小升初数学常考题型
小升初数学74道常考经典应用题

小升初必备:小升初数学74道必考经典应用题型1.丽丽和家家去书店买书,他们同时喜欢上了一本书,最后丽丽用自己的钱的5分之3,家家用自己的钱的3分之2各买了一本,丽丽剩下的钱比家家剩下的钱多5块。
两人原来各有多少钱?书多少钱?设丽丽有x元钱家家有y元钱得出: 3/5x=2/3y 2/5x=1/3y+5 (丽丽剩下2/5家家剩下1/3)解2元一次方程得x=50y=45 即丽丽50元家家45元书30元一本2.一辆汽车每行8千米要耗油4/5千克,平均每千克汽油可行多少千米.行1千米路程要耗油多少千克?8除4/5=10(km/)4/5除8=0.1(kg)3.一辆摩托车1/2小时行30千米,他每小时行多少千米?他行1千米要多少小时?30÷1/2=60千米1÷60=1/60小时4.阅览室看书的同学中,男同学占七分之四,从阅览室走出5位男同学后,看书的同学中,女同学占二十三分之十二,原来阅览室一共有多少名同学在看书?原来有x名同学,女生数不变,所以(1-4/7)x=(x-5)×12/23求出x=285.红,黄,蓝气球共有62只,其中红气球的五分之三等于黄气球的三分之二,蓝气球有24只,红气球和黄气球各有多少只?62-24=38(只)3/5红=2/3黄9红=10黄红:黄=10:938/(10+9)=2 红:2×10=20黄:2×9=186.学校阅览室有36名学生看书,其中4/9是女学生.后又来了几名女学生,这时女学生人数占看书人数的3/5,后来了几名女生?原有女生:36×4/9=16(人)原有男生:36-16=20(人)后有总人数:20÷(1-3/5)=50(人)后有女生:50×3/5=30(人)来女生人数:30-16=14(人)7.水结成冰后,体积要比原来膨胀11分之1,2.16立方米的冰融化成水后,体积是多少?2.16/(1+1/11)=1.98(立方米)8.甲乙的粮食560吨,如果把甲的粮食运出2/9给乙,则甲乙的粮食正好相等.原来甲的粮食有多少吨?,乙的粮食有多少吨?现在甲乙各有560÷2=280吨原来甲有 280÷(1-2/9)=360吨原来乙有 560-360=200吨9.电视机降价200元.比原来便宜了2/11.现在这种电视机的价格是多少钱?原价是200÷2/11=2200元现价是 2200-200=2000元10。
小升初选拔数学必考题型

小升初选拔数学必考题型
小升初选拔数学必考题型包括但不限于:
1. 分数和小数的转换:将分数转换为小数或将小数转换为分数。
2. 单位换算:例如,将米转换为厘米或将千克转换为克等。
3. 计算时间、速度和距离:例如,计算行驶某段距离所需的时间或速度,或计算在给定时间内行驶的距离。
4. 图形和几何问题:例如,计算图形的面积、周长或体积等。
5. 比例和百分比问题:例如,计算两个数的比例或一个数占另一个数的百分比。
6. 代数表达式和方程:例如,解一元一次方程或求解代数表达式的值。
7. 逻辑推理问题:例如,根据给定的条件或信息,推断出未知数或关系。
8. 组合和排列问题:例如,计算从n个不同元素中取出k个元素的组合数或排列数。
9. 最大值和最小值问题:例如,在给定的一组数中找到最大值或最小值,或确定满足某个条件的最大或最小值。
10. 应用题:例如,计算购物时找零的金额、计算银行利息等。
以上题型只是其中的一部分,具体题型和难度可能会因地区和选拔要求而有所不同。
建议查阅所在地区的小升初数学考试大纲,以获取更准确的信息。
人教版小升初数学百分数常考题型汇总

百分数解决问题一、用百分数解决问题1、常见的百分率的计算方法:①合格率 = %100⨯产品总数合格产品数 ②发芽率 = %100⨯种子总数发芽种子数 ③出勤率 = %100⨯总人数出勤人数 ④达标率 = %100⨯学生总人数达标学生人数 ⑤成活率 = %100⨯总数量成活的数量 ⑥出粉率 = %100⨯出粉物的重量粉的重量 一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。
(一般出粉率在70、80%,出油率在30、40%。
)2、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题:数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”: 单位“1”的量×分率=分率对应量(2)分率前是“多或少”的意思: 单位“1”的量×(1±分率)=分率对应量3、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。
解法:(建议:最好用方程解答) 找出等量关系式(1)方程: 根据数量关系式设未知量为X ,用方程解答。
(2)算术(用除法): 分率对应量÷对应分率 = 单位“1”的量4、求一个数比另一个数多(少)百分之几的问题:两个数的相差量÷单位“1”的量 × 100% 或:① 求多百分之几:(大数÷小数 – 1) × 100%② 求少百分之几:( 1 - 小数÷大数)× 100%二、百分数应用题考点1.求分率求分率分为两种:(1)求甲是(占、相当于)乙的百分之几?公式:把是(占、相当于)变成“÷”,用甲÷乙。
例如:男生25人,女生20人,男生占女生的百分之几?男生÷女生 25÷20=125%(2)求甲比乙多(少)百分之几?公式:用相差数÷比字后面的数 ,用(甲—乙)÷乙或(乙—甲)÷乙。
北师大版数学小升初冲刺复习——经典常考题型

北师大版数学小升初冲刺复习——经典常考题型1.有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?2.求阴影部分的面积。
(单位:厘米)3.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时,丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?4.学校举办歌舞晚会,共有80人参加了表演。
其中唱歌的有70人,跳舞的有30人,既唱歌又跳舞的有多少人?5.城中小学六(1)班有40人,六(2)班有44人,六(3)班有36人。
六一儿童节期间要从中选派30人作为代表和外校同学联欢。
按比例选派的话,六(2)班能选派多少人?6.发电厂要运一批煤,如果用大车运,每辆车装5吨,9辆车可以一次运完。
如果改用小车运,每辆车装3吨,需要几辆车可以一次运完?(用比例解)7.一只大钟的时针长0.3米,这根时针的尖端1天走过多少米?扫过的面积是多少平方米?8.一个等腰三角形,一个底角和顶角的度数比是5:2,一个底角和顶角分别是多少度?9.一个圆柱的侧面展开时一个正方形,这个圆柱的高和底面直径的比是多少?10.将一根体积为62.8 立方分米的圆形木料,沿底面直径切成形状相同的两部分,表面积增加了80 平方分米,这根圆柱形木料长多少米?11.工人叔叔用铁皮做40个长为50 厘米、底面半径为3厘米的圆柱形通风管。
如果每平方米铁皮30元,做这些通风管需花多少钱?12.北京天坛祈年殿距今已有600 多年,殿内的4根“龙井柱”象征春、夏、秋、冬四季,每根高约19 米,直径1.2米.如果要给这4根“龙井柱”刷上油漆,求刷油漆的面积是多少?13.等腰三角形两条边的比是5:2,周长是36厘米,求底和腰各是多少厘米?14.在一次射箭运动中,每箭得的环数是不超过10 的自然数,甲、乙两名运动员各射5箭,每人得的环数的积都是1764,但甲总环数比乙少4环。
求甲、乙各得多少环?15.用5ml的蜂蜜兑100mL水调制成蜂蜜水,如果再加入10mL的蜂蜜,为了使蜂蜜水的甜度不变,需要加入的水可以是多少?16.一片草地中央有一个边长为8 m的正方形羊圈(如图),将-只羊用10 m长的绳子系在羊圈墙外一个角的顶点上,这只羊能吃到的草地面积是多少平方米?17.小红看一本故事书,第一天看了45页,第二天看了全书的1,第二天看的页数恰4好比第一天多20%。
小学数学奥数小升初常考题型行程问题-追及问题适合四年级五年级学生

1、哥哥弟弟从家去学校,中途要经过公园,家离公园4.8千米,哥哥出发时,弟弟已经到了公园。
弟弟每分走80米,哥哥骑车速度是每分240米。
问:哥哥几分钟后能追上弟弟?2、面包车以60千米/时的速度从甲城开出,2小时后,后面一辆小轿车以每小时84千米/时的速度从甲城开出沿着同一行驶路线追赶面包车,多少小时后小轿车追上面包车?3、两辆汽车从A地到B地,第一辆汽车每小时行54千米,第二辆汽车每小时行63千米,第一辆汽车先行一会后,第二辆汽车才出发,12小时后追上第一辆车,问第二辆汽车出发时相距第一辆汽车多少千米?4、两匹马赛跑,黄色马的速度是6m/s,棕色马的速度是7m/s,如果让黄马先跑一段,棕色马再开始跑,5秒后就可以追上黄色马,黄马先跑了多远?5、甲、乙二人在同一条路上前后相距25千米。
他们同时向同一个方向前进。
甲在前,以每小时5千米的速度步行;乙在后,5小时可以追上甲。
乙的速度是多少?6、甲、乙两辆列车同时从相距150千米的A、B两城向C城驶出,乙车在前,甲车在后,行驶10小时后甲车才能追上乙车,甲车每小时行60千米,乙车每小时行多少千米?7、甲、乙两车同时从A地向B地开出,甲每小时行36千米,乙每小时行30千米,开出1小时后,甲车因有紧急任务返回A地,到达A 地后又立即向B地开出追上乙车,当甲追上乙车时,两车正好都到达B地,求AB两地的距离?8、小明步行上学,每分钟行70米.离家12分钟后,爸爸发现小明的文具盒忘在家中,爸爸带着文具盒,立即骑自行车以每分钟280米的速度去追小明。
问爸爸出发几分钟后追上小明?爸爸追上小明时他们离家多远?9、甲、乙二人从同一城镇某车站同时出发,相背而行。
甲每小时行16千米,乙每小时行24千米。
2小时后,乙掉头去追甲,多久能追上甲?10、一排解放军从驻地出发去执行任务,每小时行5千米。
离开驻地1小时后,排长命令通讯员骑自行车回驻地取地图。
通讯员回到驻地后因事又耽搁了1小时,然后才返回。
小升初数学常考题型

小升初数学常考题型升初数学常考题型一、一般相遇追及问题。
包括一人或者二人时同时、异时、地同地、异地、向同向、相向的时间和距离等条件混合出现的行程问题。
在杯赛中大量出现,约占80%左右。
建议熟练应用标准解法,即s=v×t结合标准线段画图基本功解答。
由于只用到相遇追及的基本公式即可解决,并且要就题论题,所以无法展开,但这是考试中最常碰到的,希望高手做更为细致的分类。
升初数学常考题型二、复杂相遇追及问题。
特别推荐1多人相遇追及问题。
比一般相遇追及问题多了一个运动对象,即一般我们能碰到的是三人相遇追及问题。
解题思路完全一样,只是相对复杂点,关键是标准画图的能力能否清楚表明三者的运动状态。
见考前辅导最后一题,就是典型例题,此题为2000年华罗庚杯竞赛试题。
2多次相遇追及问题。
即两个人在一段路程中同时同地或者同时异地反复相遇和追及,俗称“反复折腾型问题”。
分为标准型如已知两地距离和两者速度,求n次相遇或者追及点距特定地点的距离或者在规定时间内的相遇或追及次数和纯周期问题少见,如已知两者速度,求一个周期后,即两者都回到初始点时相遇、追及的次数。
标准型解法固定,不能从路程入手,将会很繁,最好一开始就用求单位相遇、追及时间的方法,再求距离和次数就容易得多。
如果用折线示意图只能大概有个感性认识,无法具体得出答案,除非是非考试时间仔细画标准尺寸图。
一般用到的时间公式是只列举甲、乙从两端同时出发的情况,从同一端出发的情况少见,所以不赘述:单程相遇时间:t单程相遇=s/v甲+v乙单程追及时间:t单程追及=s/v甲-v乙第n次相遇时间:Tn= t单程相遇×2n-1第m次追及时间:Tm= t单程追及×2m-1限定时间内的相遇次数:N相遇次数=[ Tn+ t单程相遇/2 t单程相遇]限定时间内的追及次数:M追及次数=[ Tm+ t单程追及/2 t单程追及]注:[]是取整符号之后再选取甲或者乙来研究有关路程的关系,其中涉及到周期问题需要注意,不要把运动方向搞错了。
小升初数学考试常考题型和典型题锦集答案详解

小升初数学考试常考题型和典型题锦集答案详解work Information Technology Company.2020YEAR小升初考试常考题型和典型题锦集一、计算题无论小升初还是各类数学竞赛,都会有计算题出现。
计算题并不难,却很容易丢分,原因:1、数学基础薄弱。
计算题也是对考生计算能力的一种考察,并非平常所说的马虎、粗心造成的。
而且这种能力对任何一个学生来说,都是很重要的,甚至终身受益,这就是为什么中小学学习阶段,“逢考必有计算题”的重要原因了! 2、心态上的轻视。
很多学生称做计算题为“算数”题,在心理上认为很简单,一来不认真做,二来,把更多的精力放在了应用题等看起来很难的题目上了。
二、行程问题我们任意翻开一套试卷,只要是一套综合的测试,大概就会发现少则一道多则三五道的行程问题。
所以行程问题不论在奥数竞赛中还是在“小升初”的升学考试中,都拥有非常显赫的地位,都是命题者偏爱的题型之一。
所以很多学生甚至说,“学好了行程,就肯定能得高分”。
三、数论问题在整个数学领域,数论被当之无愧的誉为“数学皇后”。
翻开任何一本数学辅导书,数论的题型都占据了显著的位置。
在小学各类数学竞赛和小升初考试中,我们系统研究发现,直接运用数论知识解题的题目分值大概占据整张试卷总分的30%左右,而在竞赛的决赛试题和小升初一类中学的分班测试题中,这一分值比例还将更高。
出题老师喜欢将数论题作为区分尖子生和普通学生的依据,这一部分学习的好坏将直接决定你是否可以在选拔考试中拿到满意的分数。
四、几何问题几何问题主要考察是考生的观察能力甚至空间想象能力,有时需要添加辅助线才能完成,对培养孩子动手甚至创新能力很有帮助。
典型题:一、简便计算:(1)200320042003+2004200420062005÷ (2)48517 5.17405⨯+⨯ 200320042005+2004=2003+200420062005⨯÷ =9.6517+5.1740⨯⨯ 200320042005+1=2003+200420062005⨯÷() =9.6517+5170.4⨯⨯ 20032005=2003+2004200620042005+1⨯⨯()=5179.6+0.4⨯() 20032005=2003+20062006=51710⨯ 2003+2005=2003+2006=5170 4008=2003+2006 1001=20041003(3)11111111+++++++248163264128256 11111111=+++++++248163264128256S 令 ① 111111112=+++++++2248163264128256S ⎛⎫⨯ ⎪⎝⎭则 11111112=1+++++++248163264128S 即 ② ②-①得:11111111111111121++++++++++++++248163264128248163264128256S S ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭1255=1-=256256S 即 (4)1111++++1335571921⨯⨯⨯⨯ 1111111=1-+-+-++-3355719211=1-2120=21二、行程问题1.羊跑5步的时间马跑3步,马跑4步的距离羊跑7步,现在羊已跑出30米,马开始追它。
小升初数学常考解决问题题型

小升初数学常考解决问题题型1.甲、乙、丙共做630个零件,甲完成全部的1/3,乙、丙完成的个数的比2:3,乙、丙各完成了多少个零件?2. 王师傅加工一批零件,第一天加工了1/5,第二天又加工了30个,这时已加工的与未加工的个数比是2: 3,这批零件-共多少个?3. 甲车间有工人300人,正好是乙车间的5/6,乙车间与丙车间的人数比是3: 2;丙车间有多少人?4. 张师傅加工一批零件,第一天完成的个数与零件的总个数的比是1: 3.如果再加工15个,就可以完成这批零件的一半.这批零件共有多少个?5.小平看一本小说,看了3天后他发现已经看完页数与还剩的页数比是4: 5,他如果再看25页就正好看了一半,这本书有多少页? (提示: 画线段图帮助分析)6.用一根108分米长的铁丝做一个长方体框架,使它的长、宽、高的比是4:2:3.再把它的各面糊上纸,至少需要多少平方分米的纸?7. 有篮球、足球、排球共180个,已知篮球、足球、排球的比是5: 4: 3.三种球各有多少只?8.用生长的铁丝围成一个长方形,这个长方形的长和宽的比是2: 1,这个长方形的长和宽分别是多少厘米?9.一种农药用药粉与水按质量1: 500 配制而成.(1)现有药粉3千克,需加入多少千克的水能配制成这种农药?(2)配制这种农药2505千克,需药粉和水各多少?10.甲乙两车分别从相距700千米的A、B两地同时出发,4小时相遇,己知甲、乙两车的速度比是3: 4,相遇时两车各行了多少千米?11.小红的爸爸妈妈计划6月份的收入中,支出的钱数和储蓄钱数的比是5:3,月底算帐时发现支出的钱数比储蓄的多800元.小红的爸妈6月份收入是多少元?12.四年级原有42人,男生占16.小红的爸爸妈妈计划6月份的收入中,支出的钱数和储蓄钱数的比是5:3,月底算帐时发现支出的钱数比储蓄的多800元.小红的爸妈6月份收入是多少元?13.四年级原有42人,男生占16.小红的爸爸妈妈计划6月份的收入中,支出的钱数和储蓄钱数的比是5:3,月底算帐时发现支出的钱数比储蓄的多800元.小红的爸妈6月份收入是多少元?14.四年级原有42人,男生占4/7,后来转来若干女生后,男女人数比是6: 5,现在全班有多少名学生?15. 用一根长64厘米的铁丝,围成一个长与宽比是5: 3的长方形框架,这个长.方形框架围成的面积是多少?16.王师傅和徒弟一起干活,王师傅比徒弟多做了40 个零件,已知两个人做的零件个数比是10: 9,师徒二人分别做了多少个零件?17.甲、乙两车同时从相距450千米的A、B两地相向开出,2.5 小时相遇.相遇时,甲乙两车的路程之比是5: 4,甲、乙两车每小时各行多少千米? .18.六年级男生和女生的比是3: 4,现在又来了6名女生,这时男生和女生的比是3: 5,问六年级原来有多少学生?19.小明家公鸡与母鸡的比是5: 3,公鸡比母鸡多18只,公鸡和母鸡一共有多少只?20. 一个修路队修一段路,第一天修的米数与未修的比是1: 9,第二天比第一天多修6米,这时已修的与未修的米数比是1: 3,这段路共有多少米?21.一个三角形三个内角和的度数之比是2: 3: 5,这个三角形三个内角各是多少度?这是一个什么三角形?22.水果店运来梨和苹果的箱数比是7: 4,运来的梨比苹果多21箱,运来苹果多少箱?23.一个饲养厂,养的鸡和鸭共有1200 只,鸡的只数是鸭的三3/5鸡和鸭各有多少只? ( 用两种方法解答)24.饲养场鸡的只数比鸭少1200 只,鸡与鸭的比是3: 5,鸭有多少只?25.用84厘米的铁丝围城一个三角形,三角形的三条边长度的比是3: 4: 5,最长边是多少厘米?26.一个三角形三条边的长度是3: 4: 5,最短的一条边长12厘米,这个三角形的周长是多少米?27.光明小学原来体育达标与没有达标的人数比是3: 5,后来又有60名同学达标,这时达标的人数与没有达标的人数的比是9: 11, 光明小学共有学生多少人?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学常考题型
1、和差问题已知两数的和与差,求这两个数。
例:已知两数和是10,差是2,求这两个数。
【口诀】和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。
按口诀,则大数=(10+2)÷2=6,小数=(10-2) ÷2=4
2、差比问题例
例:甲数比乙数大12且甲:乙=7:4,求两数。
【口诀】我的比你多,倍数是因果。
分子实际差,分母倍数差。
商是一倍的,乘以各自的倍数,两数便可求得。
先求一倍的量,12÷(7-4)=4,
所以甲数为:4X7=28,乙数为:4X4=16。
3、年龄问题
例1:小军今年8岁,爸爸今年34岁,几年后,爸爸的年龄是小军的3倍?
【口诀】岁差不会变,同时相加减。
岁数一改变,倍数也改变。
抓住这三点,一切都简单。
分析:岁差不会变,今年的岁数差点34-8=26,到几年后仍然不会变。
已知差及倍数,转化为差比问题。
26÷(3-1)=13,几年后爸爸的年龄是13X3=39岁,小军的年龄是13X1=13岁,所以应该是5年后。
例2:姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数的和是40岁时,两人各应该是多少
岁?
分析:岁差不会变,今年的岁数差13-9=4几年后也不会改变。
几年后岁数和是40,岁数差是4,转化为和差问题。
则几年后,姐姐的岁数:(40+4) ÷2=22,弟弟的岁数:(40-4) ÷2=18,所以答案是9年后。
4、和比问题已知整体,求部分。
例:甲乙丙三数和为27,甲:乙:丙=2:3:4,求甲乙丙三数。
【口诀】家要众人合,分家有原则。
分母比数和,分子自己的。
和乘以比例,就是该得的。
分母比数和,即分母为:2+3+4=9;
分子自己的,则甲乙丙三数占和的比例分别为2/9,3/9,4/9。
和乘以比例,则甲为27X2/9=6,乙为27X3/9=9,丙为27X4/9=12
5、鸡兔同笼问题
例:鸡免同笼,有头36,有脚120,求鸡兔数。
【口诀】假设全是鸡,假设全是兔。
多了几只脚,少了几只足?除以脚的差,便是鸡兔数。
求兔时,假设全是鸡,则免子数=(120-36X2)/(4-2)=24
求鸡时,假设全是兔,则鸡数=(4X36-120)/(4-2)=12
6、路程问题
【口诀】相遇那一刻,路程全走过。
除以速度和,就把时间得。
(1)相遇问题
例:甲乙两人从相距120千米的两地相向而行,甲的速度为40千米/小时,乙的速度为20千米/小时,多少时间相遇?
相遇那一刻,路程全走过,即甲乙走过的路程和恰好是两地的距离120千米。
除以速度和,就把时间得,即甲乙两人的总速度为两人的速度之和40+20=60(千米/小时),所以相遇的时间就为120÷60=2(小时)
(2)追及问题
例:姐弟二人从家里去镇上,姐姐步行速度为3千米/小时,先走2小时后,弟弟骑自行车出发速度6千米/小时,几时追上?
【口诀】慢鸟要先飞,快的随后追。
先走的路程,除以速度差,时间就求对。
先走的路程:3X2=6(千米)
速度的差:6-3=3(千米/小时)
追上的时间:6/3=2(小时)
7、浓度问题
(1)加水稀释
例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?
【口诀】加水先求糖,糖完求糖水。
糖水减糖水,便是加水量。
加水先求糖,原来含糖为:20X15%=3(千克)
糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3÷10%=30(千克)
糖水减糖水,后的糖水量减去原来的糖水量,30-20=10(千克)
(2)加糖浓化
例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?
【口诀】加糖先求水,水完求糖水。
糖水减糖水,求出便解题。
加糖先求水,原来含水为:20X(1-15%)=17(千克)
水完求糖水,含17千克水在20%浓度下应有多少糖水,17÷(1-20%)=21.25(千克)
糖水减糖水,后的糖水量再减去原来的糖水量,21.25-20=1.25(千克)
8、工程问题
例:一项工程,甲单独做4天完成,乙单独做6天完成。
甲乙同时做2天后,由乙单独做,几天完成?
【口诀】工程总量设为1,1除以时间就是工作效率。
单独做时工作效率是自己的,一齐做时工作效率是众人的效率和。
1减去已经做的便是没有做的,没有做的除以工作效率就是结果。
[1-(1/6+1/4)X2]÷(1/6)=1(天)
9、植树问题
【口诀】植树多少棵,要问路如何?直的减去1,圆的是结果。
例1:在一条长为120米的马路上植树,间距为4米,植树多少棵?
路是直的,则植树为120/4-1=29(棵)。
例2:在一条长为120米的圆形花坛边植树,间距为4米,植树多少棵?
路是圆的,则植树为120/4=30(棵)
10、盈亏问题
【口诀】全盈全亏,大的减去小的;一盈一亏,盈亏加在一起。
除以分配的差,结果就是分配的东西或者是人。
例1:小朋友分桃子,每人10个少9个;每人8个多7个。
求有多少小朋友多少桃子?一盈一亏,则公式为:(9+7)÷(10-8)=8(人),相应桃子为8X10-9=71(个)
例2:士兵背子弹。
每人45发则多680发;每人50发则多200发,多少士兵多少子弹?全盈问题,则大的减去小的,即公式为:(680-200)÷(50-45)=96(人),相应的子弹为
96X50+200=5000(发)。
例3:学生发书。
每人10本则差90本;每人8本则差8本,多少学生多少书?
全亏问题,则大的减去小,即公式为:(90-8)÷(10-8)=41(人),相应书为41X10-90=320(本) 11.余数问题
例:时钟现在表示的时间是18点整,分针旋转1990圈后是几点钟?
【口诀】余数有(N-1)个,最小的是1,最大的是(N-1)。
周期性变化时,不要看商,只要看余。
分析:分针旋转一圈是1小时,旋转24圈就是时针转1圈,也就是时针回到原位。
1980/24的余数是22,所以相当于分针向前旋转22个圈,分针向前旋转22个圈相当于时针向前走22个小时,时针向前走22小时,也相当于向后24-22=2个小时,即相当于时针向后拔了2小时。
即时针相当于是18-2=16(点)
12.牛吃草问题
【口诀】每牛每天的吃草量假设是份数1,A头B天的吃草量算出是几?M头N天的吃草量又是几?大的减去小的,除以二者对应的天数的差值,结果就是草的生长速率。
原有的草量依此反推。
公式:A头B天的吃草量减去B天乘以草的生长速率。
未知吃草量的牛分为两个部分:一小部分先吃新草,个数就是草的比率;有的草量除以剩余的牛数就将需要的天数求知。
例:整个牧场上草长得一样密,一样快。
27头牛6天可以把草吃完;23头牛9天也可以把草吃完。
问21头多少天把草吃完。
每牛每天的吃草量假设是1,则27头牛6天的吃草量是27X6=162,23头牛9天的吃草量是23X9=207;大的减去小的,207-162=45;二者对应的天数的差值,是9-6=3(天),
则草的生长速率是45÷3=15(牛/天);
原有的草量依此反推——
公式:A头B天的吃草量减去B天乘以草的生长速率。
原有的草量=27X6-6X15=72(牛/天)。
将未知吃草量的牛分为两个部分:一小部分先吃新草,个数就是草的比率,这就是说将要求的21头牛分为两部分,一部分15头牛吃新生的草;剩下的21-15=6去吃原有的草,
所求的天数为:原有的草量÷分配剩下的牛=72÷6=12(天)。