运筹学试题10无答案

合集下载

运筹学考试试题

运筹学考试试题

运筹学考试试题一、选择题(每题2分,共10分)1. 线性规划的标准形式中,目标函数的系数应为:A. 正数B. 负数C. 任意非零数D. 零2. 在单纯形法中,如果某个非基变量的检验数大于零,则:A. 该变量不能进入基B. 该变量必须进入基C. 该变量的值可以增加D. 该变量的值可以减少3. 下列哪项不是运输问题的特殊矩阵?A. 平衡矩阵B. V型矩阵C. U型矩阵D. 散布矩阵4. 对于一个确定的线性规划问题,下列哪项是正确的?A. 只有一个最优解B. 有多个最优解C. 可能没有可行解D. 所有选项都是正确的5. 在动态规划中,状态转移方程的作用是:A. 确定初始状态B. 确定最终状态C. 确定中间状态D. 确定最优解二、简答题(每题5分,共20分)1. 简述单纯形法的基本步骤。

2. 解释什么是灵敏度分析,并说明其在运筹学中的应用。

3. 什么是网络流问题?请举例说明其在实际中的应用。

4. 描述动态规划的基本原理及其与分阶段决策过程的关系。

三、计算题(每题10分,共30分)1. 给定如下线性规划问题,请找出其最优解,并计算目标函数的最小值。

Maximize Z = 3x1 + 2x2Subject tox1 + 2x2 ≤ 103x1 + x2 ≤ 15x1, x2 ≥ 02. 考虑一个有三个仓库(A、B、C)和三个市场(D、E、F)的运输问题。

运输成本矩阵如下:| D E F ||--|--|--|A | 2 3 4 || B | 1 2 3 || C | 5 6 7 |每个仓库的供应量和每个市场的需求量如下:Supply/Demand: A: 10, B: 8, C: 5, D: 8, E: 10, F: 7使用北街角规则找出初始可行解。

3. 一个公司想要在三个城市(城市1、城市2、城市3)之间运输货物。

运输成本和需求量如下表所示:| 城市1 城市2 城市3 ||--|--|--|| 2 3 5 || 1 2 4 || 3 4 6 |需求量:城市1: 4, 城市2: 3, 城市3: 2请使用匈牙利算法解决此问题。

运筹学试题

运筹学试题

运筹学试题Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998运筹学试题一、填空题(本大题共8小题,每空2分,共20分)1.线性规划闯题中,如果在约束条件中出现等式约束,我们通常用增加___的方法来产生初始可行基。

2.线性规划模型有三种参数,其名称分别为价值系数、___和___。

3.原问题的第1个约束方程是“=”型,则对偶问题相应的变量是___变量。

4.求最小生成树问题,常用的方法有:避圈法和 ___。

5.排队模型M/M/2中的M,M,2分别表示到达时间为___分布,服务时间服从负指数分布和服务台数为2。

6.如果有两个以上的决策自然条件,但决策人无法估计各自然状态出现的概率,那么这种决策类型称为____型决策。

7.在风险型决策问题中,我们一般采用___来反映每个人对待风险的态度。

8.目标规划总是求目标函数的___信,且目标函数中没有线性规划中的价值系数,而是在各偏差变量前加上级别不同的____。

二、单项选择题(本大题共l0小题,每小题3分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

多选无分。

9.使用人工变量法求解极大化线性规划问题时,当所有的检验数在基变量中仍含有非零的人工变量,表明该线性规划问题【】A.有唯一的最优解 B.有无穷多最优解C.为无界解 D.无可行解10.对偶单纯形法解最大化线性规划问题时,每次迭代要求单纯形表中【】A.b列元素不小于零 B.检验数都大于零C.检验数都不小于零 D.检验数都不大于零11.已知某个含10个结点的树图,其中9个结点的次为1,1,3,1,1,1,3,1,3,则另一个结点的次为【】A.3 B.2C.1 D.以上三种情况均有可能12.如果要使目标规划实际实现值不超过目标值。

则相应的偏离变量应满足【】13.在运输方案中出现退化现象,是指数字格的数目【】A.等于 m+n B.等于m+n-1C.小于m+n-1 D.大于m+n-114.关于矩阵对策,下列说法错误的是【】A.矩阵对策的解可以不是唯一的C.矩阵对策中,当局势达到均衡时,任何一方单方面改变自己的策略,都将意味着自己更少的赢得和更大的损失D.矩阵对策的对策值,相当于进行若干次对策后,局中人I的平均赢得或局中人Ⅱ的平均损失值【】A.2 8.—l C.—3 D.116.关于线性规划的原问题和对偶问题,下列说法正确的是【】A.若原问题为元界解,则对偶问题也为无界解B.若原问题无可行解,其对偶问题具有无界解或无可行解c.若原问题存在可行解,其对偶问题必存在可行解D.若原问题存在可行解,其对偶问题无可行解17.下列叙述不属于解决风险决策问题的基本原则的是【】A.最大可能原则 B.渴望水平原则C.最大最小原则 D.期望值最大原则18.下列说法正确的是【】A.线性规划问题的基本解对应可行域的顶点也必是该问题的可行解D.单纯形法解标准的线性规划问题时,按最小比值原则确定换出基变量是为了保证迭代计算后的解仍为基本可行解三、多项选择题(本大题共5小题,每小题2分,共l0分)在每小题列出的四个备选项中至少有两个是符合题目要求的,请将其代码填写在题后的括号内。

《运筹学》试题及答案大全

《运筹学》试题及答案大全

《运筹学》试题及参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为可行解。

2、在线性规划问题中,图解法适合用于处理变量为两个的线性规划问题。

3、求解不平衡的运输问题的基本思想是设立虚供地或虚需求点,化为供求平衡的标准形式。

4、在图论中,称无圈的连通图为树。

5、运输问题中求初始基本可行解的方法通常有最小费用法、西北角法两种方法。

二、(每小题5分,共10分)用图解法求解下列线性规划问题:1)max z =6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x ,解:此题在“《运筹学》复习参考资料.doc ”中已有,不再重复。

2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:可行解域为abcda ,最优解为b 点。

⑴⑵⑶⑷⑸⑹、⑺由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫⎝⎛21x x =(11,0)T∴min z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:AB C 甲94370乙46101203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解。

(10分)解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x ,2)用单纯形法求最优解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =70x 1+120x 2+0x 3+0x 4+0x 5s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,03001032006436049521421321j x x x x x x x x x x j 列表计算如下:四、(10分)用大M 法或对偶单纯形法求解如下线性规划模型:min z =5x 1+2x 2+4x 3⎪⎩⎪⎨⎧≥≥++≥++0,,10536423321321321x x x x x x x x x 解:用大M 法,先化为等效的标准模型:max z /=-5x 1-2x 2-4x 3s.t.⎪⎩⎪⎨⎧=≥=-++=-++5,...,2,1,010********214321j y x x x x x x x x j增加人工变量x 6、x 7,得到:max z /=-5x 1-2x 2-4x 3-M x 6-M x 7s.t⎪⎩⎪⎨⎧=≥=+-++=+-++7,...,2,1,010*********2164321j x x x x x x x x x x x j大M 法单纯形表求解过程如下:五、(15分)给定下列运输问题:(表中数据为产地A i 到销地B j 的单位运费)B 1B 2B 3B 4s iA 1A 2A 312348765910119108015d j82212181)用最小费用法求初始运输方案,并写出相应的总运费;(5分)2)用1)得到的基本可行解,继续迭代求该问题的最优解。

运筹学期末试题

运筹学期末试题

《运筹学》试题样卷(一)一、判断题(共计10分,每小题1分,对的打√,错的打X )1. 无孤立点的图一定是连通图。

2. 对于线性规划的原问题和其对偶问题,若其中一个有最优解, 另一个也一定有最优解。

3. 如果一个线性规划问题有可行解,那么它必有最优解。

4.对偶问题的对偶问题一定是原问题。

5.用单纯形法求解标准形式(求最小值)的线性规划问题时,与0>j σ对应的变量都可以被选作换入变量。

6.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷 多个最优解。

7. 度为0的点称为悬挂点。

8. 表上作业法实质上就是求解运输问题的单纯形法。

9. 一个图G 是树的充分必要条件是边数最少的无孤立点的图。

二、建立下面问题的线性规划模型(8分)某农场有100公顷土地及15000元资金可用于发展生产。

农场劳动力情况为秋冬季3500人日;春夏季4000人日。

如劳动力本身用不了时可外出打工,春秋季收入为25元 / 人日,秋冬季收入为20元 / 人日。

该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。

种作物时不需要专门投资,而饲养每头奶牛需投资800元,每只鸡投资3元。

养奶牛时每头需拨出1.5公顷土地种饲料,并占用人工秋冬季为100人日,春夏季为50人日,年净收入900元 / 每头奶牛。

养鸡时不占用土地,需人工为每只鸡秋冬季0.6人日,春夏季为0.3人日,年净收入2元 / 每只鸡。

农场现有鸡舍允许最多养1500只鸡,牛栏允许最多养200头。

三种作物每年需要的人工及收入情况如下表所示:试决定该农场的经营方案,使年净收入为最大。

三、已知下表为求解某目标函数为极大化线性规划问题的最终单纯形表,表中54,x x 为(1)写出原线性规划问题;(4分) (2)写出原问题的对偶问题;(3分)(3)直接由上表写出对偶问题的最优解。

(1分) 四、用单纯形法解下列线性规划问题(16分)3212max x x x Z +-=s. t. 3 x 1 + x 2 + x 3 ≤ 60x 1- x 2 +2 x 3 ≤ 10 x 1+ x 2- x 3 ≤ 20x 1, x 2 , x 3 ≥0五、求解下面运输问题。

运筹学期末考试试题

运筹学期末考试试题

运筹学期末考试试题一、选择题(每题2分,共20分)1. 以下哪项不是线性规划问题的基本特征?A. 线性目标函数B. 线性约束条件C. 非线性约束条件D. 可行域2. 单纯形法中,如果某个基解的系数矩阵的某一列的所有元素都是负数,这意味着什么?A. 该基解是最优解B. 该基解不可行C. 该基解是退化解D. 该基解是可行解但不是最优解3. 在网络流问题中,若某条路径的流量超过了其容量限制,这将导致:A. 问题无解B. 问题有无穷多解C. 问题有唯一解D. 问题有多个可行解4. 动态规划用于解决的问题通常具有以下哪种特性?A. 线性性B. 递归性C. 非线性性D. 随机性5. 以下哪个算法不是用于解决整数规划问题的?A. 分支定界法B. 割平面法C. 单纯形法D. 贪心算法二、简答题(每题10分,共30分)1. 解释什么是敏感性分析,并简述其在运筹学中的应用。

2. 描述网络流问题中的最小费用流问题,并给出一个简单的实例。

3. 简述如何使用动态规划解决资源分配问题。

三、计算题(每题25分,共50分)1. 给定以下线性规划问题,求解其最优解:\[ \text{Maximize } Z = 3x_1 + 2x_2 \]\[ \text{Subject to: } \]\[ 2x_1 + x_2 \leq 10 \]\[ x_1 + 3x_2 \leq 15 \]\[ x_1, x_2 \geq 0 \]2. 考虑一个生产问题,工厂需要生产两种产品A和B。

产品A的生产需要机器X工作2小时,机器Y工作1小时,利润为每单位500元。

产品B的生产需要机器X工作1小时,机器Y工作3小时,利润为每单位300元。

机器X每天最多工作8小时,机器Y每天最多工作12小时。

如何安排生产计划以最大化利润?四、案例分析题(共30分)1. 某公司计划在不同地区开设新的销售点,需要考虑运输成本、市场需求和竞争对手的情况。

请使用运筹学方法分析该公司应该如何决定销售点的位置和数量,以实现成本最小化和市场覆盖最大化。

运筹学试题及详细答案

运筹学试题及详细答案

运筹学试题及详细答案
一、选择题
1、Nash均衡的定义是:
A、每位参与者的行为均达到最佳利益的状态
B、每位参与者的行为均达到得到最大胜利的状态
C、每位参与者的行为均达到合作的最佳状态
D、每位参与者的行为均达到合作的最大胜利的状态
答案:A
2、决策就是参与者用来实现选择的:
A、计划
B、机构
C、程序
D、工具
答案:D
3、运筹学可以分为:
A、组合数学
B、运动学
C、博弈论
D、概率论
答案:A、B、C、D
4、非线性规划有:
A、分支定界法
B、梯度下降法
C、基于格法的解法
D、对偶法
答案:A、B、C、D
5、关于迭代法,下列表述正确的有:
A、可以求解非凸优化问题
B、单次迭代过程简单
C、收敛性较好
D、用于非线性规划
答案:A、B、C
二、填空题:
1、博弈论是研究__参与者之间的__的科学。

答案:多,竞争。

《运筹学》试题

《运筹学》试题一、名词解释(20分)对偶可行基影子价格灵敏度分析平衡运输问题不平衡运输问题纯整数规划0—1规划问题混合整数规划网络最大流问题二、选择题(20分)1、我们可以通过()来验证模型最优解。

A观察B应用C实验D调查2、建立运筹学模型的过程不包括()阶段。

A观察环境B数据分析C模型设计D模型实施3、建立模型的一个基本理由是去揭晓那些重要的或有关的()A数量B变量 C 约束条件 D 目标函数4、模型中要求变量取值()A可正B可负C非正D非负5、运筹学研究和解决问题的效果具有()A连续性 B 整体性 C 阶段性 D 再生性6、如果线性规划问题有可行解,那么该解必须满足()A所有约束条件 B 变量取值非负 C 所有等式要求 D 所有不等式要求7、如果线性规划问题存在目标函数为有限值的最优解,求解时只需在()集合中进行搜索即可得到最优解。

A基 B 基本解 C 基可行解 D 可行域8、线性规划问题是针对()求极值问题.A约束B决策变量 C 秩D目标函数9、如果第K个约束条件是“≤”情形,若化为标准形式,需要()A左边增加一个变量B右边增加一个变量C左边减去一个变量D右边减去一个变量10、若某个bk≤0, 化为标准形式时原不等式()A不变 B 左端乘负1 C 右端乘负1 D 两边乘负1三、填空题(20分)1、线性规划问题具有对偶性,即对于任何一个求最大值的线性规划问题,都有一个求()的线性规划问题与之对应,反之亦然。

2、在一对对偶问题中,原问题的约束条件的右端常数是对偶问题的()。

3、如果原问题的某个变量无约束,则对偶问题中对应的约束条件应为()。

4、对偶问题的对偶问题是()。

5、若原问题可行,但目标函数无界,则对偶问题()。

6、在某线性规划问题中,已知某资源的影子价格为Y1,相应的约束常数b1,在灵敏度容许变动范围内发生Δb1的变化,则新的最优解对应的最优目标函数值是()(设原最优目标函数值为Z﹡)7、若某约束常数bi的变化超过其容许变动范围,为求得新的最优解,需在原最优单纯形表的基础上运用()求解。

运筹学考试练习题精选全文完整版

可编辑修改精选全文完整版运筹学自测题第一套题一、判断题(T-正确,F-错误)1.图解法同单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的。

2.若线性规划问题存在最优解,则最优解一定对应可行域边界上的一个点。

3.一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。

4.线性规划问题的可行解如为最优解,则该可行解一定是基可行解。

5.任何线性规划问题存在并具有唯一的对偶问题。

6.运输问题是一种特殊的线性规划模型,因而求解结果也可能出现下列四种情况之一:有唯一最优解,有无穷多最优解,无界解,无可行解。

7.整数规划的目标函数值一般优于其相应的线性规划问题的解的目标函数值。

8.分枝定界法在需要分枝时必须满足:分枝后的各子问题必须容易求解;各子问题解的集合必须包含原问题的解。

9.整数割平面法每次只割去问题的部分非整数解。

10.线性规划问题是目标规划问题的一种特殊形式。

11.目标规划模型中,应同时包含系统约束(绝对约束)与目标约束。

12.图论中的图不仅反映了研究对象之间的关系,而且是真实图形的写照,因而对图中点与点的相对位置、点与点连线的长短曲直等都要严格注意。

13.网络图中代表两点之间的距离长短的数字,其含义也可以是时间或费用。

14.在制定网络计划时,将一个任务分解成若干个独立的工作单元,称为任务的分解。

二、选择题1.线性规划数学模型的特征是:________都是线性的。

A. 目标函数和决策变量B. 决策变量和约束条件C. 目标函数和约束条件D. 目标函数、约束条件及决策变量2.关于剩余变量,下列说法错误的是:A. 为将某个大于等于约束化为等式约束,在该约束中减去一个剩余变量B. 剩余变量在实际问题中表示超过收益的部分C. 剩余变量在目标函数中的系数为零D. 在用单纯形法求解线性规划问题时,剩余变量一般作为初始基变量。

A. 任意m 个列向量组成的矩阵B. 任意m 阶子矩阵C. 前m 个列向量组成的矩阵D. 任意m 个线性无关的列向量组成的矩阵A. mB. n-mC. 至少mD. 至少n-m5.如果是求极大值的线性规划问题,单纯形法的每次迭代意味着其目标函数值将( A)必然增加;(B)必然减少;(C)可能增加;(D)可能减少6.单纯形法求解线性规划问题时,如何判断问题存在无界解?(A)全部变量的检验数非负;(B)某个检验数为正的非基变量,其系数列向量不存在正分量;(C)最终的单纯形表中含有人工变量,且其取值不为零;(D)非基变量全部非正,且某个非基变量的检验数为零。

历年运筹学考研试题及答案

历年运筹学考研试题及答案试题:一、单项选择题(每题2分,共10分)1. 线性规划问题的标准形式是:A. 所有变量非负B. 目标函数为最小化C. 约束条件为等式D. 所有变量非负,约束条件为等式和不等式2. 在单纯形法中,如果某个非基变量的检验数为负,则:A. 该变量不能进入基B. 该变量可以进入基C. 该变量必须进入基D. 以上都不对3. 对于运输问题,当供应量等于需求量时,我们称其为:A. 平衡运输问题B. 不平衡运输问题C. 线性运输问题D. 非线性运输问题4. 在动态规划中,最优子结构性质意味着:A. 问题的最优解包含子问题的最优解B. 问题的所有解都包含子问题的最优解C. 问题的一个解包含子问题的最优解D. 以上都不对5. 网络最大流问题中,Ford-Fulkerson算法的核心思想是:A. 寻找增广路径B. 寻找最短路径C. 寻找最长路径D. 寻找最小割二、简答题(每题10分,共20分)1. 简述线性规划的几何意义及其在实际问题中的应用。

2. 解释什么是灵敏度分析,并说明其在解决线性规划问题中的作用。

三、计算题(每题15分,共30分)1. 假设有以下线性规划问题:Max Z = 3x + 4ySubject to:2x + y ≤ 6x + 2y ≤ 7x, y ≥ 0请用图解法找到该问题的最优解。

2. 给定一个网络流问题,网络中有三个节点A, B, C,以及三条边(A,B), (B, C), (A, C),每条边的容量分别为10, 5, 8。

要求从节点A到节点C的最大流量。

使用Ford-Fulkerson算法求解。

四、论述题(每题20分,共20分)1. 论述动态规划与分治法在解决组合优化问题时的异同,并给出一个适合使用动态规划法解决的实际问题例子。

答案:一、单项选择题1. D2. C3. A4. A5. A二、简答题1. 线性规划的几何意义是在n维空间中寻找一个多边形的顶点,这个多边形由约束条件定义,而目标函数则定义了一个目标方向。

运筹学试题及答案

运筹学试题及答案大家不妨来看看小编推送的运筹学试题及答案,希望给大家带来帮助!《运筹学》复习试题及答案(一)一、填空题1、线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。

2、图解法适用于含有两个变量的线性规划问题。

3、线性规划问题的可行解是指满足所有约束条件的解。

4、在线性规划问题的基本解中,所有的非基变量等于零。

5、在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6、若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。

7、线性规划问题有可行解,则必有基可行解。

8、如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。

9、满足非负条件的基本解称为基本可行解。

10、在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。

11、将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。

12、线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。

13、线性规划问题可分为目标函数求极大值和极小_值两类。

14、线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。

15、线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解16、在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解。

17、求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。

18、19、如果某个变量Xj为自由变量,则应引进两个非负变量Xj , Xj,同时令Xj=Xj- Xj。

20、表达线性规划的简式中目标函数为ijij21、、(2、1 P5))线性规划一般表达式中,aij表示该元素位置在二、单选题1、如果一个线性规划问题有n个变量,m个约束方程(m<n),系数矩阵的数为m,则基可行解的个数最为_C_。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《运筹学》试题10
一、(10分)现有四项工作由四个人去完成,每人只做一件工作,四人做这四件工作各需如下时间,问如何安排才能使总时间最小?
⎪⎪⎪⎪⎪⎭
⎫ ⎝
⎛34
23432153422231 二.(15分)(1)叙述(MP )问题的迭代法的一般步骤;
(2)写出可行下降方向的代数条件,并证明; (3)可行下降方向代数条件的几何解释。

三、(15分)某公司打算在三个不同的地区设置5个销售点,根据市场预测,在不同地区设置不同数量的销售点,每月可得的利润如下表,试问在各地区应如何设置销售点,才能使每月获得的总利润最大?其最大利润为多少?
四、(20分) 已知运输问题的产销平衡表与单位运价表,如下表
(1)用表上作业法求最优运输方案(初始方案由最小元素法得到)
(2)从A 3至B 1 的单位运价c 31在什么范围变化时,上述最优调运方案不变;
(3)从A 2至B 4 的单位运价c 24变为何值时,将有无限多最优调运方案。

除上表外,再写出其他一个最优调运方案。

五.(30分)已知线性规划问题: 44332118max x c x c x x Z +++-=
⎪⎩

⎨⎧=≥+≤--+-≤+++)4,3,2,1(05654315
3243214321j x x x x x x x x x st
j λ
求:(1)以21,x x 为基变量列出单纯形表(当)1时=λ。

(2)以21,x x 为最优基,确定问题最优解不变时43,c c 的变化范围。

(3)保持最优基不变时的λ的变化范围。

(4)增加一个新变量,其约束条件中系数向量为T
)3,2(,目标函数中系数为k c ,求问题最优解不变时的k c 取值范围。

六.(10分)判断如下容量网络上的可行流是否为最大流,并说明理由。

弧上数字表示(C ij ,f ij )
1v 1,1 3v 5,3
3,2 3,2 5v
2,0 6v
4,4 3,1 3,3 2v 2,2 4v。

相关文档
最新文档