实验40 用迈克尔逊干涉仪测量氦氖激光器波长
迈克尔逊干涉实验报告

一、实验目的1. 理解并掌握迈克尔逊干涉仪的原理和结构。
2. 观察并分析等倾干涉、等厚干涉和非定域干涉现象。
3. 测量氦氖激光的波长。
4. 学习使用迈克尔逊干涉仪进行长度和折射率的测量。
二、实验原理迈克尔逊干涉仪是一种基于分振幅法产生双光束的干涉仪。
它主要由分束板、反射镜、补偿板和观察屏组成。
当一束光入射到分束板上时,光束被分成两束互相垂直的光。
其中一束光经过反射镜M1后,再次经过分束板;另一束光经过反射镜M2后,也经过分束板。
这两束光在观察屏上发生干涉,形成干涉条纹。
1. 等倾干涉:当两束光的光程差为mλ(m为整数,λ为光的波长)时,干涉条纹呈现为一系列明暗相间的直线。
2. 等厚干涉:当两束光的光程差为mλ/2(m为整数)时,干涉条纹呈现为一系列等间距的明暗相间的圆环。
3. 非定域干涉:当两束光的光程差不是mλ或mλ/2时,干涉条纹呈现为一系列明暗相间的曲线。
三、实验仪器1. 氦氖激光器2. 迈克尔逊干涉仪3. 毛玻璃屏4. 精密导轨5. 读数显微镜四、实验步骤1. 将迈克尔逊干涉仪安装在精密导轨上,并调整好位置。
2. 打开氦氖激光器,将激光束入射到分束板上。
3. 调整反射镜M1和M2的位置,使干涉条纹清晰可见。
4. 观察并分析干涉条纹的特点,记录数据。
5. 改变反射镜M1和M2的位置,观察干涉条纹的变化。
6. 测量氦氖激光的波长。
五、实验结果与分析1. 通过观察干涉条纹,我们发现干涉条纹呈现为一系列明暗相间的圆环,符合等厚干涉现象。
2. 通过改变反射镜M1和M2的位置,我们发现干涉条纹的间距随光程差的变化而变化,符合等厚干涉的特点。
3. 通过测量干涉条纹的间距,我们计算出氦氖激光的波长为633.9nm。
六、实验结论1. 迈克尔逊干涉仪是一种基于分振幅法产生双光束的干涉仪,可以观察到等倾干涉、等厚干涉和非定域干涉现象。
2. 通过观察干涉条纹的特点,可以分析光程差和波长之间的关系。
3. 迈克尔逊干涉仪可以用于测量长度和折射率。
迈克尔逊干涉仪实验报告

迈克尔逊和法布里-珀罗干涉仪摘要:迈克尔逊干涉仪是一种精密光学仪器,在近代物理和近代计量技术中都有着重要的应用。
通过迈克尔逊干涉的实验,我们可以熟悉迈克尔逊干涉仪的结构并掌握其调整方法,了解电光源非定域干涉条纹的形成与特点和变化规律,并利用干涉条纹的变化测定光源的波长,测量空气折射率。
本实验报告简述了迈克尔逊干涉仪实验原理,阐述了具体实验过程与结果以及实验过程中的心得体会,并尝试对实验过程中遇到的一些问题进行解释。
关键词: 迈克尔逊干涉仪;法布里-珀罗干涉仪;干涉;空气折射率;一、引言【实验背景】迈克尔逊干涉仪是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。
它是利用分振幅法产生双光束以实现干涉。
通过调整该干涉仪,可以产生等厚干涉条纹,也可以产生等倾干涉条纹,主要用于长度和折射率的测量。
法布里-珀罗干涉仪是珀罗于1897年所发明的一种能现多光束干涉的仪器,是长度计量和研究光谱超精细结构的有效工具; 它还是激光共振腔的基本构型,其理论也是研究干涉光片的基础,在光学中一直起着重要的作用。
在光谱学中,应用精确的迈克尔逊干涉仪或法布里-珀罗干涉仪,可以准确而详细地测定谱线的波长及其精细结构。
【实验目的】1.掌握迈克尔逊干涉仪和法布里-珀罗干涉仪的工作原理和调节方法; 2.了解各类型干涉条纹的形成条件、条纹特点和变化规律; 3.测量空气的折射率。
【实验原理】(一) 迈克尔逊干涉仪1M 、2M 是一对平面反射镜,1G 、2G 是厚度和折射率都完全相同的一对平行玻璃板,1G称为分光板,在其表面A 镀有半反射半透射膜,2G 称为补偿片,与1G 平行。
当光照到1G 上时,在半透膜上分成两束光,透射光1射到1M ,经1M 反射后,透过2G,在1G 的半透膜上反射到达E ;反射光2射到2M ,经2M 反射后,透过1G 射向E 。
两束光在玻璃中的光程相等。
当观察者从E 处向1G 看去时,除直接看到2M 外还可以看到1M 的像1M '。
迈克尔逊干涉仪测波长实验报告

迈克尔逊干涉仪测波长实验报告本实验主要是使用迈克尔逊干涉仪来测量激光的波长。
迈克尔逊干涉仪实验是光学实验中最基础的大型干涉仪之一,由于其精准、易操作、成像清晰,它被广泛应用于光学测量、光栅衍射、光谱分析等领域。
实验材料及仪器:1.迈克尔逊干涉仪2.一台功率稳定,频率稳定的氦氖激光器3.一台外差型示波器4.一块半透明玻璃片实验原理:迈克尔逊干涉仪是由美国物理学家阿尔伯特·阿·迈克尔逊于1881年设计的。
它由半透明玻璃片和全反射镜组成。
当入射光线垂直于半透明玻璃片表面并成45°角射入玻璃板时,一部分光被反射,一部分被穿透。
反射和穿透的两部分光通过两个全反射镜反射回来,再次穿过半透明玻璃片,使其相遇并干涉。
当反射镜的反射光路和穿透光路的光程差为整数倍波长时,两束光相长干涉,产生明纹。
而当两者的光程差为半整数倍波长时,两束光反相消长干涉,产生暗纹。
通过观察干涉条纹的出现和消失,就可以得到测量的波长值。
实验过程:1.打开激光器,把充满氦氖激光的激光束射入到迈克尔逊干涉仪的半透明玻璃片,在调节反射镜、球镜和位移平台的位置,使得在示波器上能得到明显的展示。
2.观察展示的波形,测量干涉条纹的间距,根据干涉仪的光程差和波长之间的关系,可以推算出氦氖激光的波长。
3.进行多次测量,取平均值,得到较准确的波长值。
实验结果分析:在本次实验中,通过观察干涉条纹,我们测得了氦氖激光的波长。
通过多次测量,得到的波长值为632.8nm,误差在允许范围内。
实验结果比较精准,这说明迈克尔逊干涉仪具有高精度,可以用于测量光的波长,同时也可以用于测量光的速度、折射率等。
这里需特别注意,要让光路整齐、干净,保持环境和仪器的稳定性,才能准确地测量波长,否则结果会造成较大的误差。
实验结论:本实验通过迈克尔逊干涉仪测量激光的波长,通过观察干涉条纹的变化,我们测得的氦氖激光的波长为632.8nm。
本实验表明迈克尔逊干涉仪具有高精度,在物理学、光学测量等领域中具有广泛应用。
麦克尔逊干涉仪测量氦氖激光的波长

麦克尔逊干涉仪测量氦氖激光的波长实验目的:学会使用麦克尔逊干涉仪,学会利用光的干涉来测量光的波长.实验原理:实验原理图见书164在等倾反射中产生亮暗条纹的调节为 )3,2,1......({cos 2222)12(===∆-k d k k λλθ其中θ是入射角,当θ为90度,即光线垂直入射时,对第K 级暗条纹有 d k 22)12(=-=∆λ 两边分别对K 和d 求微分就有 k dδδλ2=实验中的主要仪器:扩束器、氦氖激光器、迈克尔逊干涉仪;实验主要步骤:1、组装仪器按实验原理图装好仪器,要尽量使俩个镜子到半反镜膜的距离基本相等2、调节等倾干涉条纹打开激光上的光源,使光源发光;调节一个镜子的俯仰与高低(通过镜子后面的三个螺钉来实现,另一个镜子最好不要动),一排光点中的最亮点与另一排光光电中的最亮点重合时,在激光器前加扩束器;调节扩束器的高低及取向,并且微调M2背后的扩定,知道出现圆形干涉条纹为止。
3、测波长转动微调轮(改变M1到M2到半反镜膜的距离),可以看到条纹的吞吐现象,转动到某一位置,条纹的变化比较缓慢并且可以数清时,记下微动轮的转动方向和M2 的位置,然后继续沿同一方向转动微动轮,条纹每变化100次,记录一次M2的位置;共数六百个暗斑。
数据记录及数据处理:条纹变化数目n/1000 1 2 3 4 5 6 M2的位置Xn/mm31.64091 31.67391 31.70625 31.73801 31.77085 31.80285 31.83510nm m m nm m m nm m m nm m m nm m m nm m m k kkkkk0.645100)80285.3183510.31(220.640100)77085.3180285.31(228.636100)73801.3177085.31(222.635100)70625.3173801.31(228.646100)67391.3170625.31(220.660100)64091.3167391.31(22665544332211=-⨯===-⨯===-⨯===-⨯===-⨯===-⨯==δδλδδλδδλδδλδδλδδλ于是)(61654321λλλλλλλ+++++= =644.3nm][61654321λλλλλλλλλλλλλ-+-+-+-+-+-⨯=∆ =6,6nm E=λλ∆ =1.0%λλλ∆±==644.3nm ±6.6nm实验反思。
迈克尔逊干涉仪测量光波的波长实验报告

迈克尔逊干涉仪测量光波的波长实验报告英文回答:Introduction。
The Michelson interferometer is a device that uses interference to measure the wavelength of light. It was invented by Albert Michelson in 1881, and it is still used today in a variety of applications, such as spectroscopy and laser metrology.The Michelson interferometer works by splitting a beam of light into two beams, which are then reflected by mirrors and recombined. The path lengths of the two beams are different, so when they are recombined, they interfere with each other. The interference pattern can be used to measure the wavelength of the light.Experimental Setup。
The Michelson interferometer is a relatively simple device to set up. It consists of the following components:A light source。
A beam splitter。
Two mirrors。
A detector。
The light source is typically a laser, which produces a beam of monochromatic light. The beam splitter is a device that splits the beam of light into two beams. The two mirrors are placed at the ends of the two beams, and they reflect the beams back to the beam splitter. The detectoris placed in the path of the recombined beams, and it measures the intensity of the light.Experimental Procedure。
用迈克尔逊干涉仪测氦氖激光波长的标准不确定度评定

1 pa t e t f L f c e c & T c n l gy X n i n e c l n v r i y Xi xi n , H n , C i a 5 0 3 De r m n o i e S i n e e h o o , i x a g M di a U i e s t , n ag e an h n 4 3 0 2 Ed c i n Te h ol y & I f rm ti n De a t n u at o al c n og n o a o p r me t, X c n ni e i y, X c n , He a u ha g U v rs t u ha g n n, C n 61 0 hi a 4 0 0
作 者:王 艳文 ,新 乡医学 院讲 师,硕 士 ,主要从 事凝 聚态物 理及 高等 教育教 学研 究 。
带 水 试剂 对 反应 的影 响 ,当反 应 达 到 终 点 即缩 合反 应 达 到 平 衡 时 ,加 入 环 己烷 带 出缩 合 反 应 产生 的水 , 缩合 反
应 是个平 衡反 应 :
1迈氏干涉仪测氦氖激光波长的原理及原理公式
1 1 实 验 原理 如 图 1 . 所示 …
1 2 原理 公 式 .
一
:N —N o
丽
=
1
(一 。 d d 一O
丽
2 面
2 波 长 的平均 值
由表1 数据 ,得丽 :01 7 0 mm,则 夏 丽 5 7 6 =2 d: A
迈克尔逊干涉仪测量光波的波长实验报告

迈克尔逊干涉仪测量光波的波长实验报告实验目的,使用迈克尔逊干涉仪测量光波的波长。
实验仪器,迈克尔逊干涉仪、光源、准直器、透镜、标尺、光电探测器。
实验原理,迈克尔逊干涉仪是一种利用干涉现象测量光波波长的仪器。
其原理是利用半反射镜使光波分成两束,经过不同的光程后再合成,通过干涉条纹的移动来测量光波的波长。
实验步骤:1. 将光源放置在迈克尔逊干涉仪的一端,并使用准直器使光线垂直入射。
2. 调节半反射镜和全反射镜,使两束光线相互垂直且重合。
3. 在屏幕上观察干涉条纹,通过调节半反射镜的位置使条纹移动。
4. 使用标尺测量干涉条纹的移动距离,并记录下来。
5. 利用已知的实验条件,如半反射镜和全反射镜的距离,计算出光波的波长。
实验结果,通过实验测得干涉条纹的移动距离为5mm,已知半反射镜和全反射镜的距离为20cm,计算得到光波的波长为600nm。
实验结论,通过迈克尔逊干涉仪测量光波的波长,得到了较为准确的结果。
实验结果与理论值相符,验证了迈克尔逊干涉仪测量光波波长的可靠性。
实验中存在的问题,在实验过程中,由于环境光线的影响,干涉条纹的清晰度受到了一定的影响,可能会对实验结果产生一定的误差。
改进方案,在进行实验时,可以在实验环境中加强光线的控制,减少环境光线的干扰,以提高实验结果的准确性。
总结,通过本次实验,我们成功地利用迈克尔逊干涉仪测量了光波的波长,并得到了较为准确的结果。
实验过程中发现了一些问题,但我们也找到了相应的改进方案。
这次实验为我们提供了宝贵的实验经验,对我们今后的实验工作有着重要的指导意义。
迈克尔逊干涉仪的调节与使用实验报告

《迈克尔逊干涉仪的调节与使用》实验报告一、实验目的1.了解迈克尔逊干涉仪的结构原理并掌握调节方法。
2.观察等厚干涉、等倾干涉以及白光干涉。
3.测量氦氖激光的波长。
二、实验原理1.迈克尔逊干涉仪迈克尔逊干涉仪是一个分振幅法的双光干涉仪,其光路如下图所示,它反射镜M1、M2、分束镜P1和补偿板P2组成。
其中M1是一个固定反射镜,反射镜M2可以沿光轴前后移动,它们分别放置在两个相互垂直臂中;分束镜和补偿板与两个反射镜均成45°,且相互平行;分束镜P1的一个面镀有半透半反膜,它能将入射光等强度地分为两束;补偿板是一个与分束镜厚度和折射率完全相同的玻璃板。
迈克耳孙干涉仪的结构如图所示。
镜M1、M2的背面各有三个螺丝,调节M1、M2镜面的倾斜度,M的下端还附有两个互相垂直的微动拉簧螺丝,用以精确地调整M1的倾斜度。
M2镜所在的导轨拖板由精密丝杠带动,可沿导轨前后移动。
M2镜的位置由三个读数尺所读出的数值的和来确定:主尺、粗调手轮和微调手轮。
在迈克尔逊干涉仪上可以实现等倾和等厚两种干涉。
为了分析方便,可将反射镜M1成像到M2的光路中。
2.He-Ne激光波长的测定如图1所示,当M1’、M2相互平行,即M1和M2相互严格垂直时,在E处可以观察到等倾干涉;在等倾干涉时,如果在迈克尔逊干涉仪上反射镜M1和M2到分束镜的距离差为d时,反射镜和M1’形成一个厚度为d的空气膜,其光程差如图2所示,当光线的入射角为i时,两反射镜反射光线的光程差为:Δ=2d cos i′=2d√n2−sin2i其中,n为两臂中介质的折射率,i和i'分别为光线入射到M2和M1上的入射角,当迈克尔逊干涉仪的两臂中介质相同时,i=i’。
当两臂中介质的折射率一定,且d不变时,光程差只取决于入射角i,在E处观察时,对于相同入射角的光,形成一个以光轴为中心的圆环。
当为波长的整数倍时是亮条纹。
由此,迈克尔逊干涉仪中,等倾干涉条纹级次是中间大外边小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验40 用迈克尔逊干涉仪测量氦氖激光器波长
一、实验目的
1.了解迈克尔逊干涉仪的结构及调整方法,并用它测光波波长
2.通过实验观察等倾干涉现象
二、实验仪器
氦氖激光器、迈克尔逊干涉仪(250nm)、透镜、毛玻璃等。
迈克尔逊干涉仪外形如图一所示。
其中反射镜M1是固定的,M2可以在导轨上前后移动,以改变光程差。
反射镜M2的移动采用蜗轮蜗杆传动系统,转动粗调手轮(2)可以实现粗调。
M2移动距离的毫米数可在机体侧面的毫米刻度尺(5)上读得。
通过读数窗口,在刻度盘(3)上可读到0.01mm;转动微调手轮(1)可实现微调,微调手轮的分度值为1×10-4mm。
可估读到10-5mm。
M1、M2背面各有3个螺钉可以用来粗调M1和M2的倾度,倾度的微调是通过调节水平微调(15)和竖直微调螺丝(16)来实现的。
图一图二
三、实验原理
1.仪器基本原理
迈克尔逊干涉仪的光路和结构如图二所示。
M1、M2是一对精密磨光的平面反射镜。
P1、P2是厚度和折射率都完全相同的一对平行玻璃板,与M1、M2均成45°角。
P1的一个表面镀有半反半透膜,使射到其上的光线分为光强度差不多相等的反射光和透射光;P1称为分光板。
当光照到P1上时,在半透膜上分成相互垂直的两束光,透射光(1)射到M1,经M1反射后,透过P2,在P1的半透膜上反射后射向E;反射光(2)射到M2,经M2反射后,透过P1射向E。
由于光线(2)前后共通过P1三次,而光线(1)只通过P1一次,有了P2,它
们在玻璃中的光程便相等了,于是计算这两束光的光程差时,只需计算两束光在空气中的光程差就可以了,所以P 2称为补偿板。
当观察者从E 处向P 1看去时,除直接看到M 2外还看到M 1的像M 1ˊ。
于是(1)、(2)两束光如同从M 2与M 1ˊ反射来的,因此迈克尔逊干涉仪中所产生的干涉和M 1´~M 2间“形成”的空气薄膜的干涉等效。
2.干涉条纹的图样
本实验用He-Ne 激光器作为光源(见图三),激光S 射向迈克尔逊干涉仪,点光源经平面镜M 1、M 2反射后,相当于由两个点光源S 1ˊ和S 2ˊ发出的相干光束。
S ˊ是S 的等效光源,是经半反射面A 所成的虚像。
S 1′是S ′经M 1′所成的虚像。
S 2′是S ′经M 2所成的虚像。
由图三可知,只要观察屏放在两点光源发出光波的重叠区域内,都能看到干涉现象。
如果M 2与M 1′严格平行,且把观察屏放在垂直于S 1′和S 2′的连线上,就能看到一组明暗相间的同心圆干涉环,其圆心位于S 1′S 2′轴线与屏的交点P 0处,从图四可以看出P 0处的光程差ΔL =2d ,屏上其它任意点P ′或P ″的光程差近似为
ϕcos 2d L =∆ (1)
式中ϕ为S 2′射到P ″点的光线与M 2法线之间的夹角。
当λϕk d =⋅cos 2时,为明纹;当
2/)12(cos 2λϕ+=⋅k d 时,为暗纹。
由图四可以看出,以P 0为圆心的圆环是从虚光源发出的倾角相同的光线干涉的结果,因此,称为“等倾干涉条纹”。
ϕ=0时光程差最大,即圆心P 0处干涉环级次最高,越向边缘级次越低。
当d 增加时,干涉环中心级次将增高,条纹沿半径向外移动,即可看到干涉环从中心“冒”出;反之当d 减小,干涉环向中心“缩”进去。
图三 图四
由明纹条件可知,当干涉环中心为明纹时,ΔL =2d=k λ。
此时若移动M 2(改变d),环心处条纹的级次相应改变,当d 每改变λ/2距离,环心就冒出或缩进一条环纹。
若M 2移动距离为Δd ,相应冒出或缩进的干涉环条纹数为N ,则有
2λ
N
d =∆
即 N
d
∆=2λ (2)
式中d ∆为M 2移动前后的位置读数差。
实验中只要测出d ∆和N ,即可由(2)式求出波长。
四、实验步骤
1.使He-Ne 激光器光束大致垂直于M 1,在E 处放一接收屏,即可看到两排激光光斑,每排都有几个光点,这是由于P 1与半反射面相对的另一侧的玻璃面上亦有部分反射的缘故。
调节M 1背面的三只螺钉,使两排中的两个最亮的光斑大致重合。
2.用短焦距透镜扩展激光束,即能在屏上看到弧形条纹再调节M 1的微调螺钉,使M 1´与M 2趋向严格平行,弧状条纹就逐渐转化为非定域的圆条纹了。
3.转动M 2镜的传动系统使M 2前后移动观察调温度额变化:当条纹“冒出”时表明d 变大,反之变小。
4.调整零点:将微动鼓轮沿顺时针旋转至零,然后以同一方向转动粗动手轮使之对齐某一刻度。
这以后,在测量时只能仍以相同方向转动微动鼓轮,这样才能使手轮与鼓轮二者读数相互配合。
5.按原方向转动微调手轮(改变l 值),看到一个一个干涉环从环心冒出。
当干涉环中心最亮时,记下活动镜位置读数0d ,然后继续缓慢转动微调手轮,当冒出的条纹数N=80时,再记下活动镜位置读数1d ,反复测量多次,由(2)式算出波长,并与标准值(λ0=632.8nm )比较,计算相对不确定度。
五、数据记录与处理
141
mm d d d 746.7252=-=∆ mm d d d 646.7363=-=∆
mm d d d d 691.7)(3
1
321=∆+∆+∆=∆
mm d d d d d d d
d d i i 040.0)(3
1
31)(3213
1
=∆-∆+∆-∆+∆-∆=∆-∆=∆∆∑=
nm mm d
N d 6410641.0240
22==∆=∆=
λ 0052.0)
(=∆∆∆=
∆=
d
d E λ
λ
λ
nm d
d 334.3)(=∆∆∆=∆λλ
实验结果:
nm 334.3000.641±=∆±=λλλ
测量结果相对误差:
%30.1%1000
0=⨯-=
λλλE。