氦氖激光器模式分析
5-1 氦氖激光器的模式分析 实验报告

近代物理实验报告 指导教师: 得分:实验时间: 2009 年 03 月 17 日, 第 三 周, 周 三 , 第 5-8 节实验者: 班级 材料0705 学号 200767025 姓名 童凌炜同组者: 班级 材料0705 学号 200767007 姓名 车宏龙实验地点: 综合楼 501实验条件: 室内温度 ℃, 相对湿度 %, 室内气压实验题目: 氦氖激光器的模式分析实验仪器:(注明规格和型号)扫描干涉仪;高速光电接收器;锯齿波发生器;示波器;半外腔氦氖激光器及电源;准直用氦氖激光器及电源;准直小孔。
实验目的:(1) 了解扫描干涉仪原理,掌握其使用方法;(2) 学习观测激光束横模、纵模的实验方法。
实验原理简述:1. 激光器模式的形成激光器由增益介质、谐振腔、激励能源三个基本部分组成。
如果用某种激励的方式,使介质的某一对能级间形成的粒子数反转分布,由于自发辐射的作用,将有一定频率的光波产生,并在谐振腔内传播,被增益介质增强、放大。
形成持续振荡的条件是:光在谐振腔内往返一周的光程差为波长的整数倍,即q q uL λ=2满足此条件的光将获得极大的增强。
每一个q 对应纵向一种稳定的电磁场分布λq ,叫一个纵模,q 称为纵模序数。
纵模的频率为uLc q q 2=ν 相邻两个纵模的频率间隔为 uL c q 21=∆=∆ν 因此可以得知, 缩短腔长的方法是获得单纵模运行激光器的办法之一。
当光经过放电毛细管时,每反馈一次就相当于一次衍射,多次反复衍射,就在横向的同一波腹处形成一个或多个稳定的衍射光斑。
每一个衍射光斑对应一种稳定的横向电磁场分布,称为一个横模。
模式指激光器内能够发生稳定光振荡的形式,每一个膜,既是纵模,又是横模,纵模描述了激光器输出分立频率的个数,横模描述了垂直于激光传播方向的平面内光场的分布情况。
激光的线宽和相干长度由纵模决定,光束的发散角、光斑的直径和能量的横向分布由横模决定。
,一个膜由三个量子数表示,通常记作TEM mnq 。
实验二 氦氖激光器的模式分析

实验二氦氖激光器的模式分析简述:相对于一般光源,激光还具有单色性好的特点,即具有非常窄的谱线宽度。
这样窄的谱线并不是从能级受激辐射就自然形成的,而是受激辐射后有经过谐振腔等多种机制的作用和互相干涉,最后形成的一个或多个离散、稳定而又精细的谱线,这些谱线就是激光器的模。
实验目的1.了解激光器模形成的特点,加深对其物理概念的理解;2.通过测试分析,掌握模式分析的基本方法;3.对于共焦球面扫描干涉仪,了解其原理、性能、学会正确使用。
实验原理激光器模的形成激光之所以能够保证良好的单色性,除了其发光原理之外,更重要的是谐振腔的选频功能。
发光介质的光谱宽度就其形成原理上来讲由自然增宽、碰撞增宽和多普勒增宽叠加而成。
对于低气压小功率激光器其增宽以多普勒增宽为主,增宽线型呈高斯函数。
而谐振腔的选频放大功能则表现为只有满足谐振要求的光才能实现持续震荡:2qL q µλ=q 通常是很大的整数。
则可知纵模频率以及频率间隔分别为:2q cv qL µ=122q c c v L Lµ∆=∆=≈即腔长越长,选出的纵模个数越多,反之亦然。
缩短腔长是得到单纵模运行激光的有效方法之一。
谐振腔对光进行多次反馈,在纵向形成不同的场分布的同时,也在横向的同一波腹处形成一个或多个稳定的衍射光斑,每种光斑对应一种横向电磁场分布,称为一个横模。
横模间距为:1/2121()arccos[(1)(1)]2m n c L L v m n L R R µπ∆+∆⎧⎫∆=∆+∆−−⎨⎬⎩⎭图1.横纵模示意图共焦球面扫描干涉仪(具体结构说明及结构示意图见实验书)共焦球面干涉仪用压电陶瓷作为扫描元件或用气压进行扫描。
共焦球面扫描干涉仪是一个无源腔,由两块球形凹面反射镜构成,两块镜的曲率半径和腔长相等(即R1=R2=l,构成共焦腔)。
其中一块反射镜固定不动,另一块反射镜固定在可随外电压变化而变化的压电陶瓷环上。
如右图所示,由低膨胀系数材料制成的间隔圈,用以保持两球形凹面反射镜R1、R2总处于共焦状态。
氦氖激光器模式分析

模式分析1.氦-氖(He-Ne)激光器简介氦氖激光器(或He-Ne激光器)由光学谐振腔(输出镜与全反镜)、工作物质(密封在玻璃管里的氦气、氖气)、激励系统(激光电源)构成。
二电极通过毛细管放电激励激光工作物质,在氖原子的一对能级间造成集居数反转,产生受激辐射。
由于谐振腔的作用,使受激辐射在腔内来回反射,多次通过激活介质而不断加强。
如果单程增益大于单程损耗,即满足激光振荡的阈值条件时,则有稳定的激光输出。
内腔式激光器的腔镜封装在激光管两端。
二.氦-氖(He-Ne)激光器的工作原理氦氖激光器的激光放电管内的气体在涌有一定高的电压及电流(在电场作用下气体放电),放电管中的电子就会由负极以高速向正极运动。
在运动中与工作物质内的氦原子进行碰撞,电子的能量传给原子,促使原子的能量提高,基态原子跃迁到高能级的激发态。
这时如有基态氖原子与两能级上的氦原子相碰,氦原子的能量传递给氖原子,并从基态跃迁到激发的能级状态,而氦原子回到了基态上。
因为放电管上所加的电压,电流连续不断供给,原子不断地发生碰撞。
这就产生了激光必须具备的基本条件。
在发生受激辐射时,分别发出波长3.39μm,632.8nm,1.53μm三种激光,而这三种激光中除632.8nm为可见光中的红外光外,另二种是红外区的辐射光。
因反射镜的反射率不同,只输出一种较长的光波632.8nm的激光。
3.He-Ne激光器结构及谐振腔He-Ne激光器的结构形式很多,但都是由激光管和激光电源组成。
激光管由放电管、电极和光学谐振腔组成。
放电管是氦一氖激光器的心脏,它是产生激光的地方。
放电管通常由毛细管和贮气室构成。
放电管中充入一定比例的氦(He)、氖(Ne)气体,当电极加上高电压后,毛细管中的气体开始放电使氖原子受激,产生粒子数反转。
贮气室与毛细管相连,这里不发生气体放电,它的作用是补偿因慢漏气及管内元件放气或吸附气体造成He,Ne气体比例及总气压发生的变化,延长器件的寿命。
He-Ne激光器模式分析实验

He-Ne 激光器模式分析一、 实验目的 1、 了解激光器模式的形成及特点,加深对其物理概念的理解; 2、 通过测试分析,掌握模式分析的基本方法; 3、 了解实验使用的共焦球面扫描干涉仪的工作原理及性能,学会正确使用 二、 实验原理1. 激光模式的一般分析 稳定腔的输出频率特性:(1)其中:L —谐振腔长度;q 纵横序数;R 、艮一两球面反射镜的曲率半径; m n 横模序数;n 腔内介质的折射率。
(1)式看出,对于同一纵模序数,不同横模之间的频差为: (1--) (1 - - )] 1/2R 1 R 2(其中 A m=n- m' ; A n=n_ rT )对于相同的横模,不同纵模间的频差为 3 ' = —A q q :q 2耳 L 相邻两纵模的频差为 C 2 F(3)由(2)、( 3)式看出,稳定球面腔有如图 2— 1的频谱。
△表示不同的两横模(比如U 00与U 10)之间的频差与相邻两纵模之间的频差之比,2. 共焦球面扫描干涉仪的工作原理C1Vmnq「辽[q_(m n 1)]C0S-1[(1LR 1 )(1L R 2 )]1/2 Avmn:m'n'_1(m ;n)cos [(2)(△q=q — q ')(2)式除以(3)式得=mn:m ,n\l c ^ . .;n )cos _1[(1 —丄)(1 -丄)]AvqR 1R 2「/2(4)设:Avmn:m'nAu qS=丄 cos -1 [(1 -丄)(1 一 丄)]1/2兀R 1 R 2于是(4)式可简写作:(二m =n ) _ ': S(5)V 00q+1(1) 共焦球面扫描干涉仪由两块镀有高反射率的凹面镜构成,如图 射镜的曲率半径R=R=L 。
(2) 正入射时,干涉相长条件为:4L=m ・(n 为折射率;L 为腔长)(3) 通常情况下,R 固定,而F 2装在一块管状压电陶瓷上。
如果在压电陶瓷 y 方 向上加一周期性的信号电压,那么 Fb 将随压电陶瓷周期变形并沿轴向在中心位置 附近做微小振动,因而干涉仪的腔长 L 也做微小的周期变化。
氦氖激光器模式分析

He-Ne激光器的模式分析实验简介:相对一般光源,激光还具有单色性好的特点。
也就是说,它可以具有非常窄的谱线宽度。
这样窄的谱线,并不是从能级受激辐射就自然形成了,而是受激辐射后又经过谐振腔等多种机制的作用和相互干涉,最后形成的一个或多个离散的、稳定的又很精细的谱线,这些谱线就是激光器的模。
每个模对应一种稳定的电磁场分布,即具有一定的光频率。
而相邻两个模的光频率相差很小,我们用分辨率比较高的分光仪器可以观测到每个模。
当从与光输出的方向平行(纵向)和垂直(横向)两个不同的角度去观测和分析每个模式,发现又分别具有许多不同的特性,因此,为方便称呼,每个模又可以相应称做纵模和横模。
在激光器的生产与应用中,我们常常需要先知道激光器的模式状况,如定向、精密测量、全息技术等工作需要基横模输出的激光器,而激光稳频和激光测距离等不仅要基横模而且要求单纵横运行的激光器,因此,进行模式分析是激光器一项基本又重要的性能测试。
本实验是以几支具有不同模式的He-Ne 激光器为例,从它们展示出的频谱结构入手,来分析和研究激光器不同的纵模、不同的横模所具有的场分布特征,从而得出纵横个数、纵模频率间隔、横模个数、横模频率间隔、横模模序等结果。
本实验目的:(1)了解激光器模的形成及特点,加深对其物理概念的理解。
(2)通过测试分析,掌握模式分析的基本方法。
(3)对本实验使用的重要分光仪器一共焦球面扫描干涉仪,了解其原理、性能,学会正确的使用。
实验装置图1 实验装置示意图实验装置各部分说明:(1)激光器,具有不同模式结构的激光器四支,可分别了解它们不同的模式状况,从中学习模式分析的基本方法。
(2)激光电源,用来激发激光器。
工作电流等参数由“实验说明书”提供。
(3)小孔光阑,用于调光的辅助工具,起正负两方向光束准直作用。
(4)扫描干涉仪,使激光器的各个不同模按频率展开,透射光中心波长为6328Å。
自由光谱范围应在1500~2000MH z,每伏电压使腔长改变24~25Å,具体数据由实验室给出(分析40cm 长的激光器,精细常数应大于100;而分析1m 长的激光器,精细常数要求更高,应大于200)。
光信息专业实验报告:氦氖激光模式实验

光信息专业实验报告:氦氖激光模式实验氦氖激光器在实际应用,尤其是基础实验教育中应用非常广泛。
本实验对氦氖激光器的性质进行了测量,主要分为两个部分。
一是氦氖激光器光斑大小和发散角的测量,二是利用共焦球面扫描干涉仪与示波器对氦氖激光器的模式进行分析。
实验仪器及技术参数:1、氦氖激光器:中心波长632.8nm、谐振腔腔长246mm、谐振腔曲率半径为1m2、共焦球面扫描干涉仪:腔长20mm、凹面反射镜曲率半径20mm、凹面反射镜反射率99%、精细常数>100、自由光谱范围4GHz3、示波器、光学镜若干实验一氦氖激光器光斑大小和发散角的测量氦氖激光器发出的光束为高斯光束,高斯光束是我们非常熟悉的一种光束。
我们可以从横向和纵向两个角度来理解高斯光束。
1、横向方向高斯光束之所以称为高斯光束,正是因为其基模在横向上光强的分而呈高斯分布型。
即⁄](1)是I oo(r,z)=I oo(z)exp[−2r2w2(z)其中,下标00表示基横模,I oo(z)表示中心处的光强,r表示横截面离中心的距离,z 表示所研究的光斑所处的纵向上的位置,w(z)表示z处的光束半径。
光束半径w(z)定义为振幅下降到中心振幅1/e的点离中心的距离,或者说光强下降到中心光强1/e2的点离中心的距离。
从(1)式可以看出,高斯光束横向上光强随着离中心位置越远,光强越小,至w(z)处已基本下降为0,集中了86.5%的功率。
以上的说明可以用图1表示。
图1 高斯光束横向上振幅分布和光强分布2、纵向方向由横向方向上高斯光束的说明可以看出,整个高斯光束可以看成是横向上高斯光斑沿纵向z 轴传播形成的。
那么,纵向上光斑是如何传播的呢?理想的高斯光事假设传播过程中光的总能量不变,传播的过程只是光斑大小发生了变化。
激光器发出的激光束在空间的传播如图2所示。
光束截面最细处成为束腰。
我们将柱坐标(z, r, φ)的原点选在束腰截面的中点,z是光束传播方向。
束腰截面半径为w0,距束腰为z处的光斑半径为w(z),则w(z)=w o[1+(λzπw o)2]12⁄(2)其中是λ激光波长。
氦氖激光器实验数据分析

1
1 2
0.61GHz 0.1652 0.10GHz
横模频率间隔误差
2
0.11 0.10 0.10 100% 10%
根据高阶横模具有高频率
随时间增长,锯齿波电压变大,干涉仪的谐振腔变长。
4la ka
在K序中,峰3对应的波长大于峰2对应的波长,所以峰3对应的 频率小于峰2对应的频率。 峰2对应的模式是TEM01k (或是TEM10k ) 峰3对应的模式是TEM00k .
c 其中 F 3.75GHz ,l 20 mm 该实验取4GHz 4l
其理论值为 c / 2L ≈ 0.61GHz .其中c为真空光速, L是激光器谐振腔的长度, L=246mm.
纵模频率间隔误差
0.61 0.67 0.61
1
100% 9.8%
在同一个纵模序中的两个不同横模的频率间隔为
氦氖激光器模式分析
实验数据处理
2
6
7 3 4
8
1 5
K序
K+1序
• 读出各个的峰的横坐标值分别是:
t1=0.21775 t3=0.21824 t5=0.22019 t7=0.22067 t2=0.21817 t4=0.21857 t6=0.22060 t8=0.22102
自由光谱由光Δν F 对应的时间间隔为
t 5 t1 t6 t 2 t7 t 3 t 8 t 4
4 2.4375 10 3
同一干涉序K中 ,纵模频率间隔
t1 - t 4 q 1 ( /2.4375 10-3 ) F 2 0.21775 0.21857 ( /2.4375 10-3 ) 4GHz 2 0.67GHz
9HeNe激光模式分析

量,实验中利用球面扫描干涉仪
纵模的测量方法:球面扫描干涉仪测量
高斯光束 光学隔离
1/4波片 测量原理:通过测量激光输出的频率谱来判定模式
球面扫描干涉仪
两球面镜:组成无源腔 小孔光阑:增加高次横模的衍射损耗 压电陶瓷:通过改变电压而改变腔长因而导致改无源腔所允许通过激光频率 改变 示波器的锯齿波扫描电压,对激光允许通过的频率作周期性的扫描
激光器腔长越大,相 邻纵模的频率间隔 越小,同样的荧光 谱线线宽内可以容 纳的纵模数越多。
激光谐振腔内低阶纵模分布示意图
激光纵模分布示意图
横模-横向X-Y面内的稳定场分布
激光的模式用符号: TEMmnq
q为纵模的序数(纵向驻波波节数),m,n (p,l)为横模的序数。 对于方形镜,M表示X方向的节线数, N表示Y方向的节线数; 对于圆形 镜, p 表示径向节线数,即暗环数,l表示角向节线数,即暗直径数
基模(横向单模): m=n=0,
其它的横模称为高阶 横模
放电毛细管反馈产生衍射
方形反射镜和圆形反射镜的横模图形
m n
c 2nL
1
(m
n ) arccos(1
L )(1 R1
L R2
)
1 2
方形反射镜的横模图形
(a) TEM00
q
c
q
Байду номын сангаас
q c 2nL
纵模频率间隔
q1
c 2nL
腔的纵模在频率尺度上是等距离排列的
激光的纵模(轴模):由整数q所表征的腔内纵向稳定场分布 整数q称为纵模的序数,驻波系统在腔的轴线上零场强度的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模式分析
一.氦-氖(He-Ne)激光器简介
氦氖激光器(或He-Ne激光器)由光学谐振腔(输出镜与全反镜)、工作物质(密封在玻璃管里的氦气、氖气)、激励系统(激光电源)构成。
二电极通过毛细管放电激励激光工作物质,在氖原子的一对能级间造成集居数反转,产生受激辐射。
由于谐振腔的作用,使受激辐射在腔内来回反射,多次通过激活介质而不断加强。
如果单程增益大于单程损耗,即满足激光振荡的阈值条件时,则有稳定的激光输出。
内腔式激光器的腔镜封装在激光管两端。
二.氦-氖(He-Ne)激光器的工作原理
氦氖激光器的激光放电管内的气体在涌有一定高的电压及电流(在电场作用下气体放电),放电管中的电子就会由负极以高速向正极运动。
在运动中与工作物质内的氦原子进行碰撞,电子的能量传给原子,促使原子的能量提高,基态原子跃迁到高能级的激发态。
这时如有基态氖原子与两能级上的氦原子相碰,氦原子的能量传递给氖原子,并从基态跃迁到激发的能级状态,而氦原子回到了基态上。
因为放电管上所加的电压,电流连续不断供给,原子不断地发生碰撞。
这就产生了激光必须具备的基本条件。
在发生受激辐射时,分别发出波长3.39μm,632.8nm,1.53μm三种激光,而这三种激光中除632.8nm为可见光中的红外光外,另二种是红外区的辐射光。
因反射镜的反射率不同,只输出一种较长的光波632.8nm的激光。
三.He-Ne激光器结构及谐振腔
He-Ne激光器的结构形式很多,但都是由激光管和激光电源组成。
激光管由放电管、电极和光学谐振腔组成。
放电管是氦一氖激光器的心脏,它是产生激光的地方。
放电管通常由毛细管和贮气室构成。
放电管中充入一定比例的氦(He)、氖(Ne)气体,当电极加上高电压后,毛细管中的气体开始放电使氖原子受激,产生粒子数反转。
贮气室与毛细管相连,这里不发生气体放电,它的作用是补偿因慢漏气及管内元件放气或吸附气体造成He,Ne气体比例及总气压发生的变化,延长器件的寿命。
放电管一般是用GG17玻璃制成。
输出功率和波长要求稳定性好的器件可用热胀系数小的石英玻璃制作。
He-Ne激光管的阳极一般用钨棒制成,阴极多用电子发射率高和溅射率小的铝及其合金制成。
为了增加电子发射面积和减小阴极溅射,一般都把阴极做成圆筒状,然后用钨棒引到管外。
He-Ne激光器由于增益低,谐振腔一般用平凹腔,平面镜为输出端,透过率约1%~2%,凹面镜为全反射镜。
He-Ne激光管的结构形式是多种多样的,按谐振腔与放电管的放置方式不同可分内腔式、外腔式和半内腔式。
四.氦-氖(He-Ne)激光器的速率方程
如图所示,在这四种能级系统中,E2并不是激光上能级,最高工作能级E3是激光上能级。
泵浦源将工作原子从E0基态能级抽运到E3激光上能级,E3的寿命长,为亚稳态。
同样,在亚稳态E3于激发态E2激光下能级之间较易实现粒子数反转。
通过激光辐射跃迁到达E2激光下能级的粒子数需要经过E1下泻能级才能回到E0基态,才能完成产生激光过程的循环。
五.He—Ne激光器的激发过程
第一是共振转移。
第二是电子直接碰撞激发。
气体放电过程中,基态Ne原子与具有一定动能的电子进行非弹性碰撞,直接被激发到2S和3S态,与共振转移相比,这种过程激发的速率要小得多。
第三是串级跃迁,Ne与电子碰撞被激发到更高能态,然后再跃迁到2S和3S态,与前述两过程相比,此过程贡献最小。
六.He—Ne激光器的输出特性
(1)谱线竞争: He-Ne激光器三条强的激光谱线:0.6328 nm ,1.15 um ,3.39 um 中哪一条谱线起振完全取决于谐振腔介质膜反射镜的波长选择。
(2)输出功率特性:
①He-Ne激光器的放电电流对输出功率影响很大。
②He-Ne激光器存在着最佳混合比和最佳充气总压强,即存在最佳充气条件。
③若放电毛细管的直径为d,充气压强为p,则存在一个使输出功率最大的最佳pd值。
共焦球面干涉仪基本原理
共焦球面干涉仪是一种分辨率很高的光谱仪,可用于高精度光谱分析、滤波器和选频器等。
它主要由两片曲率半径相等的反射镜、一个压电陶瓷和一台锯齿波驱动器组成。
这两片反射镜相对放置,间距L等于反射镜的半径R,从而构成共焦球面谐振腔;其中一面反射镜固定在压电陶瓷上。
被检测光束沿着谐振腔的光轴方向入射到谐振腔内,在此腔内往返传播多次;每次被反射时,都有一小部分光经过反射镜透射而逸出谐振腔;多次逸出的光发生多光干涉;只有波长满足kλ=4nL(k为整数)的激光从谐振腔出射的多束光才能发生相长干涉,即透过此谐振腔,在光电二极管上形成大的电信号;改变加在压电陶瓷上的电压,可改变压电陶瓷的
长度,从而可以改变谐振腔的腔长,从而得使得被测光束中的每一个不同频率的光先后透过干涉仪,继而得到被测光束的光谱。
共焦球面干涉仪操作说明产品组成:
共焦球面扫描干涉仪谐振腔、锯齿波驱动器、光电接收放大器
使用方法:
1.按二中所说的方法安装好锯齿波驱动器、干涉仪腔、光电接收器和示波器。
2. 打开示波器的电源,使其屏幕上出现扫描线。
3. 打开锯齿波驱动器。
此时示波器上应出现锯齿波波形(向左右旋转面板上的频率、前后沿、幅度和直流偏置等4个旋钮,使它们处于所需位置)
4. 光路调试:
●开启He-Ne激光器,先使激光束从光阑小孔通过,调整扫描干涉仪上下左右位置,使光束正入射孔中心,在屏上可观察到有一大一小的两个反射光斑,使小光斑回到光阑小孔正上方(注意谐振腔的方位,避免对激光器的反馈效应),小孔位于大光斑中心,这时表明入射光束和扫描干涉仪的光轴基本重合。
●此时示波器上应出现被测光束的光谱,观察示波器上展现的频谱图,细调干涉仪的位置和方位,使谱线尽量强,同时需要不断微调光电接收器位置,使其总处于最佳接收位置.
●细调入射光和干涉仪的相对方向和位置,使在示波器上看到的谱线最细(见附图),此时可以进行测
量。
5. 使用后关闭He-Ne激光器、锯齿波驱动器、示波器即可。
实验装置图。