原理
波的传播与干涉
在实际应用中,需要根据波的特性和 需求来考虑多普勒效应的影响。
05
多普勒效应的意义与未来发展
在物理学中的重要性
揭示波的传播与接收之间的相对性
多普勒效应是物理学中一个重要的概念,它揭示了波的传播与接收之间的相对性。通过多普勒效应的研究,人们 可以深入理解波的传播机制和规律。
提供测量天体物理参数的方法
光波多普勒效应的实验
01
实验设备
光源、干涉仪、测量仪器、记录设备等。
02
实验过程
将光源和干涉仪分别固定在两个相对位置上,调整光源频率,使干涉仪
接收到不同频率的光波,记录并分析干涉仪输出的干涉条纹。
03
实验结果
当光源向干涉仪移动时,干涉仪接收到的光波频率会比光源的实际频率
高;反之,当光源远离干涉仪时,干涉仪接收到的光波频率会比光源的
多普勒效应

多普勒效应实验
将蜂鸣器固定在一长竹杆的一端,然后用竹杆 将蜂鸣器举起,并在头上快速旋转,即可感受多普 勒效应。
多普勒效应模拟 1、观察者静止不动, 数经过的队伍中的人 数,每分钟假设有30 个人经过。 2、当观察者逆着队伍 行走时,数经过的队 伍中的人数,每分钟 将大于30个人经过。 3、当观察者与队伍同向 行走且速度比队伍的小 时,数经过的队伍中的 人数,每分钟将小于30 个人经过。
超声波 1、超声波的能量很大:理论研究表明,在振幅相同 的情况下,一个物体的振动能量跟振动频率的二次 方成正比。超声波的频率很高,因而能量很大。 2、超声波沿直线传播:因为超声波的波长很短, 不易绕过障碍物发生明显的衍射现象,故超声波基 本上沿直线传播。 应用1、 超声波加湿器的基本 原理:利用超声波的剧烈振动 可以把普通水“打碎”成直径 仅为几微米的小水珠,变成雾 气喷散到房间的空气中,增大 房间中空气的湿度
多普勒效应的应用
应用5、军事应用(E-3“望楼” 预警机) 脉冲多普勒雷达,多谱勒导航仪
科学漫步
1、可闻声波: 人耳能听到的声波,其 频率范围大致在20Hz-20000Hz之间。
波长:17m -17mm 2、次声波:频率低于20Hz的声波。不 能引起人类听觉器官的感觉。
3、超声波:频率高于20000Hz的声波。 不能引起人类听觉器官的感觉。
多普勒效应的成因
1、波源朝观察者运动时 观察者感觉到波 变得密集,即波长 减小,接收到的频 率增大。
学科网
2、波源远离观察者运动时 观察者感到波变得稀疏,即波长增大, 接收到的频率减少。
多普勒效应
1、当波源与观察者有相对运动时,如果二 者相互接近,观察者接收到的频率增大; 如果二者相互远离,观察者接收到的频率 减小。 2、在观察者运动的情况下,引起观察者接 收频率的改变,是由于观测到的波的速度发 生改变(波的波长不变)。 3、在波源运动的情况下,引起观察者接 收频率的改变,是由于观测到的波的波长 发生改变(波的速度不变)。
多普勒效应(高中物理教学课件)

不变时,观察者接收到的频率也不变(例:二者同速同
向运动、波源绕观察者做圆周运动接收到的频率都不变)
注意:
①在多普勒效应中,波源的频率是不变的,只是观察者 接收到的频率发生了变化 ②多普勒效应也是波特有的现象,不仅机械波,电磁波 和光波也会发生多普勒效应
祝你学业有成
2024年4月28日星期日8时27分44秒
课堂训练:
6.关于多普勒效应,下列说法正确的是( C ) A.多普勒效应是由于波的干涉引起的 B.多普勒效应说明波源的频率发生改变 C.多普勒效应是由于波源与观察者之间有相对 运动而产生的 D.只有声波才可以产生多普勒效应
7.当火车进站鸣笛时,我们可听到的声调(A) A.变高 B.不变高 C.越来越沉 D.不知声速和火车车速,不能判断
课堂训练:
1.关于多普勒效应下列说法中正确的是( B) A、只有声波才有多普勒效应 B、光波也有多普勒效应 C、只有机械波才有多普勒效应 D、电磁波不能发生多普勒效应 2.(多选)关于多普勒效应,下列说法中正确的是( BCD) A.发生多普勒效应时,观察者接收到的频率和波源的频率 都变化了 B.发生多普勒效应时,观察者接收到的频率发生了变化,但 波源的频率不变 C.多普勒效应是在波源与观察者之间发生相对运动时产 生的 D.多普勒效应是由奥地利物理学家多普勒首先发现的,它 适用于一切波
雷达测速用的电磁波,光速远大于车速,不需要考虑多 普勒效应,如果是超声波要考虑,B错误。C铁路工人是 根据振动的强弱对列车的运动作出判断的,C错误。
课堂训练:
4. (多选)如图所示,男同学站立不动吹口哨,一位女同学坐 在秋千上来回摆动,下列关于女同学的感受的说法正确的 是( AD ) A.女同学从A向B运动过程中,她感觉哨声音调变高 B.女同学从E向D运动过程中,她感觉哨声音调变高 C.女同学从C点向D点运动时,她感觉哨声音调不变 D.女同学从C点向B点运动时,她感觉哨声音调变低
多普勒效应

多普勒效应多普勒效应Doppler effect水波的多普勒效应多普勒效应13原理多普勒效应指出,波在波源移向观察者接近时接收频率变高,而在波源远离观察者时接收频率变低。
当观察者移动时也能得到同样的结论。
但是由于缺少实验设备,多普勒当时没有用实验验证,几年后有人请一队小号手在平板车上演奏,再请训练有素的音乐家用耳朵来辨别音调的变化,以验证该效应。
假设原有波源的波长为λ,波速为c,观察者移动速度为v:当观察者走近波源时观察到的波源频率为(c+v)/λ,反之则观察到的波源频率为(c-v)/λ。
一个常被使用的例子是火车的汽笛声,当火车接近观察者时,如果观察者远离波源,其汽鸣声会比平常更刺耳。
你可以在火车经过时听出刺耳声的变化。
同样的情况还有:警车的警报声和赛车的发动机声。
如果把声波视为有规律间隔发射的脉冲,可以想象若你每走一步,便发射了一个脉冲,那么在你之前的每一个脉冲都比你站立不动时更接近你自己。
而在你后面的声源则比原来不动时远了一步。
或者说,在你之前的脉冲频率比平常变高,而在你之后的脉冲频率比平常变低了。
产生原因:声源完成一次全振动,向外发出一个波长的波,频率表示单位时间内完成的全振动的次数,因此波源的频率等于单位时间内波源发出的完全波的个数,而观察者听到的声音的音调,是由观察者接受到的频率,即单位时间接收到的完全波的个数决定的。
当波源和观察者有相对运动时,观察者接收到的频率会改变.在单位时间内,观察者接收到的完全波的个数增多,即接收到的频率增大.同样的道理,当观察者远离波源,观察者在单位时间内接收到的完全波的个数减少,即接收到的频率减小.4公式观察者(Observer) 和发射源(Source) 的频率关系为:为观察到的频率;为发射源于该介质中的原始发射频率;为波在该介质中的行进速度;为观察者移动速度,若接近发射源则前方运算符号为+ 号, 反之则为- 号;为发射源移动速度,若接近观察者则前方运算符号为- 号,反之则为+ 号。
多普勒效应

多普勒效应及应用生活中会有这样的经验:火车急速离去时,汽笛声调会低沉下去;而迎面驶来,声调则变高,这种现象物理上称之为多普勒效应,它是波动现象特有的规律. 它是由奥地利物理学家多普勒于1842年首先发现的。
多普勒效应是波动过程的共同特征,现在,此效应在激光测速、卫星定位、医学诊断、气象探测等很多领域有着广泛的应用。
1 多普勒效应及其表达式由于波源和接收器(或观察者)的相对运动,使观测到的频率与波源的实际频率出现差异。
这种现象叫多普勒效应。
1.1.1 声波的多普勒效应的普遍公式为了方便问题的讨论 , 我们假设观测者 R 相对于介质静止 , 波源S 相对于介质以速度 v 运动 , 运动方向跟连线 SR 相垂直 , 波相对于介质的传播速度为,如图所示以静止的观测者 R 建立静止参照系 , 运动的波源 S 建立运动参照系 . 设波源开始时位于 S , 经过一段微小的时间后运动到S ′处,波源在 S 处发射位相为的波的时刻 , 相对于静止参照系 R 是, 而相对于运动参照系 S 是 ; 波源在 S ′处发射位相为 U 的波的时刻 , 相对于静止参照系 R 是 t , 而相对于运动参照系 S 是 t ′ . 设波源所发射的波的频率为 f , 则有U - = 2 P f ( t ′ - ). (1) 对于观测者 , 其接收到波源所发出的位相为的波的时刻为=+ SR /. (2)其所接收到波源所发出的位相为 U 的波的时刻为= t + S ′ R / . (3)设观测者所观测到的波的频率为 f ′ , 则有U -= 2 P f ( - ), . (4)由 (2) 式和 (3) 式得- = t - + ( S ′ R - SR ) /. (5)在上如图 2, 我们在 S ′ R 上取一点 B , 使得 RS = RB , 则S ′ R - SR = S ′ B , 由于我们讨论的时间间隔很短 , 故 S ′ B 也很短 , 可以认为 SB ⊥ S ′ R , 于是有S ′ B = S ′ R - SR = SS ′sin △ H = v ( t - )sin △ H .上式中 t - 是微小量 , △ H 也是微小量 , 故 ( t - )sin △ H 是二级微小量 , 略去不计 , 则有 S ′ B = S ′ R - SR = 0, 于是 (9) 式变为- = t - , (6)由 (1) 、 (4) 和 (6) 式得f ′ ( t - ) = f ( t ′ -), (7)其中 , t ′ - t ′ 0 为运动参照系波源 S 上的时间间隔 , t - 为静止参照系观测者 R 上的时间间隔 .1.1.2声波的横向多普勒效应由于声波的传播速度远小于光速 c , 因而声波不符合相对论原理 .对声波而言 , 其时空变换关系符合伽利略变换 , 即有t - = t ′ - , 于是由( t - ) = f (t ′ - ), 式得= f由上式可知 , 对声波而言 , 观测者所观测到的声波频率与源所发出的声波频率是一样的 . 声波没有横向多普勒效应 .1.2.1光波(电磁波)多普勒效应的普遍公式B 静止于∑’系相对于∑系的原点O ’,且∑’系相对于∑系以速度v 沿XX ’正方向运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多普勒效应
【实验目的】
1、测量超声接收器运动速度与接收频率之间的关系,验证多普勒效应,并由f-V关系直线的斜率求声速。
2、利用多普勒效应测量物体运动过程中多个时间点的速度,查看V-t关系曲线,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,研究:①匀加速直线运动,测量力、质量与加速度之间的关系,验证牛顿第二定律。
实验原理
1、超声的多普勒效应
根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器接收到的频率f 为:
(1)
式中为声源发射频率,为声速,V
1为接收器运动速率,α
1
为声源与接
收器连线与接收器运动方向之间的夹角,V
2为声源运动速率,α
2
为声源与接收
器连线与声源运动方向之间的夹角。
若声源保持不动,运动物体上的接收器沿声源与接收器连线方向以速度V 运动,则从(1)式可得接收器接收到的频率应为:
(2)
图2 测量阻尼振动
当接收器向着声源运动时,V取正,反之取负。
若保持不变,以光电门测量物体的运动速度,并由仪器对接收器接收到的频率自动计数,根据(2)式,作f —V关系图可直观验证多普勒效应,且由
实验点作直线,其斜率应为,由此可计算出声速。
由(2)式可解出:(3)
若已知声速及声源频率,通过设置使仪器以某种时间间隔对接收器接收到的频率采样计数,由微处理器按(3)式计算出接收器运动速度,由显示屏显示关系图(如图2),或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,进而对物体运动状况及规律进行研究。
2、超声的红外调制与接收
早期产品中,接收器接收的超声信号由导线接入实验仪进行处理。
由于超声接收器安装在运动体上,导线的存在对运动状态有一定影响,导线的折断也给使用带来麻烦。
新仪器对接收到的超声信号采用了无线的红外调制-发射-接收方式。
即用超声接收器信号对红外波进行调制后发射,固定在运动导轨一端的红外接收端接收红外信号后,再将超声信号解调出来。
由于红外发射/接收的过程中信号的传输是光速,远远大于声速,它引起的多谱勒效应可忽略不计。
采用此技术将实验中运动部分的导线去掉,使得测量更准确,操作更方便。
信号的调制-发射-接收-解调,在信号的无线传输过程中是一种常用的技术。
实验仪器
【实验仪器及简介】
多普勒效应综合实验仪由实验仪,超声发射/接收器,红外发射/接收器,导轨,运动小车,支架,光电门,电磁铁,弹簧,滑轮,砝码等组成。
实验仪内置微处理器,带有液晶显示屏,图1为实验仪的面板图。
实验仪采用菜单式操作,显示屏显示菜单及操作提示,由 p q t u 键选择菜单或修改参数,
按“确认”键后仪器执行。
可在“查询”页面,查询到在实验时已保存的实验的数据。
操作者只须按提示即可完成操作,学生可把时间和精力用于物理概念和研究对象,不必花大量时间熟悉特定的仪器使用,提高了课时利用率。
实验内容
验证多普勒效应并由测量数据计算声速
让小车以不同速度通过光电门,仪器自动记录小车通过光电门时的平均运动速度及与之对应的平均接收频率。
由仪器显示的f-V关系图可看出,若测量点成直线,符合(2)式描述的规律,即直观验证了多普勒效应。
用作图法或线性回归法计算f-V直线的斜率k,由k计算声速并与声速的理论值比较,计算其相对误差。
一.仪器安装
如图2所示。
所有需固定的附件均安装在导轨上,并在两侧的安装槽上固定。
调节水平超声传感发生器的高度,使其与超声接收器(已固定在小车上)在同一个平面上,再调整红外接收传感器高度和方向,使其与红外发射器(已固定在小车上)在同一轴线上。
将组件电缆接入实验仪的对应接口上。
安装完毕后,让电磁铁吸住小车,给小车上的传感器充电,第一次充电时间约6~8秒,充满后(仪器面板充电灯变绿色)可以持续使用4~5分钟。
在充电时要注意,必须让小车上的充电板和电磁铁上的充电针接触良好。
注意事项】
① 安装时要尽量保证红外接收器、小车上的红外发射器和超声接收器、超声发射器三者之间在同一轴线上,以保证信号传输良好;
② 安装时不可挤压连接电缆,以免导线折断;
③ 小车不使用时应立放,避免小车滚轮沾上污物,影响实验进行。
二.测量准备
1.实验仪开机后,首先要求输入室温。
因为计算物体运动速度时要代入声速,而声速是温度的函数。
利用 t u 将室温T值调到实际值,按“确认”。
2.第二个界面要求对超声发生器的驱动频率进行调谐。
在超声应用中,需要将发生器与接收器的频率匹配,并将驱动频率调到谐振频率,这样接收器获得的信号幅度才最强,才能有效的发射与接收超声波。
一般在40KHz左右。
调谐好后,面板上的锁定灯将熄灭。
3.电流调至最大值后,按“确认”。
本仪器所有操作,均要按“确认”键后,数据才被写入仪器。
【注意事项】
① 须待磁铁吸住小车后,再开始调谐。
此时超声发生器和接收器的距离最远,保证其在最大距离下的信号强度;
② 调谐及实验进行时,须保证超声发生器和接收器之间无任何阻挡物;
③ 为保证使用安全,三芯电源线须可靠接地。
三.测量步骤
1.在液晶显示屏上,选中“多普勒效应验证实验”,并按“确认”;
2.利用 u 键修改测试总次数(选择范围5~10,一般选5次),按▼ ,选中“开始测试”;
3.准备好后,按“确认”,电磁铁释放,测试开始进行,仪器自动记录小车通过光电门时的平均运动速度及与之对应的平均接收频率;
改变小车的运动速度,可用以下两种方式:
a.砝码牵引:利用砝码的不同组合实现;
b.用手推动:沿水平方向对小车施以变力,使其通过光电门。
为便于操作,一般由小到大改变小车的运动速度。
4.每一次测试完成,都有“存入”或“重测”的提示,可根据实际情况选择,“确认”后回到测试状态,并显示测试总次数及已完成的测试次数;
5.改变砝码质量(砝码牵引方式),并退回小车让磁铁吸住,按“开始”,进行第二次测试;
6.完成设定的测量次数后,仪器自动存储数据,并显示f-V关系图及测量数据。
【注意事项】
小车速度不可太快,以防小车脱轨跌落损坏。
数据处理
数据记录与处理
由f-V关系图可看出,若测量点成直线,符合(2)式描述的规律,即直观验证了多普勒效应。
用◆键选中“数据”,❑键翻阅数据并记入表1中,用作图法或线性回归法计算f-V关系直线的斜率k。
公式(4)为线性回归法计
算k值的公式,其中测量次数i=5 ~ n,n≤10。
(4)
由k 计算声速= f 0/k ,并与声速的理论值比较,声速理论值由= 331(1
+t/273)1/2 (米/秒)计算,t 表示室温。
测量数据的记录是仪器自动进行的。
在测量完成后,只需在出现的显示界面上,用 ◆ 键选中“数据”,❑ 键翻阅数据并记入表1中,然后按照上述公式计算出相关结果并填入表格。
1、多普勒效应的验证与声速的测量
表1 多普勒效应的验证与声速的测量
= Hz
(Hz) 用作图法或线性回归法计算
关系直线的斜率,由计算声速并与声速的理论值比较,声速理论值由
(米/秒)计算,表示室温。
2、水平谐振实验 自拟表格,记录30组速度随时间变化关系的数据。
二.。