平行四边形专题训练

合集下载

人教【数学】培优平行四边形辅导专题训练

人教【数学】培优平行四边形辅导专题训练

一、平行四边形真题与模拟题分类汇编(难题易错题)1.问题发现:(1)如图①,点P 为平行四边形ABCD 内一点,请过点P 画一条直线l ,使其同时平分平行四边形ABCD 的面积和周长.问题探究:(2)如图②,在平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别在x 轴、y 轴正半轴上,点B 坐标为(8,6).已知点(6,7)P 为矩形外一点,请过点P 画一条同时平分矩形OABC 面积和周长的直线l ,说明理由并求出直线l ,说明理由并求出直线l 被矩形ABCD 截得线段的长度.问题解决:(3)如图③,在平面直角坐标系xOy 中,矩形OABCD 的边OA 、OD 分别在x 轴、y 轴正半轴上,DC x ∥轴,AB y ∥轴,且8OA OD ==,2AB CD ==,点(1052,1052)P --为五边形内一点.请问:是否存在过点P 的直线l ,分别与边OA 与BC 交于点E 、F ,且同时平分五边形OABCD 的面积和周长?若存在,请求出点E 和点F 的坐标:若不存在,请说明理由.【答案】(1)作图见解析;(2)25y x =-,353)(0,0)E ,(5,5)F .【解析】试题分析:(1)连接AC 、BD 交于点O ,作直线PO ,直线PO 将平行四边形ABCD 的面积和周长分别相等的两部分.(2)连接AC ,BD 交于点O ',过O '、P 点的直线将矩形ABCD 的面积和周长分为分别相等的两部分.(3)存在,直线y x =平分五边形OABCD 面积、周长.试题解析:(1)作图如下:(2)∵(6,7)P ,(4,3)O ',∴设:6PO y kx =+',67{43k b k b +=+=,2{5k b ==-, ∴25y x =-,交x 轴于5,02N ⎛⎫ ⎪⎝⎭, 交BC 于11,62M ⎛⎫ ⎪⎝⎭, 2211563522MN ⎛⎫=+-= ⎪⎝⎭.(3)存在,直线y x =平分五边形OABCD 面积、周长.∵(1052,102)P --在直线y x =上,∴连OP 交OA 、BC 于点E 、F ,设:BC y kx b =+,(8,2)(2,8)B C ,82{28k b k +=+=,1{10k b =-=, ∴直线:10BC y x =-+,联立10{y x y x =-+=,得55x y =⎧⎨=⎩, ∴(0,0)E ,(5,5)F .2.如果两个三角形的两条边对应相等,夹角互补,那么这两个三角形叫做互补三角形,如图2,分别以△ABC的边AB、AC为边向外作正方形ABDE和ACGF,则图中的两个三角形就是互补三角形.(1)用尺规将图1中的△ABC分割成两个互补三角形;(2)证明图2中的△ABC分割成两个互补三角形;(3)如图3,在图2的基础上再以BC为边向外作正方形BCHI.①已知三个正方形面积分别是17、13、10,在如图4的网格中(网格中每个小正方形的边长为1)画出边长为、、的三角形,并计算图3中六边形DEFGHI的面积.②若△ABC的面积为2,求以EF、DI、HG的长为边的三角形面积.【答案】(1)作图见解析(2)证明见解析(3)①62;②6【解析】试题分析:(1)作BC边上的中线AD即可.(2)根据互补三角形的定义证明即可.(3)①画出图形后,利用割补法求面积即可.②平移△CHG到AMF,连接EM,IM,则AM=CH=BI,只要证明S△EFM=3S△ABC即可.试题解析:(1)如图1中,作BC边上的中线AD,△ABD和△ADC是互补三角形.(2)如图2中,延长FA到点H,使得AH=AF,连接EH.∵四边形ABDE,四边形ACGF是正方形,∴AB=AE,AF=AC,∠BAE=∠CAF=90°,∴∠EAF+∠BAC=180°,∴△AEF和△ABC是两个互补三角形.∵∠EAH+∠HAB=∠BAC+∠HAB=90°,∴∠EAH=∠BAC,∵AF=AC,∴AH=AB,在△AEH和△ABC中,∴△AEH≌△ABC,∴S△AEF=S△AEH=S△ABC.(3)①边长为、、的三角形如图4所示.∵S△ABC=3×4﹣2﹣1.5﹣3=5.5,∴S六边形=17+13+10+4×5.5=62.②如图3中,平移△CHG到AMF,连接EM,IM,则AM=CH=BI,设∠ABC=x,∵AM∥CH,CH⊥BC,∴AM⊥BC,∴∠EAM=90°+90°﹣x=180°﹣x,∵∠DBI=360°﹣90°﹣90°﹣x=180°﹣x,∴∠EAM=∠DBI,∵AE=BD,∴△AEM≌△DBI,∵在△DBI和△ABC中,DB=AB,BI=BC,∠DBI+∠ABC=180°,∴△DBI和△ABC是互补三角形,∴S△AEM=S△AEF=S△AFM=2,∴S△EFM=3S△ABC=6.考点:1、作图﹣应用与设计,2、三角形面积3.如图,ABCD是正方形,点G是BC上的任意一点,DE⊥AG于E,BF∥DE,交AG于F.求证:AF=BF+EF.【答案】详见解析.【解析】【分析】由四边形ABCD为正方形,可得出∠BAD为90°,AB=AD,进而得到∠BAG与∠EAD互余,又DE垂直于AG,得到∠EAD与∠ADE互余,根据同角的余角相等可得出∠ADE=∠BAF,利用AAS可得出△ABF≌△DAE;利用全等三角的对应边相等可得出BF=AE,由AF-AE=EF,等量代换可得证.【详解】∵ABCD是正方形,∴AD=AB,∠BAD=90°∵DE⊥AG,∴∠DEG=∠AED=90°∴∠ADE+∠DAE=90°又∵∠BAF+∠DAE=∠BAD=90°,∴∠ADE=∠BAF .∵BF ∥DE ,∴∠AFB=∠DEG=∠AED .在△ABF 与△DAE 中,AFB AED ADE BAF AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABF ≌△DAE (AAS ).∴BF=AE .∵AF=AE+EF ,∴AF=BF+EF .点睛:此题考查了正方形的性质,全等三角形的判定与性质,矩形的判定与性质,熟练掌握判定与性质是解本题的关键.4.(1)如图①,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点O 作直线EF ⊥BD ,交AD 于点E ,交BC 于点F ,连接BE 、DF ,且BE 平分∠ABD .①求证:四边形BFDE 是菱形;②直接写出∠EBF 的度数;(2)把(1)中菱形BFDE 进行分离研究,如图②,点G 、I 分别在BF 、BE 边上,且BG=BI ,连接GD ,H 为GD 的中点,连接FH 并延长,交ED 于点J ,连接IJ 、IH 、IF 、IG.试探究线段IH 与FH 之间满足的关系,并说明理由;(3)把(1)中矩形ABCD 进行特殊化探究,如图③,当矩形ABCD 满足AB=AD 时,点E 是对角线AC 上一点,连接DE 、EF 、DF ,使△DEF 是等腰直角三角形,DF 交AC 于点G.请直接写出线段AG 、GE 、EC 三者之间满足的数量关系.【答案】(1)①详见解析;②60°.(2)IH 3;(3)EG 2=AG 2+CE 2.【解析】【分析】(1)①由△DOE ≌△BOF ,推出EO =OF ,∵OB =OD ,推出四边形EBFD 是平行四边形,再证明EB =ED 即可.②先证明∠ABD =2∠ADB ,推出∠ADB =30°,延长即可解决问题.(2)IH=3FH .只要证明△IJF 是等边三角形即可.(3)结论:EG 2=AG 2+CE 2.如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,先证明△DEG ≌△DEM ,再证明△ECM 是直角三角形即可解决问题.【详解】(1)①证明:如图1中,∵四边形ABCD 是矩形,∴AD ∥BC ,OB =OD ,∴∠EDO =∠FBO ,在△DOE 和△BOF 中,EDO FBO OD OBEOD BOF ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DOE ≌△BOF ,∴EO =OF ,∵OB =OD ,∴四边形EBFD 是平行四边形,∵EF ⊥BD ,OB =OD ,∴EB =ED ,∴四边形EBFD 是菱形.②∵BE 平分∠ABD ,∴∠ABE =∠EBD ,∵EB =ED ,∴∠EBD =∠EDB ,∴∠ABD =2∠ADB ,∵∠ABD +∠ADB =90°,∴∠ADB =30°,∠ABD =60°,∴∠ABE =∠EBO =∠OBF =30°,∴∠EBF =60°.(2)结论:IH =3FH .理由:如图2中,延长BE 到M ,使得EM =EJ ,连接MJ .∵四边形EBFD 是菱形,∠B =60°,∴EB =BF =ED ,DE ∥BF ,∴∠JDH =∠FGH ,在△DHJ 和△GHF 中,DHG GHF DH GHJDH FGH ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DHJ ≌△GHF ,∴DJ =FG ,JH =HF ,∴EJ =BG =EM =BI ,∴BE =IM =BF ,∵∠MEJ =∠B =60°,∴△MEJ 是等边三角形,∴MJ =EM =NI ,∠M =∠B =60°在△BIF 和△MJI 中,BI MJ B M BF IM ⎧⎪∠∠⎨⎪⎩===,∴△BIF ≌△MJI ,∴IJ =IF ,∠BFI =∠MIJ ,∵HJ =HF ,∴IH ⊥JF ,∵∠BFI +∠BIF =120°,∴∠MIJ +∠BIF =120°,∴∠JIF =60°,∴△JIF 是等边三角形,在Rt △IHF 中,∵∠IHF =90°,∠IFH =60°,∴∠FIH =30°,∴IH=3FH .(3)结论:EG 2=AG 2+CE 2.理由:如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,∵∠FAD +∠DEF =90°,∴AFED 四点共圆,∴∠EDF =∠DAE =45°,∠ADC =90°,∴∠ADF +∠EDC =45°,∵∠ADF =∠CDM ,∴∠CDM +∠CDE =45°=∠EDG ,在△DEM 和△DEG 中,DE DE EDG EDM DG DM ⎧⎪∠∠⎨⎪⎩=== , ∴△DEG ≌△DEM ,∴GE =EM ,∵∠DCM =∠DAG =∠ACD =45°,AG =CM ,∴∠ECM =90°∴EC 2+CM 2=EM 2,∵EG =EM ,AG =CM ,∴GE 2=AG 2+CE 2.【点睛】考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.5.如图,在△ABC 中,∠ACB=90°,∠CAB=30°,以线段AB 为边向外作等边△ABD ,点E 是线段AB 的中点,连接CE 并延长交线段AD 于点F .(1)求证:四边形BCFD 为平行四边形;(2)若AB=6,求平行四边形ADBC 的面积.【答案】(1)见解析;(2)S 平行四边形ADBC =32. 【解析】【分析】 (1)在Rt △ABC 中,E 为AB 的中点,则CE=12AB ,BE=12AB ,得到∠BCE=∠EBC=60°.由△AEF ≌△BEC ,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE =∠D=60度.所以FC ∥BD ,又因为∠BAD=∠ABC=60°,所以AD ∥BC ,即FD//BC ,则四边形BCFD 是平行四边形.(2)在Rt △ABC 中,求出BC ,AC 即可解决问题;【详解】解:(1)证明:在△ABC中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°,在等边△ABD中,∠BAD=60°,∴∠BAD=∠ABC=60°,∵E为AB的中点,∴AE=BE,又∵∠AEF=∠BEC,∴△AEF≌△BEC,在△ABC中,∠ACB=90°,E为AB的中点,∴CE=12AB,BE=12AB,∴CE=AE,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°,又∵△AEF≌△BEC,∴∠AFE=∠BCE=60°,又∵∠D=60°,∴∠AFE=∠D=60°,∴FC∥BD,又∵∠BAD=∠ABC=60°,∴AD∥BC,即FD∥BC,∴四边形BCFD是平行四边形;(2)解:在Rt△ABC中,∵∠BAC=30°,AB=6,∴BC=AF=3,AC=33,∴S平行四边形BCFD=3×33=93,S△ACF=12×3×33=93,S平行四边形ADBC=2732.【点睛】本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.6.如图,在平行四边形ABCD中,AD⊥DB,垂足为点D,将平行四边形ABCD折叠,使点B落在点D的位置,点C落在点G的位置,折痕为EF,EF交对角线BD于点P.(1)连结CG,请判断四边形DBCG的形状,并说明理由;(2)若AE=BD,求∠EDF的度数.【答案】(1)四边形BCGD是矩形,理由详见解析;(2)∠EDF=120°.【解析】【分析】(1)根据平行四边形的性质和折叠性质以及矩形的判定解答即可;(2)根据折叠的性质以及直角三角形的性质和等边三角形的判定与性质解答即可.【详解】解:(1)四边形BCGD是矩形,理由如下,∵四边形ABCD是平行四边形,∴BC∥AD,即BC∥DG,由折叠可知,BC=DG,∴四边形BCGD是平行四边形,∵AD⊥BD,∴∠CBD=90°,∴四边形BCGD是矩形;(2)由折叠可知:EF垂直平分BD,∴BD⊥EF,DP=BP,∵AD⊥BD,∴EF∥AD∥BC,∴AE PD1==BE BP∴AE=BE,∴DE是Rt△ADB斜边上的中线,∴DE=AE=BE,∵AE=BD,∴DE=BD=BE,∴△DBE是等边三角形,∴∠EDB=∠DBE=60°,∵AB∥DC,∴∠DBC=∠DBE=60°,∴∠EDF=120°.【点睛】本题考查了平行四边形的性质,折叠性质,等边三角形的性质和判定,主要考查学生运用定理进行推理和计算的能力,题目综合性比较强,有一定的难度7.如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE,GC.(1)试猜想AE与GC有怎样的关系(直接写出结论即可);(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和CG.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.(3)在(2)中,若E是BC的中点,且BC=2,则C,F两点间的距离为.【答案】(1) AE=CG,AE⊥GC;(2)成立,证明见解析; (3)2.【解析】【分析】(1)观察图形,AE、CG的位置关系可能是垂直,下面着手证明.由于四边形ABCD、DEFG都是正方形,易证得△ADE≌△CDG,则∠1=∠2,由于∠2、∠3互余,所以∠1、∠3互余,由此可得AE⊥GC.(2)题(1)的结论仍然成立,参照(1)题的解题方法,可证△ADE≌△CDG,得∠5=∠4,由于∠4、∠7互余,而∠5、∠6互余,那么∠6=∠7;由图知∠AEB=∠CEH=90°﹣∠6,即∠7+∠CEH=90°,由此得证.(3)如图3中,作CM⊥DG于G,GN⊥CD于N,CH⊥FG于H,则四边形CMGH是矩形,可得CM=GH,CH=GM.想办法求出CH,HF,再利用勾股定理即可解决问题.【详解】(1)AE=CG,AE⊥GC;证明:延长GC交AE于点H,在正方形ABCD与正方形DEFG中,AD=DC,∠ADE=∠CDG=90°,DE=DG,∴△ADE≌△CDG(SAS),∴AE,CG,∠1=∠2∵∠2+∠3=90°,∴∠1+∠3=90°,∴∠AHG=180°﹣(∠1+∠3)=180°﹣90°=90°,∴AE⊥GC.(2)答:成立;证明:延长AE和GC相交于点H,在正方形ABCD和正方形DEFG中,AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90°,∴∠1=∠2=90°﹣∠3;∴△ADE≌△CDG(SAS),∴AE=CG,∠5=∠4;又∵∠5+∠6=90°,∠4+∠7=180°﹣∠DCE=180°﹣90°=90°,∴∠6=∠7,又∵∠6+∠AEB=90°,∠AEB=∠CEH,∴∠CEH+∠7=90°,∴∠EHC=90°,∴AE⊥GC.(3)如图3中,作CM⊥DG于G,GN⊥CD于N,CH⊥FG于H,则四边形CMGH是矩形,可得CM=GH,CH=GM.∵BE=CE=1,AB=CD=2,∴AE=DE=CG═DG=FG5∵DE=DG,∠DCE=∠GND,∠EDC=∠DGN,∴△DCE≌△GND(AAS),∴GCD=2,∵S△DCG=12•CD•NG=12•DG•CM,∴2×25,∴CM=GH45,∴MG=CH22CG CM355,∴FH =FG ﹣FG =5, ∴CF =22FH CH +=22535()()55+=2. 故答案为2.【点睛】 本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.8.如图①,在矩形ABCD 中,点P 从AB 边的中点E 出发,沿着E B C --速运动,速度为每秒2个单位长度,到达点C 后停止运动,点Q 是AD 上的点,10AQ =,设PAQ ∆的面积为y ,点p 运动的时间为t 秒,y 与t 的函数关系如图②所示.(1)图①中AB = ,BC = ,图②中m = .(2)当t =1秒时,试判断以PQ 为直径的圆是否与BC 边相切?请说明理由:(3)点p 在运动过程中,将矩形沿PQ 所在直线折叠,则t 为何值时,折叠后顶点A 的对应点A '落在矩形的一边上.【答案】(1)8,18,20;(2)不相切,证明见解析;(3)t=12、5、173. 【解析】【分析】 (1)由题意得出AB=2BE ,t=2时,BE=2×2=4,求出AB=2BE=8,AE=BE=4,t=11时,2t=22,得出BC=18,当t=0时,点P 在E 处,m=△AEQ 的面积=12AQ×AE=20即可; (2)当t=1时,PE=2,得出AP=AE+PE=6,由勾股定理求出34PQ 为直径的圆的圆心为O',作O'N ⊥BC 于N ,延长NO'交AD 于M ,则MN=AB=8,O'M ∥AB ,MN=AB=8,由三角形中位线定理得出O'M=12AP=3,求出O'N=MN-O'M=5<圆O'的半径,即可得出结论;(3)分三种情况:①当点P 在AB 边上,A'落在BC 边上时,作QF ⊥BC 于F ,则QF=AB=8,BF=AQ=10,由折叠的性质得:PA'=PA ,A'Q=AQ=10,∠PA'Q=∠A=90°,由勾股定理求出22AQ QF '-,得出A'B=BF-A'F=4,在Rt △A'BP 中,BP=4-2t ,PA'=AP=8-(4-2t )=4+2t ,由勾股定理得出方程,解方程即可;②当点P在BC边上,A'落在BC边上时,由折叠的性质得:A'P=AP,证出∠APQ=∠AQP,得出AP=AQ=A'P=10,在Rt△ABP中,由勾股定理求出BP=6,由BP=2t-4,得出2t-4=6,解方程即可;③当点P在BC边上,A'落在CD边上时,由折叠的性质得:A'P=AP,A'Q=AQ=10,在Rt△DQA'中,DQ=AD-AQ=8,由勾股定理求出DA'=6,得出A'C=CD-DA'=2,在Rt△ABP和Rt△A'PC中,BP=2t-4,CP=BC-BP=22-2t,由勾股定理得出方程,解方程即可.【详解】(1)∵点P从AB边的中点E出发,速度为每秒2个单位长度,∴AB=2BE,由图象得:t=2时,BE=2×2=4,∴AB=2BE=8,AE=BE=4,t=11时,2t=22,∴BC=22-4=18,当t=0时,点P在E处,m=△AEQ的面积=12AQ×AE=12×10×4=20;故答案为8,18,20;(2)当t=1秒时,以PQ为直径的圆不与BC边相切,理由如下:当t=1时,PE=2,∴AP=AE+PE=4+2=6,∵四边形ABCD是矩形,∴∠A=90°,∴PQ=2222106234AQ AP+=+=,设以PQ为直径的圆的圆心为O',作O'N⊥BC于N,延长NO'交AD于M,如图1所示:则MN=AB=8,O'M∥AB,MN=AB=8,∵O'为PQ的中点,∴O''M是△APQ的中位线,∴O'M=12AP=3,∴O'N=MN-O'M=534∴以PQ为直径的圆不与BC边相切;(3)分三种情况:①当点P在AB边上,A'落在BC边上时,作QF⊥BC于F,如图2所示:则QF=AB=8,BF=AQ=10,∵四边形ABCD是矩形,∴∠A=∠B=∠BCD=∠D=90°,CD=AB=8,AD=BC=18,由折叠的性质得:PA'=PA,A'Q=AQ=10,∠PA'Q=∠A=90°,∴A'F=22AQ QF'-=6,∴A'B=BF-A'F=4,在Rt△A'BP中,BP=4-2t,PA'=AP=8-(4-2t)=4+2t,由勾股定理得:42+(4-2t)2=(4+2t)2,解得:t=12;②当点P在BC边上,A'落在BC边上时,连接AA',如图3所示:由折叠的性质得:A'P=AP,∴∠APQ'=∠A'PQ,∵AD∥BC,∴∠AQP=∠A'PQ,∴∠APQ=∠AQP,∴AP=AQ=A'P=10,在Rt△ABP中,由勾股定理得:22108-,又∵BP=2t-4,∴2t-4=6,解得:t=5;③当点P在BC边上,A'落在CD边上时,连接AP、A'P,如图4所示:由折叠的性质得:A'P=AP ,A'Q=AQ=10,在Rt △DQA'中,DQ=AD-AQ=8,由勾股定理得:DA'=22108-=6,∴A'C=CD-DA'=2, 在Rt △ABP 和Rt △A'PC 中,BP=2t-4,CP=BC-BP=18-(2t-4)=22-2t ,由勾股定理得:AP 2=82+(2t-4)2,A'P 2=22+(22-2t )2,∴82+(2t-4)2=22+(22-2t )2,解得:t=173; 综上所述,t 为12或5或173时,折叠后顶点A 的对应点A′落在矩形的一边上. 【点睛】 四边形综合题目,考查了矩形的性质、折叠变换的性质、勾股定理、函数图象、直线与圆的位置关系、三角形中位线定理、等腰三角形的判定、以及分类讨论等知识.9.在平面直角坐标系中,O 为原点,点A (﹣6,0)、点C (0,6),若正方形OABC 绕点O 顺时针旋转,得正方形OA′B′C′,记旋转角为α:(1)如图①,当α=45°时,求BC 与A′B′的交点D 的坐标;(2)如图②,当α=60°时,求点B′的坐标;(3)若P 为线段BC′的中点,求AP 长的取值范围(直接写出结果即可).【答案】(1)(62,6)-;(2)(333,333)+;(3)323323AP +.【解析】【分析】(1)当α=45°时,延长OA′经过点B ,在Rt △BA′D 中,∠OBC =45°,A′B =626,可求得BD的长,进而求得CD的长,即可得出点D的坐标;(2)过点C′作x轴垂线MN,交x轴于点M,过点B′作MN的垂线,垂足为N,证明△OMC′≌△C′NB′,可得C′N=OM=33,B′N=C′M=3,即可得出点B′的坐标;(3)连接OB,AC相交于点K,则K是OB的中点,因为P为线段BC′的中点,所以PK=1OC′=3,即点P在以K为圆心,3为半径的圆上运动,即可得出AP长的取值范围.2【详解】解:(1)∵A(﹣6,0)、C(0,6),O(0,0),∴四边形OABC是边长为6的正方形,当α=45°时,如图①,延长OA′经过点B,∵OB=62,OA′=OA=6,∠OBC=45°,∴A′B=626-,∴BD=(626=-,-)×21262∴CD=6﹣(1262-,-)=626∴BC与A′B′的交点D的坐标为(662-,6);(2)如图②,过点C′作x轴垂线MN,交x轴于点M,过点B′作MN的垂线,垂足为N,∵∠OC′B′=90°,∴∠OC′M=90°﹣∠B′C′N=∠C′B′N,∵OC′=B′C′,∠OMC′=∠C′NB′=90°,∴△OMC′≌△C′NB′(AAS),当α=60°时,∵∠A′OC′=90°,OC′=6,∴∠C′OM=30°,∴C′N=OM=33,B′N=C′M=3,∴点B′的坐标为333,333+;(3)如图③,连接OB ,AC 相交于点K ,则K 是OB 的中点,∵P 为线段BC′的中点,∴PK =12OC′=3, ∴P 在以K 为圆心,3为半径的圆上运动,∵AK =32,∴AP 最大值为323+,AP 的最小值为323-,∴AP 长的取值范围为323323AP -+.【点睛】本题考查正方形性质,全等三角形判定与性质,三角形中位线定理.(3)问解题的关键是利用中位线定理得出点P 的轨迹.10.定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.理解:如图①,在△ABC 中,CD 是AB 边上的中线,那么△ACD 和△BCD 是“友好三角形”,并且S △ACD =S △BCD .应用:如图②,在矩形ABCD 中,AB=4,BC=6,点E 在AD 上,点F 在BC 上,AE=BF ,AF 与BE 交于点O .(1)求证:△AOB 和△AOE 是“友好三角形”;(2)连接OD ,若△AOE 和△DOE 是“友好三角形”,求四边形CDOF 的面积.探究:在△ABC 中,∠A=30°,AB=4,点D 在线段AB 上,连接CD ,△ACD 和△BCD 是“友好三角形”,将△ACD 沿CD 所在直线翻折,得到△A′CD ,若△A′CD 与△ABC 重合部分的面积等于△ABC面积的,请直接写出△ABC的面积.【答案】(1)见解析;(2)12;探究:2或2.【解析】试题分析:(1)利用一组对边平行且相等的四边形是平行四边形,得到四边形ABFE是平行四边形,然后根据平行四边形的性质证得OE=OB,即可证得△AOE和△AOB是友好三角形;(2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中点,则可以求得△ABE、△ABF的面积,根据S四边形CDOF=S矩形ABCD-2S△ABF即可求解.探究:画出符合条件的两种情况:①求出四边形A′DCB是平行四边形,求出BC和A′D推出∠ACB=90°,根据三角形面积公式求出即可;②求出高CQ,求出△A′DC的面积.即可求出△ABC的面积.试题解析:(1)∵四边形ABCD是矩形,∴AD∥BC,∵AE=BF,∴四边形ABFE是平行四边形,∴OE=OB,∴△AOE和△AOB是友好三角形.(2)∵△AOE和△DOE是友好三角形,∴S△AOE=S△DOE,AE=ED=AD=3,∵△AOB与△AOE是友好三角形,∴S△AOB=S△AOE,∵△AOE≌△FOB,∴S△AOE=S△FOB,∴S△AOD=S△ABF,∴S四边形CDOF=S矩形ABCD-2S△ABF=4×6-2××4×3=12.探究:解:分为两种情况:①如图1,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=×4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OB,A′O=CO,∴四边形A′DCB是平行四边形,∴BC=A′D=2,过B作BM⊥AC于M,∵AB=4,∠BAC=30°,∴BM=AB=2=BC,即C和M重合,∴∠ACB=90°,由勾股定理得:AC=,∴△ABC的面积是×BC×AC=×2×2=2;②如图2,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=×4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OA′,BO=CO,∴四边形A′BDC是平行四边形,∴A′C=BD=2,过C作CQ⊥A′D于Q,∵A′C=2,∠DA′C=∠BAC=30°,∴CQ=A′C=1,∴S△ABC=2S△ADC=2S△A′DC=2××A′D×CQ=2××2×1=2;即△ABC的面积是2或2.考点:四边形综合题.。

专题训练4 平行四边形的存在性问题

专题训练4    平行四边形的存在性问题

专题训练4 平行四边形的存在性问题针对训练1、 如图已知抛物线y=-x 2-2x+3与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C 顶点为P.若以A 、C 、P 、M 为顶点的四边形是平行四边形,求点M 的坐标2、 如图,在平面直角坐标系xOy 中,已知抛物线y=-x 2+2x+3与x 轴交于A 、B 两点,点M 在这条抛物线上,点P 在y 轴上,如果以点P 、M 、A 、B 为顶点的四边形是平行四边形,求点M 的坐标3、 将抛物线c1:y=23x 3-+沿x 轴翻折,得到抛物线c2如图所示现将抛物线c1向左平移m 个单位长度,平移后得到新抛物线的顶点为M ,与x 轴的交点从左到右依次为A 、B :将抛物线c2向右也平移m 个单位长度,平移后得到新抛物线的顶点为N ,与x 轴的交点从左到右依次为D E 在平移过程中,是否存在以点A 、N 、F,M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理曰如图,4、 抛物线y=25x bx c 4-++与y 轴交于点A (0,1),过点A 的直线与抛物线交于为一点B (3.2),过点B 作BC ⊥x 轴,垂足为C(1)求抛物线的表达式;(2)点P 是x 轴正半轴上的一动点,过点P 作PN ⊥x 轴交直线AB 于点M ,交抛物线于点N 设OP 的长度为m ,连结CM 、BN ,当m 为何值时,四边形BCMN 为平行四边形?5、如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度过点P作PD∥BC,交AB于点D,连结PQ点P、Q分别从点A、C同时出发,当其中一点到达终点时,另一点也随之停止运动,设运动的时间为t秒(t≥0)(1)直接用含t的代数式分别表示:QB=,PD=(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度6、如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A(4,0)、B(0,3),点C的坐标为(0,m),过点C作CE⊥AB于点E,点D为x轴正半轴上的一动点,且满足O=2x,连结DE,以DE、DA 为边作平行匹边形DEFA(1)如果平行四边形DEFA为矩形,求m的值(2)如果平行四边形DEFA为菱形,请直接写出m的值真题演练7、(18衢州24)如图,Rt△OAB的直角边OA在x轴上,顶点B的坐标为(6,8),直线CD交AB于点D(6,3),交x轴于点C(12,0)(1)求直线CD的函数表达式;(2)动点P在x轴上从点(-10,0)出发,以每秒1个单位的速度向x轴正方向运动,过点P作直线l垂直于x轴,设运动时间为t①点P在运动过程中,是否存在某个位置,使得∠PDA=∠B?若存在,请求出点P的坐标;若不存在,请说明理由②请探索当t为何值时,在直线l上存在点M,在直线CD上存在点Q,使得以OB为一边,O、B、M、Q为顶点的四边形是菱形?并求出此时t的值8、(19连云港26)如图,在平面直角坐标系xOy 中,抛物线L1:y=x 2+bx+c 过点C (0,-3),与抛物线L2:y=213222x x --+的一个交点为A ,且点A 的横坐标为2,点P 、Q 分别是抛物线L1,L2上的动点(1)求抛物线L1的函数表达式(2)若以A 、C 、P 、Q 为顶点的四边形恰为平行四边形,求点P 的坐标;(3)设点R 为抛物线L1上另一个动点,且CA 平分∠PCR 若OQ ∥PR ,求点Q 的坐标9、(19南充25)抛物线y=ax 2+bx+c 与x 轴交于点A (-1,0)、点B (-3,0)与y 轴交于点C ,且OB=OC (如图所示) (1)求抛物线的解析式;(2)若点P 在抛物线上,且∠POB=∠ACB ,求点P 的坐标;(3)抛物线上有两点M 、N ,点M 的横坐标为m ,点N 的横坐标为m+4.点D 是抛物线上M 、N 之间的动点,过点D 作y 轴的平行线交MN 于点①求DE 的最大值 ②点D 关于点E 的对称点为F ,当m 为何值时,四边形MDNF 为矩形?10(17泰安28)如图是将抛物线y=-x 2平移后得到的抛物线,其中对称轴为x=1,与x 轴的一个交点为A (-1,0),另一个交点为B ,与y 轴的交点为C.(1)求抛物线的函数表达式;(2)若点N 为抛物线上一点,且BC ⊥NC ,求点N 的坐标;(3)点P 是抛物线上一点,点Q 是一次函数y=2x+2的图象上一点,若四边形OAPQ 为平行四边形,这样的点P 、Q 是否存在?若存在,分别求出点P 、Q 的坐标;若不存在,请说明理由模拟训练11、(2018年长沙市中考模拟(三)第26题)如图,已知抛物线y=x2-2x+a(a<0)与y轴相交于点A,顶点为M直线y=2x-a分别与x轴、y轴相交于B、C两点,并且与直线M相交于点N.(1)试用含a的代数式分别表示点M与N的坐标;(2)如图,将△NAC沿y轴翻折,若点N的对应点N恰好落在抛物线上,AN与x轴交于点D,连结CD,求a的值和四边形ADCN的面积;(3)在抛物线y=x2-2x+a上是否存在一点P,使得以P、A、 C、N为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,试说明理由12、(2019年内蒙古准格尔旗中考模拟第24题)如图所示,已知抛物线y=-x2+bx+c与一直线相交于A (-1,0)、C(2,3)两点,其顶点为D(1)求抛物线及直线AC的函数关系式(2)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B、D、E、F为顶4O点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由(3)若P是抛物线上位于直线AC上方的一个动点,直接写出△APC的面积的最大值及此时点P的坐标专题预测13、如图,在平面直角坐标系中,矩形1BC的顶点A、C分别在x轴和y轴上,点B的坐标为(3.33)。

平行四边形专题训练(含答案)

平行四边形专题训练(含答案)

平行四边形专题训练一.解答题(共17小题)1.如图,在▱ABCD中,CE⊥AD于点E,且CB=CE,点F为CD边上的一点,CB=CF,连接BF 交CE于点G.(1)若∠D=60°,CF=2,求CG的长;(2)求证:AB=ED+CG.2.如图,在平行四边形ABCD中,过点D作DE⊥BC交BC于点E,且DE=AD,F为DC上一点,且AD=FD,连接AF与DE交于点G.(1)若∠C=60°,AB=2,求GF的长;(2)过点A作AH⊥AD,且AH=CE,求证:AB=DG+AH.3.如图,已知▱ABCD中,DE⊥BC于点E,DH⊥AB于点H,AF平分∠BAD,分别交DC、DE、DH 于点F、G、M,且DE=AD.(1)求证:△ADG≌△FDM.(2)猜想AB与DG+CE之间有何数量关系,并证明你的猜想.4.如图,已知▱ABCD中,AE平分∠BAD交DC于E,DF⊥BC于F,交AE于G,且AD=DF.过点D作DC的垂线,分别交AE、AB于点M、N.(1)若M为AG中点,且DM=2,求DE的长;(2)求证:AB=CF+DM.5.在平行四边形ABCD中,BE⊥AD,F为CD边上一点,满足BF=BC=BE.(1)如图1,若BC=12,CD=13,求DE的长;(2)如图2,过点G作DG∥BE交BF于点G.求证:BG=AE+DG.6.如图,在平行四边形ABCD中,∠ACB=45°,点E在对角线AC上,BE的延长线交CD于点F,交AD的延长线于点G.(1)若BE=,EC=,求△BCE的面积;(2)若∠ABE=2∠EBC,且AB=BE,求证:EC=DG.7.如图1,在平行四边形ABCD中,AE⊥BC于点E,E恰为BC的中点,tan B=2.(1)求证:AD=AE;(2)如图2,点P在线段BE上,作EF⊥DP于点F,连接AF,求证:;(3)请你在图3中画图探究:当P为射线EC上任意一点(P不与点E重合)时,作EF 垂直直线DP,垂足为点F,连接AF,线段DF、EF与AF之间有怎样的数量关系?直接写出你的结论.8.如图①,在平行四边形ABCD中,对角线AC、BD交于点O,AB=AC,AB⊥AC,过点A作AE⊥BD于点E.(1)若BC=6,求AE的长度;(2)如图②,点F是BD上一点,连接AF,过点A作AG⊥AF,且AG=AF,连接GC交AE 于点H,证明:GH=CH.9.在▱ABCD中,点E是BC的中点,过点A作AF⊥CD交直线CD于点F,连接AE、DE(1)如图1,当点F与点C重合时,AB=AC=2,求线段DE的长;(2)如图2,若∠EAF=30°,AE=CF,求证:BE=AF.10.已知,在▱ABCD中,AB⊥AC,点E是AC上一点,连换BE,延长BE交AD于点F,BE=CE.(1)如图1,当∠AEB=60°,BF=2时,求▱ABCD的面积;(2)如图2,点G是过点E且与BF垂直的直线上一点,连接GF,GC,FC,当GF=GC时,求证:AB=2EG.ABCD BD AD E CD AE BD F G为AF的中点,连接DG.(1)如图1,若DG=DF=1,BF=3,求CD的长;(2)如图2,连接BE,且BE=AD,∠AEB=90°,M、N分别为DG,BD上的点,且DM=BN,H为AB的中点,连接HM、HN,求证:∠MHN=∠AFB.12.在△BCF中,点D是边CF上的一点,过点D作AD∥BC,过点B作BA∥CD交AD于点A,点G是BC的中点,点E是线段AD上一点,且∠CDG=∠ABE=∠EBF.(1)若∠F=60°,∠C=45°,BC=2,请求出AB的长;(2)求证:CD=BF+DF.13.已知在平行四边形ABCD中,过点D作DE⊥BC于点E,且AD=DE.连接AC交DE于点F,作DG⊥AC于点G.(1)如图1,若,AF=,求DG的长;(2)如图2,作EM⊥AC于点M,连接DM,求证:AM﹣EM=2DG.14.已知,在平行四边形ABCD中,点E是AD边上一点,且DE=DC.(1)若点E与点A重合(如图1),点B沿MN翻折后的点B1恰好落在AC上,且∠MNB1=45°,AB1=1,AM=2,BM=.求:①∠AMN的度数;②BN的长;(2)如图2,若CE交对角线BD于F,∠ABD=2∠DBC,求证:BC=DF+AB.15.在平行四边形ABCD中,点E是AD边上的点,连接BE.(1)如图1,若BE平分∠ABC,BC=8,ED=3,求平行四边形ABCD的周长;(2)如图2,点F是平行四边形外一点,FB=CD.连接BF、CF,CF与BE相交于点G,若∠FBE+∠ABC=180°,点G是CF的中点,求证:2BG+ED=BC.16.如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB=AE,连接EO并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=CG.17.如图,在▱ABCD中,∠ACB=45°,点E在对角线AC上,BE=BA,BF⊥AC于点F,BF的延长线交AD于点G.点H在BC的延长线上,且CH=AG,连接EH.(1)若BC=12,AB=13,求AF的长;(2)求证:EB=EH.18.如图,平行四边形ABCD中,过点C作CE⊥AB于点E,点F是AD上一点,连结BF、CF,交CE于点G。

哈尔滨平行四边形综合题20题

哈尔滨平行四边形综合题20题

中考专题训练——平行四边形的判定和性质1.已知:如图,▱ABCD中,E、F分别是AB、CD的中点.求证:(1)△AFD≌△CEB;(2)四边形AECF是平行四边形.2.已知,四边形ABCD是平行四边形,E、F是对角线AC上的两点,AE=CF.(1)如图1,求证:四边形DEBF是平行四边形;(2)如图2,AE=EF=FC,在不添加任何辅助线的情况下,请直接写出图2中所有面积与四边形DEBF面积相等的三角形.BC,3.已知:△ABC中,AB=AC,AD⊥BC于点D,过点A作AE∥BC,且AE=12连结DE.(1)求证:四边形ABDE是平行四边形;,求FG和FD的长.(2)作FG⊥AB于点G,AG=4,cos∠GAF=454.如图,在△ABC中,AB=BC,BD平分∠ABC交AC于点D,点E为AB的中点,连接DE,过点E作EF∥BD交CB的延长线于点F.(1)求证:四边形DEFB是平行四边形;(2)当AD=4,BD=3时,求CF的长.5.如图,四边形ABCD是平行四边形,延长AD至点E,使DE=AD,连接BD、CE.(1)求证:四边形BCED是平行四边形;,求点B到点E的距离.(2)若DA=DB=4,cos A=146.如图,点D是ABC内一点,点E,F,G,H分别是AB,AC,CD,BD的中点.(1)求证:四边形EFGH是平行四边形;(2)如果∠BDC=90°,∠DBC=30°,CD=2,AD=6,求四边形EFGH的周长.7.如图,在平行四边形ABCD中,点E,F分别是AB,CD上的点,CF=BE.(1)求证:四边形AEFD是平行四边形;(2)若∠A=60°,AD=2,AB=4,求BD的长.8.如图,在四边形ABCD中,∠ACB=∠CAD=90°,AD=BC,点E在BC延长线上,AE与CD交于点F.(1)求证:四边形ABCD是平行四边形;,求AD和CF的长.(2)若AE平分∠BAD,AB=13,cos B=5139.在▱ABCD中,E,F分别是AB,CD的中点,连接BF,DE,M,N分别是BF,DE的中点,连接EM,FN.(1)求证:四边形BFDE是平行四边形;(2)若AB=12,EM=EN=5,则四边形ABCD的面积为.10.在▱ABCD中,E,F分别为对角线BD上两点,连接AE、CE、AF、CF,且AE∥CF.(1)如图1,求证:四边形AECF是平行四边形;(2)如图2,若2BE=3EF,在不添加任何字母及辅助线的情况下,请直接写出图2中面积是△ABD面积的3的四个三角形.811.如图,已知等边△ABC中,D、F分别是边BC、AB上的点,且CD=BF,以AD为边向左作等边△ADE,联结CF、EF.(1)求证:四边形CDEF是平行四边形;的值.(2)当∠DEF=45°时,求BDCD12.如图,在四边形ABCD中,AB∥CD,AB=CD,点E、F在对角线AC上,且AE=CF.(1)如图1,求证:DF∥BE;(2)如图2,延长DF、BE分别交BC、AD于点P、N,连接BF并延长交CD 于点M,连接DE并延长交AB于Q,在不添加其它线的条件下,直接写出图中所有的平行四边形.13.在△ABC中,D是BC边上的一点,E是AC边的中点,过点A作AF∥BC 交DE的延长线于点F,连接AD,CF.(1)求证:四边形ADCF是平行四边形;(2)若∠FEA=2∠ADE,CF=2√2,CD=1,请直接写出AE的长为.14.已知点E、F分别是▱ABCD的边BC、AD的中点.(1)求证:四边形AECF是平行四边形;(2)若BC=12,∠BAC=90°,求▱AECF的周长.15.如图,在Rt△ABC中,∠ACB=90°,D、E分别是边AC、AB的中点,连接CE、DE,过D点作DF∥CE交BC的延长线于F点.(1)证明:四边形DECF是平行四边形;(2)若AB=13cm,AC=5cm,求四边形DECF的周长.16.已知:如图所示,在△ABC中,D是AC的中点,E是线段BC的延长线上一点,过点A作AF∥BE,交线段ED的延长线于点F,连接AE、CF.(1)求证:CF=AE.(2)若AF=CF=4,∠AFD=30°,则四边形AECF的面积是.17.如图,在四边形ABCD中,∠BCD=90°,对角线AC,BD相交于点N.点M是对角线BD中点,连接AM,CM.如果AM=DC,AB⊥AC,且AB=AC.(1)求证:四边形AMCD是平行四边形.(2)求tan∠DBC的值.18.如图,在△ABC中,D是AB边上任意一点,E是BC边中点,过点C作AB 的平行线,交DE的延长线于点F,连接BF,CD.(1)求证:四边形CDBF是平行四边形;(2)若∠FDB=30°,∠ABC=45°,BC=4√2,求DF的长.19.如图,在△ABC中,点D是BC边的中点,点E,F分别在AC,AB上,且DE∥AB,EF∥BC.(1)求证:CD=EF;(2)连接BE,若BE平分∠ABC,CD=6,求四边形BDEF的周长.20.如图,四边形ABCD是平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)若BF恰好平分∠ABE,连接AC、DE,求证:四边形ACED是平行四边形.21.如图,在平行四边形ABCD中,AE、CF分别平分∠BAD和∠BCD,AE交BC于点E,CF交AD于点F.(1)如图1,求证:BE=DF;(2)如图2,连接BD分别交AE、CF于点G、H,连接AH,CG,CF,EH,AH与GF交于点M,EH与GC交于点N,请直接写出图中所有的平行四边形(平行四边形ABCD除外).22.如图,平行四边形ABCD中,E、F是对角线BD上不同的两点,添加个条件,使得四边形AECF为平行四边形.(1)现有四个条件:①BE=DF;②AF∥CE;③AE=CF;④∠BAE=∠DCF.你添加的条件是:.(填一个序号即可)(2)在(1)的基础上,求证:四边形AECF是平行四边形.23.在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB交直线AC于点E.(1)当点D在边BC上时,如图①,求证:DE+DF=AC.(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.(3)若AC=6,DE=4,则DF=.24.如图,已知四边形ABCD中,对角线AC,BD相交于点O,且OA=OC,OB =OD,过O点的线段EF,分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)如果∠EBD=∠CBD,请判断并证明四边形BEDF的形状.25.如图,E,F是▱ABCD对角线BD上两点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)连接AC,若∠BAF=90°,AB=4,AF=AE=3,求AC的长.26.如图,在Rt△ABC中,∠ACB=90°,D,E分别是AB,AC的中点,连接CD,过点E作EF∥CD交BC的延长线于点F.(1)证明:四边形CDEF是平行四边形;(2)若∠ABC=30°,AC的长是5cm,求四边形CDEF的周长.27.如图,平行四边形ABCD中,AB=8cm,BC=12cm,∠B=60°,G是CD 的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)当AE=8cm时,四边形CEDF是什么样的特殊平行四边形?请写出你的理由.28.如图,在四边形ABCD中,∠BCD=90°,对角线AC,BD相交于点N,点M是对角线BD中点,连接AM,CM.如果AM=DC,AB⊥AC,且AB=AC.(1)求证:四边形AMCD是平行四边形.(2)若DN=√10,则BC=,tan∠DBC=.29.如图所示,△ABC≌△EAD,点E在BC上.(1)求证:四边形ABCD是平行四边形;(2)若∠B:∠CAD=3:2,∠EDC=25°,求∠AED的度数.30.如图,在△ABC中,∠ABC=90°,DF垂直平分AB,交AC于点E,连接BE、CD,且ED=2FE.(1)如图1,求证:四边形BCDE是平行四边形;(2)如图2,点G是BC的中点,在不添加任何辅助线的情况下,请直接写出图2中所有面积是△BEG的面积的2倍的三角形和四边形.参考答案与试题解析1.已知:如图,▱ABCD中,E、F分别是AB、CD的中点.求证:(1)△AFD≌△CEB;(2)四边形AECF是平行四边形.【分析】根据平行四边形的性质可得到两边及夹角对应相等,根据SAS判定△AFD≌△CEB;根据有一对边平行且相等的四边形是平行四边形可判定四边形AECF是平行四边形.【解答】证明:(1)在▱ABCD中,AD=CB,AB=CD,∠D=∠B,∵E、F分别是AB、CD的中点,∴DF=12CD,BE=12AB.∴DF=BE.∴△AFD≌△CEB.(2)在▱ABCD中,AB=CD,AB∥CD.由(1),得BE=DF.∴AE=CF.∴四边形AECF是平行四边形.【点评】此题考查了平行四边形的性质及判定,全等三角形的判定等知识点的综合运用能力.2.已知,四边形ABCD是平行四边形,E、F是对角线AC上的两点,AE=CF.(1)如图1,求证:四边形DEBF是平行四边形;(2)如图2,AE=EF=FC,在不添加任何辅助线的情况下,请直接写出图2中所有面积与四边形DEBF面积相等的三角形.【分析】(1)证△ADE ≌△CBF (SAS ),得DE =BF ,∠AED =∠CFB ,再证DE ∥BF ,即可得出结论;(2)由平行四边形的性质得S △DEF =S △BEF ,再由三角形面积关系得S △ADE =S △DEF =S △DCF ,S △CBF =S △BEF =S △ABE ,则S △ADF =S △CDE =S △ABF =S △BCF =S 平行四边形DEBF ,即可得出结论.【解答】(1)证明:∵四边形ABCD 是平行四边形,∴AD =CB ,AD ∥CB ,∴∠DAE =∠BCF ,在△ADE 和△CBF 中,{AD =CB ∠DAE =∠BCF AE =CF,∴△ADE ≌△CBF (SAS ),∴DE =BF ,∠AED =∠CFB ,∴∠DEF =∠BFE ,∴DE ∥BF ,∴四边形DEBF 是平行四边形;(2)解:∵四边形DEBF 是平行四边形,∴S △DEF =S △BEF ,∵AE =EF =FC ,∴S △ADE =S △DEF =S △DCF ,S △CBF =S △BEF =S △ABE ,∴S △ADF =S △CDE =S △ABF =S △BCF =S 平行四边形DEBF ,∴图2中所有面积与四边形DEBF 面积相等的三角形为△ADF 、△CDE 、△ABF、△BCF.【点评】本题考查了平行四边形的判定与性质、全等三角形的判定与性质以及三角形面积等知识,熟练掌握平行四边形的判定与性质是解题的关键.3.已知:△ABC中,AB=AC,AD⊥BC于点D,过点A作AE∥BC,且AE=12BC,连结DE.(1)求证:四边形ABDE是平行四边形;(2)作FG⊥AB于点G,AG=4,cos∠GAF=45,求FG和FD的长.【分析】(1)由等腰三角形的性质得BD=CD=12BC,再证AE=BD,然后由AE∥BC,即可得出结论;(2)由锐角三角函数定义求出AF=5,再由勾股定理得FG=3,连接CE,然后证明四边形ADCE是矩形,即可解决问题.【解答】(1)证明:∵AB=AC,AD⊥BC,∴BD=CD=12BC,∵AE=12BC,∴AE=BD,又∵AE∥BC,∴四边形ABDE是平行四边形;(2)解:∵FG⊥AB,∴∠AGF=90°,∵AG=4,cos∠GAF=AGAF =45,∴AF=5,∴FG=√AF2−AG2=√52−42=3,如图,连接CE,由(1)可知,AE=CD,∵AE∥BC,∴四边形ADCE是平行四边形,又∵AD⊥BC,∴∠ADC=90°,∴平行四边形ADCE是矩形,∴CF=AF=5,FD=FE,AC=DE,∴FD=AF=5.【点评】本题考查了平行四边形的频道与性质、等腰三角形的性质、矩形的判定与性质、锐角三角函数定义以及勾股定理等知识,熟练掌握平行四边形的判定与性质是解题的关键.4.如图,在△ABC中,AB=BC,BD平分∠ABC交AC于点D,点E为AB的中点,连接DE,过点E作EF∥BD交CB的延长线于点F.(1)求证:四边形DEFB是平行四边形;(2)当AD=4,BD=3时,求CF的长.【分析】(1)根据等腰三角形的性质得到AD=DC,根据三角形中位线定理得到DE∥BC,根据平行四边形的判定定理即可得到结论;(2)根据等腰三角形的性质得到BD⊥AC,根据勾股定理得到AB=BC=√AD2+BD2=5,根据三角形的中位线定理和平行四边形的性质即可得到结论.【解答】(1)证明:∵AB=BC,BD平分∠ABC交AC于点D,∴AD=DC,∵点E为AB的中点,∴DE是△ABC的中位线,∴DE∥BC,∴DE∥BF,∵BD∥EF,∴四边形DEFB是平行四边形;(2)解:∵AB=BC,BD平分∠ABC交AC于点D,∴BD⊥AC,∴∠ADB=90°,∵AD=4,BD=3,∴AB=BC=√AD2+BD2=5,∵DE是△ABC的中位线,∴DE=12BC=52,∵四边形DEFB是平行四边形,∴BF=DE=52,∴CF=BC+BF=152.【点评】本题考查了平行四边形的判定和性质,三角形中位线定理,等腰三角形的性质,熟练掌握平行四边形的判定和性质定理是解题的关键.5.如图,四边形ABCD是平行四边形,延长AD至点E,使DE=AD,连接BD、CE.(1)求证:四边形BCED是平行四边形;,求点B到点E的距离.(2)若DA=DB=4,cos A=14【分析】(1)根据平行四边形的性质得到AD=BC,AD∥BC,等量代换得到DE=BC,DE∥BC,于是得到四边形BCED是平行四边形;(2)连接BE,根据已知条件得到AD=BD=DE=4,根据直角三角形的判定定理得到∠ABE=90°,AE=8,解直角三角形即可得到结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵DE=AD,∴DE=BC,DE∥BC,∴四边形BCED是平行四边形;(2)解:连接BE,∵DA=DB=4,DE=AD,∴AD=BD=DE=4,∴∠ABE=90°,AE=8,,∵cos A=14∴AB=2,∴BE=√AE2−AB2=2√15.【点评】本题考查了平行四边形的判定和性质,直角三角形的判定和性质,三角函数的定义,证得∠ABE =90°是解题的关键.6.如图,点D 是ABC 内一点,点E ,F ,G ,H 分别是AB ,AC ,CD ,BD 的中点.(1)求证:四边形EFGH 是平行四边形;(2)如果∠BDC =90°,∠DBC =30°,CD =2,AD =6,求四边形EFGH 的周长.【分析】(1)利用三角形的中位线定理得出EH =FG =12AD ,EF =GH =12BC ,即可得出结论;(2)由(1)得出四边形EFGH 的周长=EH +GH +FG +EF =AD +BC ,即可得出结果.【解答】(1)证明:∵点E ,F ,G ,H 分别是AB ,AC ,CD ,BD 的中点. ∴EH =FG =12AD ,EF =HG =12BC , ∴四边形EFGH 是平行四边形;(2)解:∵∠BDC =90°,∠DBC =30°,∴BC =2CD =4.由(1)得:四边形EFGH 的周长=EH +GH +FG +EF =AD +BC ,又∵AD =6,∴四边形EFGH 的周长=AD +BC =6+4=10.【点评】本题考查了平行四边形的判定与性质,三角形的中位线定理.熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.7.如图,在平行四边形ABCD 中,点E ,F 分别是AB ,CD 上的点,CF =BE .(1)求证:四边形AEFD是平行四边形;(2)若∠A=60°,AD=2,AB=4,求BD的长.【分析】(1)由平行四边形的性质得AB∥CD,AB=CD,再证DF=AE,即可得出结论;AB=(2)过B作BG⊥AD于G,由含30°角的直角三角形的性质得AG=122,则AG=AD,得G与D重合,BD⊥AD,然后由勾股定理求解即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵CF=BE,∴CD﹣CF=AB﹣BE,即DF=AE,又∵DF∥AE,∴四边形AEFD是平行四边形;(2)解:如图,过B作BG⊥AD于G,∵∠A=60°,∴∠ABG=90°﹣60°=30°,AB=2,∴AG=12∵AD=2,∴AG=AD,∴G与D重合,∴BD⊥AD,∴BD=√AB2−AD2=√42−22=2√3.【点评】本题考查了平行四边形的判定与性质、含30°角的直角三角形的性质以及勾股定理得知识,熟练掌握平行四边形的判定与性质是解题的关键.8.如图,在四边形ABCD中,∠ACB=∠CAD=90°,AD=BC,点E在BC延长线上,AE与CD交于点F.(1)求证:四边形ABCD是平行四边形;(2)若AE平分∠BAD,AB=13,cos B=513,求AD和CF的长.【分析】(1)先证AD∥BC,再由AD=BC,即可得出结论;(2)由锐角三角函数定义得BC=5,再由平行四边形的性质得AD=BC=5,然后证BE=AB=13,则CE=BE﹣BC=8,进而证∠CFE=∠BEA,得CF=CE=8.【解答】(1)证明:∵∠ACB=∠CAD=90°,∴AD∥BC,∵AD=BC,∴四边形ABCD是平行四边形;(2)解:∵∠ACB=90°,AB=13,∴cos B=BCAB =513,∴BC=5,由(1)可知,四边形ABCD是平行四边形,∴AD=BC=5,AB∥CD,AD∥BC,∴∠DAE =∠BEA ,∵AE 平分∠BAD ,∴∠DAE =∠BAE ,∴∠BEA =∠BAE ,∴BE =AB =13,∴CE =BE ﹣BC =13﹣5=8,∵AB ∥CD ,∴∠CFE =∠BAE ,∴∠CFE =∠BEA ,∴CF =CE =8.【点评】本题考查了平行四边形的判定与性质、等腰三角形的判定、锐角三角函数定义、平行线的判定与性质等知识,熟练掌握平行四边形的判定与性质是解题的关键.9.在▱ABCD 中,E ,F 分别是AB ,CD 的中点,连接BF ,DE ,M ,N 分别是BF ,DE 的中点,连接EM ,FN .(1)求证:四边形BFDE 是平行四边形;(2)若AB =12,EM =EN =5,则四边形ABCD 的面积为 96 .【分析】(1)根据平行四边形的性质得到AB =DC ,AB ∥DC .根据线段中点的定义得到BE =12AB ,DF =12DC ,根据平行四边形的判定定理即可得到结论; (2)连接EF ,根据平行四边形的性质得到DE =BF ,根据线段中点的定义得到EN =DN =BM =FM =12B B F ,求得EM =12B B F ,根据勾股定理得到EF =√BF 2−BE 2=8,于是得到结论.【解答】(1)证明:∵四边形ABCD 是平行四边形,∴AB =DC ,AB ∥DC .∵E ,F 分别是AB ,CD 的中点,∴BE =12AB ,DF =12DC ,∴BE =DF ,∵BE ∥DF∴四边形BFDE 是平行四边形;(2)解:连接EF ,∵四边形BFDE 是平行四边形,∴DE =BF ,∵M ,N 分别是BF ,DE 的中点,∴EN =DN =BM =FM =12BF ,∵EM =EN =5,∴EM =12BF ,∴∠BEF =90°,BF =2EM =10,∵AB =12,∴BE =6,∴EF =√BF 2−BE 2=8,∴四边形ABCD 的面积为AB •EF =12×8=96,故答案为:96.【点评】本题考查了平行四边形的判定和性质,勾股定理,熟练掌握平行四边形的判定和性质定理是解题的关键.10.在▱ABCD 中,E ,F 分别为对角线BD 上两点,连接AE 、CE 、AF 、CF ,且AE ∥CF .(1)如图1,求证:四边形AECF 是平行四边形;(2)如图2,若2BE =3EF ,在不添加任何字母及辅助线的情况下,请直接写出图2中面积是△ABD 面积的38的四个三角形.【分析】(1)先证△ABE ≌△CDF (AAS ),得AE =CF ,再由AE ∥CF ,即可得出四边形AECF 是平行四边形;(2)由(1)得:△ABE ≌△CDF ,则BE =DF ,再由2BE =3EF ,得BE :BD =3:8,即可得出结论.【解答】(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∴∠ABE =∠CDF ,∵AE ∥CF ,∴∠AEF =∠CFE ,∴∠AEB =∠CFD ,在△ABE 和△CDF 中,{∠ABE =∠CDF ∠AEB =∠CFD AB =CD,∴△ABE≌△CDF(AAS),∴AE=CF,又∵AE∥CF,∴四边形AECF是平行四边形;(2)解:△ABE、△CDF、△BCE、△ADF,理由如下:由(1)得:△ABE≌△CDF,∴BE=DF,∵2BE=3EF,∴BE:BD=3:8,∴△ABE的面积=△CDF的面积=△BCE的面积=△ADF的面积=△ABD面.积的38【点评】本题考查了平行四边形的判定与性质、全等三角形的判定与性质以及三角形面积等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.11.如图,已知等边△ABC中,D、F分别是边BC、AB上的点,且CD=BF,以AD为边向左作等边△ADE,联结CF、EF.(1)求证:四边形CDEF是平行四边形;(2)当∠DEF=45°时,求BD的值.CD【分析】(1)根据等边三角形的性质得到AC=CB,∠ACD=∠B,根据全等三角形的性质得到∠DAC=∠FCB,求得∠BAD=∠ACF,根据平行线的判定定理得到CF∥DE,由平行四边形的判定定理即可得到四边形CDEF是平行四边形;(2)过F作FG⊥BC于G,根据平行四边形的性质得到∠FCB=∠DEF=45°,求得FG=CG,设BG=x,根据三角函数的定义即可得到结论.【解答】(1)证明:∵△ABC是等边三角形,∴AC=CB,∠ACD=∠B,又CD=BF,∴△ACD≌△CBF(SAS),∴∠DAC=∠FCB,∴∠BAD=∠ACF,∵∠EDB=180°﹣∠ADE﹣∠ADC=120°﹣∠ADC,∠FCB=180°﹣∠B﹣∠CFB=120°﹣∠CFB,∴∠EDB=∠FCB,∴CF∥DE,∴四边形CDEF是平行四边形;(2)解:过F作FG⊥BC于G,∵四边形CDEF是平行四边形,∠DEF=45°,∴∠FCB=∠DEF=45°,∴FG=CG,设BG=x,则CG=FG=BG•tan60°=√3x,CD=BF=BG=2x,cos60°∴BC=BG+CG=(1+√3)x,∴BD=BC﹣CD=(1+√3)x﹣2x=(√3−1)x,∴BDCD =(√3−1)x2x=√3−12.【点评】本题主要考查了等边三角形的性质、全等三角形及平行四边形的判定和性质等知识,综合性较强,难度较大.12.如图,在四边形ABCD中,AB∥CD,AB=CD,点E、F在对角线AC上,且AE=CF.(1)如图1,求证:DF∥BE;(2)如图2,延长DF、BE分别交BC、AD于点P、N,连接BF并延长交CD 于点M,连接DE并延长交AB于Q,在不添加其它线的条件下,直接写出图中所有的平行四边形.【分析】(1)由平行线的性质得出∠BAC=∠DCA.证出AF=CE.由AAS证明△ABF≌△CDE即可;(2)根据平行四边形的判定即可得出结论.【解答】(1)证明:∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠DAF=∠BCE.∵AE=CF,∴AE+EF=CF+EF,∴AF =CE .在△ADF 和△CBE 中,{AD =CB ∠DAF =∠BCE AF =CE,∴△ADF ≌△CBE (SAS ),∴∠DF A =∠BEC ,∴DF ∥BE ;(2)解:图中所有的平行四边形有:▱ABCD ,▱NBPD ,▱QBMD ,▱BEDF ,理由如下:∵AB ∥CD ,AB =CD ,∴四边形ABCD 是平行四边形;由(1)知:△ADF ≌△CBE ,∴DF =BE ,∵DF ∥BE ,∴四边形BEDF 是平行四边形;∴DQ ∥BM .∵AB ∥CD ,∴四边形QBMD 是平行四边形;∵BN ∥DQ .∵AD ∥BC ,∴四边形NBPD 是平行四边形.∴图中所有的平行四边形有:▱ABCD ,▱NBPD ,▱QBMD ,▱BEDF .【点评】本题考查了平行线的性质、平行四边形的判定、菱形的判定与性质、全等三角形的判定与性质;熟练掌握菱形的判定与性质,证明三角形全等是解决问题的关键.13.在△ABC 中,D 是BC 边上的一点,E 是AC 边的中点,过点A 作AF ∥BC 交DE 的延长线于点F ,连接AD ,CF .(1)求证:四边形ADCF 是平行四边形;(2)若∠FEA =2∠ADE ,CF =2√2,CD =1,请直接写出AE 的长为 32 .【分析】(1)证△AEF ≌△CED (AAS ),得FE =DE ,再由AE =CE ,即可得出四边形ADCF 是平行四边形;(2)先证AE =DE ,再证平行四边形ADCF 是矩形,得∠AFC =90°,AF =CD =1,然后由勾股定理求出AC =3,即可求解.【解答】(1)证明:∵E 是AC 边的中点,∴AE =CE ,∵AF ∥BC ,∴∠AFE =∠CDE ,在△AEF 和△CED 中,{∠AFE =∠CDE ∠AEF =∠CED AE =CE,∴△AEF ≌△CED (AAS ),∴FE =DE ,又∵AE =CE ,∴四边形ADCF 是平行四边形;(2)解:∵∠FEA =∠ADE +∠DAE ,∠FEA =2∠ADE ,∴∠ADE =∠DAE ,∴AE =DE ,由(1)得:四边形ADCF 是平行四边形,AE =CE ,FE =DE ,∴AC =DF ,∴平行四边形ADCF 是矩形,∴∠AFC =90°,AF =CD =1,∴AC =√AF 2+CF 2=√12+(2√2)2=3,∴AE =12AC =32, 故答案为:32. 【点评】本题考查了平行四边形的判定与性质、矩形的判定与性质、全等三角形的判定与性质、等腰三角形的判定、勾股定理等知识;熟练掌握平行四边形的判定与性质和矩形的判定与性质是解题的关键.14.已知点E 、F 分别是▱ABCD 的边BC 、AD 的中点.(1)求证:四边形AECF 是平行四边形;(2)若BC =12,∠BAC =90°,求▱AECF 的周长.【分析】(1)根据平行四边形的性质得AD ∥BC ,AD =BC ,再证AF =CE ,即可得出结论;(2)根据直角三角形斜边上的中线性质得到AE =CE =12BC =6,再证平行四边形AECF 是菱形,于是得到结论.【解答】(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∵点E 、F 分别是▱ABCD 的边BC 、AD 的中点,∴AF =12AD ,CE =12BC , ∴AF =CE ,又∵AF ∥CE ,∴四边形AECF 是平行四边形;(2)解:∵BC =12,∠BAC =90°,E 是BC 的中点.∴AE =CE =12BC =CE =6, ∴平行四边形AECF 是菱形,∴▱AECF 的周长=4×6=24.【点评】此题主要考查了平行四边形的判定与性质、菱形的判定与性质、直角三角形斜边上的中线性质等知识,熟练掌握平行四边形的判定与性质是解题的关键.15.如图,在Rt △ABC 中,∠ACB =90°,D 、E 分别是边AC 、AB 的中点,连接CE 、DE ,过D 点作DF ∥CE 交BC 的延长线于F 点.(1)证明:四边形DECF 是平行四边形;(2)若AB =13cm ,AC =5cm ,求四边形DECF 的周长.【分析】(1)证DE 是△ABC 的中位线,得DE ∥BC ,由平行四边形的判定即可得出结论;(2)先由勾股定理得BC =12,再由三角形中位线定理得DE =12BC =6,然后由平行四边形的性质得DE =CF =6,DF =CE ,再由勾股定理得DF =132,即可得出答案.【解答】(1)证明:∵D 、E 分别是边AC 、AB 的中点,∴DE 是△ABC 的中位线,∴DE ∥BC ,∴DE ∥CF ,∵DF ∥CE ,∴四边形DECF 是平行四边形;(2)解:在Rt △ABC 中,由勾股定理得:BC =√AB 2−AC 2=√132−52=12, ∵DE 是△ABC 的中位线,∴DE =12BC =12×12=6, ∵四边形DECF 是平行四边形,∴DE =CF =6,DF =CE ,∵D 是边AC 的中点,∴CD =12AC =12×5=52, ∵∠ACB =90°,CF 是BC 的延长线,∴∠DCF =90°,在Rt △DCF 中,由勾股定理得:DF =√CD 2+CF 2=√(52)2+62=132, ∴四边形DECF 的周长=2(DE +DF )=2×(6+132)=25. 【点评】本题考查了平行四边形的判定与性质、三角形中位线定理、勾股定理等知识;熟练掌握平行四边形的判定与性质以及三角形中位线定理是解题的关键.16.已知:如图所示,在△ABC 中,D 是AC 的中点,E 是线段BC 的延长线上一点,过点A 作AF ∥BE ,交线段ED 的延长线于点F ,连接AE 、CF .(1)求证:CF =AE .(2)若AF =CF =4,∠AFD =30°,则四边形AECF 的面积是 8√3 .【分析】(1)证△ADF ≌△CDE (AAS ),得AF =CE ,再由AF ∥CE ,则四边形AECF 是平行四边形,即可得出结论;(2)证四边形AECF 为菱形,得AD ⊥EF ,EF =2FD ,再由含30°角的直角三角形的性质得AD =12AF =2,然后由勾股定理得FD =2√3,则EF =2FD =4√3,即可求解.【解答】(1)证明:∵D 点为AC 的中点,∴AD =CD ,∵AF ∥BE ,∴∠F AD =∠ECD ,在△ADF 和△CDE 中,{∠FAD =∠ECD ∠ADF =∠CDE AD =CD,∴△ADF ≌△CDE (AAS ),∴AF =CE ,∵AF ∥CE ,∴四边形AECF 是平行四边形,∴CF =AE ;(2)解:∵四边形AECF 为平行四边形,AF =CF =4,∴四边形AECF 为菱形,∴AD ⊥EF ,EF =2FD ,∵∠AFD =30°,∴AD =12AF =2, ∴AC =2AD =4,FD =√AF 2−AD 2=√42−22=2√3,∴EF =2FD =4√3,∴四边形AECF 的面积=12AC •EF =12×4×4√3=8√3, 故答案为:8√3.【点评】本题考查了平行四边形的判定与性质、全等三角形的判定与性质、含30°角的直角三角形的性质、勾股定理等知识;熟练掌握平行四边形的判定与性质,证明△ADF ≌△CDE 是解题的关键.17.如图,在四边形ABCD 中,∠BCD =90°,对角线AC ,BD 相交于点N .点M 是对角线BD 中点,连接AM ,CM .如果AM =DC ,AB ⊥AC ,且AB =AC .(1)求证:四边形AMCD 是平行四边形.(2)求tan ∠DBC 的值.【分析】(1)要证明四边形AMCD 是平行四边形,已知AM =DC ,只需要证明AM ∥DC 即可;由条件可知△AMB ≌△AMC (SSS ),推理可得∠DCA =∠MAC =45°,由内错角相等两直线平行可知AM ∥CD ,可得结论;(2)延长AM 交BC 于点E ,由等腰三角形三线合一可得点E 是BC 的中点,ME 是△BCD 的中位线,则ME =12CD ,进而ME =13AE ,设AB =a ,分别表达BC ,AE 及BE ,在Rt △ABE 中,表达tan ∠DBC 的值.【解答】解:(1)证明:如图,∵点M 是BD 的中点,∠BCD =90°,∴CM 是Rt △BCD 斜边BD 的中线,∴CM=BM=MD,又AB=AC,AM=AM,∴△AMB≌△AMC(SSS),∴∠BAM=∠CAM,∵BA⊥AC,∴∠BAC=90°,∴∠CAM=45°,又∵AB=AC,∴∠ACB=∠ABC=45°,∴∠DCA=∠DCB﹣∠ACB=45°,∴∠DCA=∠MAC,∴AM∥CD,又∵AM=DC,∴四边形AMCD为平行四边形.(2)如图,延长AM交BC于点E,∵AB=AC,∠BAC=90°,∠BAM=∠CAM,∴AE⊥BC,且点E为BC的中点,∵点M是BD的中点,点E是BC的中点,∴ME是△BCD的中位线,∴CD=2ME,又AM=CD,∴AM=2ME,∴ME =13AE , 设AB =a ,则BC =√2a ,AE =12BC =√22a , ∴ME =13AE =√26a , 又BE =AE =√22a , ∴tan ∠DBC =ME BE =13. 【点评】本题利用了平行四边形的判定和性质,全等三角形的判定和性质,三角函数值等内容.18.如图,在△ABC 中,D 是AB 边上任意一点,E 是BC 边中点,过点C 作AB 的平行线,交DE 的延长线于点F ,连接BF ,CD .(1)求证:四边形CDBF 是平行四边形;(2)若∠FDB =30°,∠ABC =45°,BC =4√2,求DF 的长.【分析】(1)欲证明四边形CDBF 是平行四边形只要证明CF ∥DB ,CF =DB 即可;(2)如图,作EM ⊥DB 于点M ,解直角三角形即可;【解答】(1)证明:∵CF ∥AB ,∴∠ECF =∠EBD .∵E 是BC 中点,∴CE =BE .∵∠CEF =∠BED ,∴△CEF ≌△BED .∴CF =BD .∴四边形CDBF是平行四边形.(2)解:如图,作EM⊥DB于点M,∵四边形CDBF是平行四边形,BC=4√2,BC=2√2,DF=2DE.∴BE=12在Rt△EMB中,EM=BE•sin∠ABC=2,在Rt△EMD中,∵∠EDM=30°,∴DE=2EM=4,∴DF=2DE=8.【点评】本题考查平行四边形的性质、全等三角形的判定和性质、勾股定理、直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.19.如图,在△ABC中,点D是BC边的中点,点E,F分别在AC,AB上,且DE∥AB,EF∥BC.(1)求证:CD=EF;(2)连接BE,若BE平分∠ABC,CD=6,求四边形BDEF的周长.【分析】(1)先证四边形BDEF是平行四边形,得EF=BD,再证出=BD=CD,即可得到结论;(2)先由平行四边形的性质得BD=EF,BF=ED,EF∥BD,再证∠FBE=∠BEF,得BF=EF,则BD=EF=BF=ED,即可得出答案.【解答】(1)证明:∵DE∥AB,EF∥BC,∴四边形BDEF是平行四边形,∴EF=BD,∵点D是BC边的中点,∴BD=CD,∴CD=EF;(2)解:∵BE平分∠ABC,∴∠FBE=∠DBE,又∵四边形BDEF是平行四边形,∴BD=EF,BF=ED,EF∥BD,∴∠FEB=∠DBE,∴∠FBE=∠BEF,∴BF=EF,∴BD=EF=BF=ED,又∵BD=CD=6,∴BD=EF=BF=ED=6,∴四边形BDEF的周长=6×4=24.【点评】本题考查了平行四边形的判定和性质,等腰三角形的判定,平行线的性质等知识;熟练掌握平行四边形的判定与性质和等腰三角形的判定是解题的关键.20.如图,四边形ABCD是平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)若BF恰好平分∠ABE,连接AC、DE,求证:四边形ACED是平行四边形.【分析】(1)根据平行四边形的性质得出AD∥BC,AB=CD,根据平行线的性质得出∠DAE=∠AEB,求出∠BAE=∠AEB,根据等腰三角形的判定得出即可;(2)根据等腰三角形的性质得出AF=EF,求出△ADF≌△ECF,根据全等三角形的性质得出DF=CF,再根据平行四边形的判定得出即可.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB,∴BE=CD;(2)∵BE=AB,BF平分∠ABE,∴AF=EF,在△ADF和△ECF中,{∠DAE =∠AEBAF =EF ∠AFD =∠EFC, ∴△ADF ≌△ECF (ASA ),∴DF =CF ,又∵AF =EF ,∴四边形ACED 是平行四边形.【点评】本题考查了平行四边形的性质和判定,全等三角形的性质和判定,等腰三角形的判定和平行线的性质等知识点,能综合运用定理进行推理是解此题的关键.21.如图,在平行四边形ABCD 中,AE 、CF 分别平分∠BAD 和∠BCD ,AE 交BC 于点E ,CF 交AD 于点F .(1)如图1,求证:BE =DF ;(2)如图2,连接BD 分别交AE 、CF 于点G 、H ,连接AH ,CG ,CF ,EH ,AH 与GF 交于点M ,EH 与GC 交于点N ,请直接写出图中所有的平行四边形(平行四边形ABCD 除外).【分析】(1)证△ABE ≌△CDF (ASA ),即可得出结论;(2)先证四边形AECF 是平行四边形,得AE ∥CF ,AE =CF ,再证△DAG ≌△BCH (ASA ),得AG =CH ,又∵AG ∥CH ,则四边形AGCH 是平行四边形,然后证四边形EGFH 是平行四边形,最后得四边形MGNH 是平行四边形即可.【解答】(1)证明:∵四边形ABCD 是平行四边形,∴∠B =∠D ,∠BAD =∠BCD ,AB =CD ,∵AE 、CF 分别平分∠BAD 和∠BCD ,∴∠BAE =12∠BAD ,∠DCF =12∠BCD , ∴∠BAE =∠DCF ,在△ABE 和△CDF 中,{∠B =∠DAB =CD ∠BAE =∠DCF, ∴△ABE ≌△CDF (ASA ),∴BE =DF ;(2)解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,由(1)得:∠DAE =∠BCF ,BE =DF ,∴CE =AF ,∴四边形AECF 是平行四边形,∴AE ∥CF ,AE =CF ,∵AD ∥BC ,∴∠ADG =∠CBH ,在△DAG 和△BCH 中,{∠ADG =∠CBHAD =CB ∠DAG =∠BCH, ∴△DAG ≌△BCH (ASA ),∴AG =CH ,又∵AG ∥CH ,∴四边形AGCH 是平行四边形,∴AH ∥CG ,∵AE =CF ,∴AE ﹣AG =CF ﹣CH ,即EG=FH,∴四边形EGFH是平行四边形,∴EH∥GF,又∵AH∥CG,∴四边形MGNH是平行四边形,∴图中所有的平行四边形(平行四边形ABCD除外)为平行四边形AECF、平行四边形AGCH、平行四边形EGFH、平行四边形MGNH.【点评】本题考查了平行四边形的判定与性质、全等三角形的判定与性质以及平行线的性质等知识;熟练掌握平行四边形的判定与性质和全等三角形的判定与性质是解题的关键.22.如图,平行四边形ABCD中,E、F是对角线BD上不同的两点,添加个条件,使得四边形AECF为平行四边形.(1)现有四个条件:①BE=DF;②AF∥CE;③AE=CF;④∠BAE=∠DCF.你添加的条件是:①BE=DF,②AF∥CE,④∠BAE=∠DCF.(填一个序号即可)(2)在(1)的基础上,求证:四边形AECF是平行四边形.【分析】(1)根据平行四边形的判定解答即可;(2)根据平行四边形的判定解答即可.【解答】解:(1)填①②④的任意一个都正确;故答案为:①BE=DF,②AF∥CE,④∠BAE=∠DCF;(2)以①BE=DF为例,∵四边形ABCD是平行四边形,。

专题训练(3) 平行四边形的性质与判定的四种运用

专题训练(3) 平行四边形的性质与判定的四种运用

专题训练(三) 平行四边形的性质与判定的四种运用► 类型一 平行四边形与全等三角形1.用两个全等三角形最多能拼成________个不同的平行四边形.2.如图3-ZT -1,在平行四边形ABCD 中,分别以BC ,AD 为边作等边三角形BCM 和等边三角形AND ,MN 与AC 交于点O .求证:OM =ON .图3-ZT -13.如图3-ZT -2,△ABC 中,分别以AB ,AC 为边向三角形外作△ABD 和△ACE ,使AD =AB ,AE =AC ,∠BAD =∠CAE =90°.AH ⊥BC ,H 为垂足,点F 在HA 的延长线上,且AF =BC .求证:四边形AEFD 是平行四边形.图3-ZT -2► 类型二 平行四边形与等腰三角形4.如图3-ZT -3所示,在▱ABCD 中,AC 的垂直平分线交AD 于点E ,且△CDE 的周长为8,则▱ABCD 的周长是( )A .10B .12C .14D .16图3-ZT -35.如图3-ZT -4,在平行四边形ABCD 中,AB >AD ,按以下步骤作图:以点A 为圆心,小于AD 的长为半径画弧,与AB ,AD 分别交于点E ,F ,再分别以点E ,F 为圆心,大于12EF 的长为半径画弧,两弧交于点G ;作射线AG 交CD 于点H ,则下列结论中不能由条件推理得出的是( )A .AG 平分∠DAB B .AD =DHC .DH =BCD .CH =DH图3-ZT-46.如图3-ZT-5,平行四边形ABCD和平行四边形DCFE的周长相等,∠B+∠F=220°,则∠DAE的度数为________.图3-ZT-57.在▱ABCD中,AD=8,AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,且EF=2,则AB的长为________.8.如图3-ZT-6所示,如果▱ABCD的一内角∠BAD的平分线交BC于点E,且AE =BE,求▱ABCD各内角的度数.图3-ZT-69.如图3-ZT-7,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,EF∥AC.(1)求证:BE=AF;(2)若∠ABC=60°,BD=6,求四边形ADEF的面积.图3-ZT-7►类型三平行四边形中的中点问题10.如图3-ZT-8所示,在平行四边形ABCD中,AB=3 cm,BC=5 cm,对角线AC,BD相交于点O,则OA长的取值范围是()图3-ZT-8A.2 cm<OA<5 cmB.2 cm<OA<8 cmC.1 cm<OA<4 cmD.3 cm<OA<8 cm11.已知:如图3-ZT-9,四边形ABCD中,AC=7,BD=8,E,F,G,H分别是边AB,BC,CD,DA的中点,则四边形EFGH的周长是________.图3-ZT-912.如图3-ZT-10所示,▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=1,BC=5,则对角线BD=__________.图3-ZT-1013.如图3-ZT-11,AC,BD是四边形ABCD的对角线,E,F分别是AD,BC的中点,M,N分别是BD,CA的中点,求证:EF,MN互相平分.图3-ZT-1114.如图3-ZT-12所示,在▱ABCD中,M是BC的中点,且AM=9,BD=12,AD =10,求▱ABCD的面积.图3-ZT-12►类型四平行四边形中数学思想的运用15.整体思想如图3-ZT-13,在平行四边形ABCD中,对角线AC与BD交于点O,△AOB与△AOD的周长之和为11.4 cm,两对角线的长度之和为7 cm,则这个平行四边形的周长为________cm.图3-ZT-1316.转化思想——分散向集中转化如图3-ZT-14,等边三角形ABC的边长为7 cm,M为△ABC内任一点,MD∥AC,ME∥AB,MF∥BC,则MD+ME+MF=________.图3-ZT-1417.分类讨论思想如图3-ZT-15,直线a和b平行,直线a上有一个定点M和一个动点P,点P从点M开始以2 cm/s的速度向点A的方向运动;直线b上有两个定点E和N,EN=12 cm,动点Q以4 cm/s的速度从点E向点N的方向运动,则经过几秒后,以点P,Q,M,N为顶点的四边形是平行四边形?图3-ZT-15详解详析1.[答案] 32.证明:在平行四边形ABCD 中,AD ∥BC ,AD =BC , ∴∠OAD =∠OCB .∵在等边三角形BCM 和等边三角形AND 中, ∠NAD =∠MCB =60°,AN =AD ,BC =MC , ∴∠NAO =∠MCO ,AN =MC . 又∵∠AON =∠COM , ∴△AON ≌△COM ,∴OM =ON .3.证明:∵∠BAD =90°,点F 在HA 的延长线上, ∴∠DAF +∠BAH =90°.∵AH ⊥BC ,∴∠ABC +∠BAH =90°, ∴∠DAF =∠ABC .又∵AD =BA ,AF =BC , ∴△DAF ≌△ABC (SAS), ∴DF =AC ,∠ADF =∠BAC . ∵AE =AC ,∴AE =DF .∵∠DAE +∠BAC =180°, ∴∠DAE +∠ADF =180°, ∴AE ∥DF ,∴四边形AEFD 是平行四边形. 4.[答案] D5.[解析] D 根据作图可知,AG 平分∠DAB ,故A 正确;再由平行线的性质知∠BAH =∠DHA ,故∠DAH =∠DHA ,所以AD =DH ,再由AD =BC ,得DH =BC .所以应选D.6.[答案] 20° 7.[答案] 3或5[解析] 易知BE =AB =DC =FC .(1)如图①,当AE ,DF 在▱ABCD 内部没有交点时,AB =12×(AD -EF )=3;(2)如图②,当AE ,DF 在▱ABCD 内部相交时,AB =12×(AD +EF )=5.8.解:∵四边形ABCD 是平行四边形, ∴∠BAD =∠C ,∠B =∠D ,AD ∥BC , ∴∠BAD +∠B =180°,∠DAE =∠BEA . 又∵AE 平分∠BAD ,∴∠BAE =∠DAE , ∴∠BAE =∠BEA ,∴AB =BE .又∵AE =BE ,∴AB =BE =AE ,∴∠B =60°, ∴∠D =60°,∠BAD =∠C =120°.[点评] 当平行四边形中有角平分线、线段垂直平分线或特殊角(30°,60°角等)时,通常可以得到等腰三角形,反之亦然.9.解:(1)证明:∵DE ∥AB ,EF ∥AC ,∴∠ABD =∠BDE ,四边形ADEF 是平行四边形,∴AF =DE .∵BD 是△ABC 的角平分线, ∴∠ABD =∠DBE ,∴∠DBE =∠BDE ,∴BE =DE ,∴BE =AF .(2)如图,过点D 作DG ⊥AB 于点G ,过点E 作EH ⊥BD 于点H . ∵∠ABC =60°,BD 是∠ABC 的平分线, ∴∠ABD =∠EBD =30°, ∴DG =12BD =12×6=3.∵BE =DE ,∴BH =DH =12BD =3,∴EH =3,DE =2 3,∴四边形ADEF 的面积=DE ·DG =6 3.10.[答案] C 11.[答案] 15[解析] ∵EF 是△ABC 的中位线,∴EF 平行且等于12AC ,同理,HG 平行且等于12AC ,∴EF 平行且等于HG ,∴四边形EFGH 是平行四边形, ∴四边形EFGH 的周长=2(EF +FG )=2×(12×7+12×8)=15.12.[答案] 2 213.证明:如图,连接EM ,MF ∵FN 是△ABC 的中位线, ∴FN 平行且等于12AB ,同理,EM 平行且等于12AB ,∴FN 平行且等于EM ,∴四边形EMFN 是平行四边形, ∴EF ,MN 互相平分.14.解:如图,延长BC 至点E ,使CE =CM ,连接DE . ∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC ,∴AD ∥ME .又∵M 是BC 的中点,∴BC =2CM =2CE =2BM , ∴AD =ME =10,BE =15,∴四边形AMED 是平行四边形,∴DE =AM =9.∵BD 2+DE 2=122+92=225=152=BE 2,∴BD ⊥DE ,∴▱ABCD 的面积=2(△BDE 的面积-△DCE 的面积)=2×(12×9×12-12×9×12×13)=72.[点评] 在平行四边形的对角线互相平分这一性质中,体现出了线段中点的特点,有中点时就有可能有三角形的中线、中位线、线段垂直平分线等,需灵活处理,积累经验.15.[答案] 8.8[解析] △AOB 的周长等于AO +BO +AB ,而△AOD 的周长等于AO +DO +AD ,即两个三角形的周长之和为AB +AD +AC +BD .因为AC 与BD 的长度之和等于7 cm ,所以AB 与AD 的长度之和等于4.4 cm ,因此平行四边形的周长为8.8 cm.16.[答案] 7 cm[解析] 过点D 作DQ ∥MF ,延长FM 交AB 于点P ,易证△ADQ 和△DPM 为等边三角形, 故MD =PD ,MF =DQ =AD ,ME =BP ,所以MD +ME +MF 可转化为边AB 的长,等于7 cm. 17.解:设运动时间为t s ,则MP =2t cm ,QN =(12-4t )cm(t <3)或QN =(4t -12)cm(t >3). 当t <3时,如图①,因为MP ∥QN ,所以当MP =QN 时,四边形PQNM 为平行四边形, 即2t =12-4t ,解得t =2;当t >3时,如图②,因为MP ∥QN ,所以当MP =QN 时,四边形PNQM 为平行四边形, 即2t =4t -12,解得t =6.所以经过2 s或6 s后,以点P,Q,M,N为顶点的四边形为平行四边形.。

平行四边形专题训练题

平行四边形专题训练题

平行四边形专题训练题.txt平行四边形专题训练题1. 题目:已知ABCD是一个平行四边形,AB = 10 cm,BC = 8 cm。

求平行四边形的周长和面积。

解答:由于ABCD是一个平行四边形,所以AB || CD,BC || AD。

平行四边形的周长等于四边的长度之和。

周长 = AB + BC + CD + AD= 10 cm + 8 cm + 10 cm + 8 cm= 36 cm平行四边形的面积可以通过底边和高来计算。

底边是AB或CD的长度,高是BC或AD的长度。

面积 = 底边 ×高= AB × BC= 10 cm × 8 cm= 80 cm²2. 题目:已知ABCD是一个平行四边形,AB = 5 cm,BC = 12 cm,DE = 3 cm,AD ⊥ BC。

求平行四边形的周长和面积。

解答:由于ABCD是一个平行四边形,所以AB || CD,BC || AD。

AD ⊥ BC,说明AD和BC垂直相交,可以得出AD和BC是高和底边。

平行四边形的周长等于四边的长度之和。

周长 = AB + BC + CD + AD= 5 cm + 12 cm + 5 cm + 12 cm= 34 cm平行四边形的面积可以通过底边和高来计算。

面积 = 底边 ×高= BC × DE= 12 cm × 3 cm= 36 cm²3. 题目:已知ABCD是一个平行四边形,AC = 20 cm,BD =16 cm,从D、E、F分别向AB、BC、CD引垂线,垂足分别为G、H、I。

若DE = 6 cm,FG = 4 cm,IH = 8 cm,求平行四边形的周长和面积。

解答:由于ABCD是一个平行四边形,所以AB || CD,BC || AD。

从D、E、F向AB、BC、CD引垂线,在相应的垂足上形成三个三角形,它们的边长和面积可以通过给定的信息计算。

DE = 6 cm,FG = 4 cm,IH = 8 cm。

专题训练 平行四边形动点经典题型

专题训练 平行四边形动点经典题型

-3,0),(0,的坐标分别是(6),动点P如图,在平面直角坐标系中,点A从点,OB出发,沿轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造平行四边形PCOD.在线段OP延长线上一动点E,且满足PE=AO.(1)当点C在线段OB上运动时,求证:四边形ADEC为平行四边形;(2)当点P运动的时间为秒时,求此时四边形ADEC的周长是多少如图,在平面直角坐标系中,OABC的顶点A,C的坐标分别为(10,0),(2,4),点D是OA的中点,点P在BC上由点B向点C运动,速度为2cm/s是平行四PCDA运动多少秒时,四边形P)当点1(.P的坐标;边形并求此时点(2)当△ODP是等腰三角形时,求点P的坐标.如下图,梯形ABCD中,AD∥BC,AD=24cm,AB=8cm,BC=26cm,∠B=90°,动点P从A开始沿AD边向D以1cm/s的速度运动,动点Q从点C开始沿CB以3cm/s的速度向点B运动、P、Q同时出发,当其中一点到达顶点时,另一点也随之停止运动,设运动时间为t(s),(1)问t为何值时,四边形PQCD是平行四边形?可能是菱形吗为什么PQCD)在某一时刻,四边形2(ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E已知,矩形、F,垂足为O。

(1)如图1,连接AF、CE,求四边形AECF为菱形,AF的长;(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周,即点P自A→F→B→A停止,点Q自C→D→E→C停止,在运动过程中,①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值。

②若点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点满足的数量关系式。

平行四边形专题训练

平行四边形专题训练

平行四边形专题训练11、不能判定一个四边形是平行四边形的条件是【 】A . 两组对边分别平行B . 一组对边平行,另一组对边相等C . 一组对边平行且相等D . 两组对边分别相等2、如图,四边形ABCD 是平行四边形,点E 在边BC 上,如果点F 是边AD 上的点,那么△CDF 与△ABE 不一定全等的条件是【 】A .DF =BEB .AF =CEC .CF =AED .CF ∥AE3、如图,在平行四边形ABCD 中,AB =3cm ,BC =5cm ,对角线AC ,BD 相交于点O ,则OA 的取值范围是【 】A .2cm <OA <5cmB .2cm <OA <8cmC .1cm <OA <4cmD .3cm <OA <8cm4、如图,平行四边形ABCD 的对角线相交于点O ,且AB ≠AD ,过O 作OE ⊥BD 交BC 于点E .若△CDE 的周长为10,则平行四边形ABCD 的周长为 .5、如图1, D,E,F 分别在△ABC 的三边BC,AC,AB 上,且DE ∥AB, DF ∥AC, EF ∥BC,则图中共有_______________个平行四边形,分别是_______________________________________.6、如图2,在ABCD 中,AD =8,点E 、F 分别是BD 、CD 的中点,则EF = .图(1) 图(2) (3) 图(4)7、如图3,平行四边形ABCD 中,E,F 是对角线AC 上的两点,连结BE,BF,DF,DE,添加一个条件使四边形BEDF 是平行四边形,则添加的条件是______________(添加一个即可). 8、如图4,在△ABC 中,∠ACB =90°,D 是BC 的中点,DE ⊥BC ,CE //AD ,若AC =2,CE =4,则四边形ACEB 的周长为 。

9、如图,四边形ABCD 中,AD ∥BC ,AE ⊥AD 交BD 于点E ,CF ⊥BC 交BD 于点F ,且AE =CF .求证:四边形ABCD 是平行四边形.FED CBAGFEDCBA【课堂练习1】1、如图,已知四边形ABCD是平行四边形,若点E、F分别在边BC、AD上,连接AE、CF,请再从下列三个备选条件中,选择添加一个恰当的条件.使四边形AECF是平行四边形,并予以证明,备选条件:AE=CF,BE=DF,∠AEB=∠CFD,我选择添加的条件是:(注意:请根据所选择的条件在答题卡相应试题的图中,画出符合要求的示意图,并加以证明)2变式训练:已知如图:在ABCD中,延长AB到E,延长CD到F,使BE=DF,则线段AC 与EF是否互相平分?说明理由.强化训练:1、在ABCD中,如果EF∥AD,GH∥CD,EF与GH相交与点O,那么图中的平行四边形一共有().(A)4个(B)5个(C)8个(D)9个2、在下面给出的条件中,能判定四边形ABCD是平行四边形的是()A.AB=BC,AD=CDB.AB∥CD,AD=BCC.AB∥CD,∠B=∠DD.∠A=∠B,∠C=∠D3、下面给出的条件中,能判定一个四边形是平行四边形的是()A.一组对边平行,另一组对边相等B.一组对边平行,一组对角互补C.一组对角相等,一组邻角互补D.一组对角相等,另一组对角互补4、角形三条中位线的长分别为3、4、5,则此三角形的面积为().(A)12 (B)24 (C)36 (D)485、在平行四边形ABCD 中,∠A :∠B :∠C :∠D 的值可以是 ( ) (A )1:2:3:4 (B ) 3:4:4:3 (C ) 3:3:4:4 (D ) 3:4:3:46、 能够判定一个四边形是平行四边形的条件是 ( ) A. 一组对角相等 B. 两条对角线互相平分 C. 两条对角线互相垂直 D. 一对邻角的和为180°7、四边形ABCD 中,AD ∥BC,要判定ABCD 是平行四边形,那么还需满足 ( ) A. ∠A+∠C=180° B. ∠B+∠D=180° C. ∠A+∠B=180° D. ∠A+∠D=180°8、如图,□ABCD 中,对角线AC ,BD 相交于点O ,将△AOD 平移至△BEC 的位置,则图中与OA 相等的其它线段有( ).(A)1条 (B)2条 (C) 3条 (D) 4条9、如图,AD ∥BC ,AE ∥CD ,BD 平分∠ABC ,求证:AB=CE .10、如图,点G 、E 、F 分别在平行四边形ABCD 的边AD 、DC 和BC 上,DG =DC ,CE =CF ,点P 是射线GC 上一点,连接FP ,EP . 求证:FP =EP .11、(1) 如图,平行四边形ABCD 中,AB=5cm, BC=3cm, ∠D 与∠C 的平分线分别交AB 于F,E, 求AE, EF, BF 的长?(2) 上题中改变BC 的长度,其他条件保持不变,能否使点E,F 重合,点E,F 重合时BC 长多少?求AE,BE 的长.FEDCBA平行四边形专题训练2(1)如图(1)所示,矩形ABCD的两条对角线相交于点O,若∠AOD=60°,OB=•4,•则DC=_______.(2) 若矩形的对角线长为4cm,一条边长为2cm,则此矩形的面积为()A.83cm2B.43cm2C.23cm2D.8cm2图(1)图(2)图(3)【课堂练习1】1、矩形具有而一般平行四边形不具有的性质是()A.对角线相等 B.对角相等 C.对边相等 D.对角线互相平分2、如图(2)所示,在矩形ABCD中,∠DBC=29°,将矩形沿直线BD折叠,顶点C落在点E处则∠ABE的度数是()A.29° B.32° C.22° D.61°3、矩形ABCD的周长为56,对角线AC,BD交于点O,△ABO与△BCO的周长差为4,•则AB的长是()A.12 B.22 C.16 D.264、如图(3)所示,在矩形ABCD中,E是BC的中点,AE=AD=2,则AC的长是()A.5 B.4 C.23 D.75、矩形的三个顶点坐标分别是(-2,-3),(1,-3),(-2,-4),那么第四个顶点坐标是() A.(1,-4) B.(-8,-4) C.(1,-3) D.(3,-4)例2:如图所示,在矩形ABCD中,对角线AC,BD交于点O,过顶点C作CE∥BD,交A•孤延长线于点E,求证:AC=CE.【课堂练习2】已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.①求证:CD=AN;②若∠AMD=2∠MCD,求证:四边形ADCN是矩形.变式训练:如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.(1)试找出一个与△AED全等的三角形,并加以证明.(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH 的值,并说明理由.三、强化训练:1、已知四边形ABCD是平行四边形,请你添上一个条件:________,使得平行四边形ABCD是矩形.2、如图1所示,平行四边形ABCD的对角线AC和BD相交于点O,△AOD是正三角形,AD=4,则这个平行四边形的面积是________.3、在Rt△ABC中,∠ACB=90°,CD是边AB上的中线,若AB=4,则CD=_______.4、如图2所示,在Rt△ABC中,∠ACB=90°,CD是边AB上的中线,若∠ADC=70°,则∠ACD=_______.(1) (2) (3)5、如图3所示,在△ABC中,AD⊥BC于点D,点E,F分别是AB,AC的中点,若AB=8,BC=7,AC=5,则△DEF的周长是________.6、若顺次连结一个四边形的四边中点所组成的四边形是矩形,则原四边形一定是() A.一般平行四边形 B.对角线互相垂直的四边形 C.对角线相等的四边形 D.矩形7、平行四边形的四个内角角平分线相交所构成的四边形一定是()A .一般平行四边形B .一般四边形C .对角线垂直的四边形D .矩形 8、如图4所示,在四边形ABCD 中,∠BDC=90°,AB ⊥BC 于B ,E 是BC•的中点,•连结AE ,DE ,则AE 与DE 的大小关系是( )A .AE=DEB .AE>DEC .AE<DED .不能确定9、如图5所示,将一张矩形纸片ABCD 的角C 沿着GF 折叠(F 在BC 边上,不与B ,C 重合)使得C 点落在矩形ABCD 内部的E 处, FH 平分∠BFE,则∠GFH 的度数a 满足( ) A .90°<α<180° B .α=90° C .0°<α<90° D .α随着折痕位置的变化而变化10、如图所示,在平行四边形ABCD 中,M 是BC MAD=∠MDA ,求证:四边形ABCD 是矩形.11、 如图所示,在矩形ABCD 中,F 是BC 边上一点,AF 的延长线交DC 的延长线于G ,DE ⊥AG 于E ,且DE=DC ,请不添辅助线在图中找出一对全等三角形,并证明之.12、如图所示,在矩形ABCD 中,AB=5cm ,BC=4cm ,动点P 以1cm/s 的速度从A 点出发,•经点D ,C 到点B ,设△ABP 的面积为s (cm 2),点P 运动的时间为t (s ). (1)求当点P 在线段AD 上时,s 与t 之间的函数关系式; (2)求当点P 在线段BC 上时,s 与t 之间的函数关系式;(3)在同一坐标系中画出点P 在整个运动过程中s 与t 之间函数关系的图像.)(4)(5)平行四边形专题训练3(1)菱形的周长为12 cm,相邻两角之比为5∶1,那么菱形对边间的距离是()A.6 cmB.1.5 cmC.3 cmD.0.75 cm(2)如图(1),在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,则∠EAF等于()A.75°B.60°C.45°D.30°图(1)图(2)(3)如图2,已知菱形ABCD中,AE⊥BC于E,若S菱形ABCD=24,且AE=6,则菱形的边长为()A.12B.8C.4D.2【课堂练习1】1、菱形的边长是2 cm,一条对角线的长是23cm,则另一条对角线的长是_____________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B A D
C E O
B
A D C 平行四边形专题训练
一、选择题:
1.在平行四边形ABCD 中,∠A :∠B=7:2,则∠C 等于( ) A.40° B.80° C.120° D.140°
2.若从等腰三角形底边上的任意一点作两腰的平行线, 则所成的平行四边形的周长等
于这个等腰三角形的( )
3.如图所示,四边形ABCD 是CEFG 均为平行四边形,则下列错误的等式是( )
A.∠1+∠8=180°
B.∠4+∠6=180°;
C.∠2+∠8=180°
D.∠1+∠5=180°
8
76
5
132
4
G
B
A
D
F
C E O
B
A
D
F C
E
G H
B
A M D
F C
E
(第3题) (第4题) (第7题)
4.如图所示,在ABCD 中,EF 过对角线AC,BD 的交点O,若AB=4,AD=3,OF=1.3,那么,四
边形BCEF 的周长为( )
A.8.3
B.9.6
C.12.6
D.13.6
5.以不共线三点A,B,C 为顶点的平行四边形共有( ) A.1 B.2 C.3 D.无数个
6.平行四边形的一条对角线和一边垂直,且邻边之比是1:2, 那么平行四边形相邻内角
之比是( ) A.1:1 B.1:2 C.1:3 D.1:4
7.如图所示,在ABCD 中,EF ∥BC,GH ∥AB,EF,GH 的交点M
在对角线BD 上,则图中面积相等的两个平行四边形是( ) A. GMFD 和GMEA; B.AEMG 和FMHC; C.AEMG 和EBHM; D.GMFD 和FMHC 8.如图所示,在ABCD 中,E 是BC 边上的三分之一点,则ABE S :ABCD
S
的值为( )
A.
12 B.14 C.16 D.18
二、填空题:
1.若平行四边形的周长为16厘米,且两邻边长度相等,
若高为2厘米,则这个四边形最大内角的度数是_________.
2.如图5所示,平行四边形ABCD 的周长为60厘米,对角线相交于点O,△BOC 的周长比△
AOB 的周长小8厘米,则AB,BC 的长分别为______厘米. 三、创新题:
1.如图所示,试用几种方法将平行四边形ABCD 分成面积相等的两部分,并用文字说明你
的设计方法,并讲述其道理.
(1)
(2)
(3)(4)
2.用九个全等的等边三角形,按图拼成一个几何图案,从该图案中可找出多少个平行四
边形
?
3.如图所示,BC 为固定的木条,AB,AC 为可伸缩的橡皮筋,当A 点在与BC 平行的轨道上滑
动时,你能说明△ABC 的面积将如何变化呢?
B
A C
四、竞赛题: 如图所示,设P 为
ABCD 内一点,过点P 分别作AB,AD 的平行
线交平行四边形的四边于E,F,G,H 四点,若AHPE
S =3,
PFCG
S
=5,则PBD S =_______.
五、中考题:
1.(2002,云南)如图所示,已知平行四边形ABCD 的周长为56cm,AB=12cm,则AD 的长为()
A.14cm;
B.16cm;
C.18cm;
D.20cm
B A D
C B
A D C
E
2.(2002,浙江)如图所示,在平行四边形ABCD 中,若DB=CD,∠C=70°,AE ⊥BD 于E,则∠
DAE=_______.
3.(2002.浙江)如图所示,在ABCD 中,E,F 分别AB,CD 上的点,且AE=CF,试说明DE=BF.
B
A
D F C
E
4.(2002.四川)如图所示,已知在四边形ABCD 中,AB=CD,AD=BC,点E 在BC 上,点F 在AD
上,AF=CE,EF 与对角线BD 相交于点O,试说明O 是BD 的中点.
B
A
D
F C
E O
答案:
一、1.D 2.C 3.A 4.B 5.C 6.B 7.B
8.C[提示:因为AD ∥BC,则平行线间距离相等,
S △ABE =
1
2
BE ×高, ABCD
S = BC ×高=3BE ×高, ∴
1
1236
ABE ABCD
BE S S BE ⨯==⨯高
高]
二、1.150° 2.19cm,11cm[提示:在ABCD 中,因为AB=CD,BC=AD,所以2(AB+ BC)=60,即AB+BC=30,①因为平行四边形的对角线互相平分,所以AO=CO,BO=DO, 所以△AOB 的周长-△BOC 的周长=(AB+OB+OC)-(BC+OB+OC)=AB+OB+OA-BC-OB-OC=AB-BC=8 ②由①②可得AB=19cm ,BC=11cm.] 三、
1.如图所示,
过平行四边形的中心任意一条直线都能将平行四边形的面积平分,由平行四边形是中心对称图形可得此法
.
2.共有平行四边形15个.
3.提示:△ABC 的面积不发生变化,因为S △ABC =
1
2
BC ×高,且因为BC 不变,BC 与L 平行,平行线间距离不变,即高不变,所以面积的值不变.
四、提示:平行四边形ABCD 的面积等于四个小平行四边形的面积之和.△PBD 的面积可转
化为111
2
2
2
EPGD
PHBF
GPFC ABCD
S
S S
S ⎛⎫+- ⎪⎝⎭ 来计算.
解:设EPGD
S =m, HBFP
S
=n, 则11,,22
PDG BPF S m S n ∆∆=
= ∴ 358ABCD
S
m n m n =+++=++,
∴111
()5(8)1222
PBD DPG PBF PFCG
DBC S S S S
S m n m n ∆∆∆∆⎛⎫=++-=++-++= ⎪⎝⎭
五、1.B 2.20°
3.解:在ABCD 中,因为AB ∥CD,AB=CD,又因为AE=CF,所以AB-AE=CD-CF,即BE= DF,
所以BE ∥DF,BE=DF.所以四边形DEBF 是平行四边形,所以DE=BF.
4.提示:本题是考查平行四边形的性质与识别方法的综合题,要使O 是BD 的中点,应根
据已知条件和图形特征,先判定四边形BEDF 为平行四边形.
解:连结BF,DE,因为AB=CD,AD=BC,所以四边形ABCD 是平行四边形,所以AD ∥BC, 又
因为AD=BC,AF=CE,所以DF=BE,即DF ∥BE,DF=BE,所以四边形BEDF 是平行四边形.由平行四边形对角线互相平分,得BO=DO,OF=OE,所以O 是BD 的中点.。

相关文档
最新文档