人教版八年级下册数学 菱形的性质(导学案)
菱形的定义和性质导学案

菱形的定义和性质【教学目标】知识于技能1.经历菱形的性质的探究过程。
2.掌握菱形的两条性质。
过程与方法1经历菱形的性质的探究过程,培养学生的动手实验、观察推理的意识,发展学生的形象思维和逻辑推理能力2根据菱形的性质进行简单的证明,培养学生的逻辑推理能力和演绎能力。
情感与态度1在探究菱形的性质的活动中获得成功的体验。
2过运用菱形的性质,锻炼克服困难的意志,建立自信心【教学重难点】重点:菱形性质的探求难点:菱形性质的探求和应用【导学过程】【创设情景,引入新课】一、知识链接:1.(复习)什么叫做平行四边形平行四边形有哪些性质呢2.(引入)我们已经学习了平行四边形,其实还有特殊的平行四边形,如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形二、教材预习学法指导:课前独学教材预习内容,总结本节课的重点、难点、注意点。
课堂再以小组为单位交流,找出还存在的问题,并在小黑板上扼要展示本节重点内容和存在的问题。
注意双色笔的使用,书写工整。
X B 1 c o m1、预习内容:自学课本2页—3页,完成随堂练习。
1将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,再打开,你发现这是一个什么样的图形呢2、叫做菱形3、观察右图:回答菱形是轴对称图形吗()有条对称轴对称轴之间有什么位置关系你能看出图中哪些线段或角相等吗2、预习测试:1、菱形的定义:叫做菱形。
菱形是的平行四边形。
2、从菱形的意义可以探究菱形具有的性质:(1)菱形具有平行四边形具有的一切性质:。
(2)菱形与平行四边形比较又有其特殊的性质(探究、归纳、)特殊的性质1:。
几何语言为:特殊的性质2:几何语言为:【自主探究】学法指导:课前独学,解决会的,有问题的上课对子或小组交流,形成共识,进行课堂大展示。
展示时要讲清所用知识点、易错点。
展示到小黑板的题要标清所用知识点、易错点;注意双色笔的使用,字体工整。
探究点一:菱形性质1的应用.1、已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE探究点二:菱形性质2的应用2、已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE.探究点三:性质的综合应用3、在菱形ABCD中,E、F分别是BC、CD上的点,且CE=CF,过点C做CG∥EA交FA于H ,交AD于G,若∠BAE=25°,∠BCD=130°,求∠AHC的度数。
菱形的性质(导学案)-八年级数学下册同步备课系列(人教版)

人教版初中数学八年级下册18.2.3菱形的性质导学案一、学习目标:1.了解菱形的概念及其与平行四边形的关系.2.探索并证明菱形的性质定理.3.应用菱形的性质定理解决相关计算或证明问题.重点:掌握菱形的定义和性质及菱形面积的求法.难点:灵活运用菱形的性质解决问题.二、学习过程:课前自测前面我们学习了平行四边形和矩形,知道了矩形是由平行四边形角的变化得到,如果平行四边形有一个角是______时,就成为了______.自主学习如果从边的角度,将平行四边形特殊化,内角大小保持不变仅改变边的长度让它有一组邻边相等,这个特殊的平行四边形叫什么呢?【归纳】有一组邻边______的平行四边形叫做______.【针对练习】下列哪个图形能够反映四边形、平行四边形、菱形的关系的是()合作探究折一折、剪一剪将一张长方形的纸对折、再对折,然后沿图中的虚线剪下,打开后你知道它是什么图形吗?(请把得到的图形画在下图的右侧空白处)从中你能得到菱形的哪些性质?________________________________;_________________________________________________________.几何符号语言:∵______________________∴_______________________________________________________________求证:菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.已知:如图,菱形ABCD的对角线相交于O点.求证:AC⊥BD,AC平分∠BAD和∠BCD,BD平分∠ABC和∠ADC.如图,比较菱形的对角线和平行四边形的对角线,我们发现,菱形的对角线把菱形分成四个全等的三角形,而平行四边形通常只被分成两对全等的三角形.由菱形两条对角线的长,你能求出它的面积吗?典例解析例1.如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=12cm,AC=6cm,求菱形的周长.【针对练习】四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=5,AO=4.求AC和BD的长.例2.如图,菱形花坛ABCD的边长为20m,∠ABC=60°,沿着菱形的对角线修建了两条小路AC和BD,求两条小路的长.【针对练习】已知菱形的两对角线的长分别是6和8,求菱形的周长和面积.例3.如图,E为菱形ABCD边BC上一点,且AB=AE,AE交BD于O,且∠DAE=2∠BAE,求证:OA=EB.【针对练习】如图,在菱形ABCD中,CE⊥AB于E,CF⊥AD于F.求证:AE=AF.例4.如图,在菱形ABCD中,点O为对角线AC与BD的交点,且在△AOB中,OA =5,OB=12.求菱形ABCD两对边的距离h.【针对练习】如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是8cm.求:(1)两条对角线的长度;(2)菱形的面积.达标检测1.菱形具有而一-般平行四边形不具有的性质是()A.对角相等B.对边相等C.对角线互相垂直D.对角线相等2.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC的长是()A.20B.15C.10D.53.菱形两条对角线分别为6和4,则菱形的周长是()A.24B.16C.413D.234.如图,在菱形ABCD中,AB=5,AC=6,过点D作DE⊥BA,交BA的延长线于点E,则线段DE的长为()125 B.185 C.4 D.2455.如图,P为线段AB上的一个点,分别以AP,PB为边在AB的同侧作菱形APCD 和菱形PBFE,点P,C,E在一条直线上.若∠DAP=60°,AP2+3PB2=1,M,N分别是对角线AC,BE的中点,则MN的长为()12 B.14 C.1 D.46.菱形的周长是8,则菱形的一边长是______.7.菱形的面积为24,一对角线长为6,则另一对角线长为_____,边长为_____.8.如图,一活动菱形衣架中,菱形的边均为16cm,若墙上钉子间的距离AB=BC=16cm,则∠1=______度.9.如图,菱形ABCD的一个内角∠BAD=80°,对角线AC,BD相交于点O,点E在AB上,且BE=BO,则∠EOA=_____度.10.如图,在边长为2的菱形ABCD中,∠ABC=120°,E,F分别为AD,CD上的动点,且AE+CF=2,则线段EF长的最小值是______.11.如图,在菱形ABCD中,E、F分别是BC、CD上的点,且BE=DF.求证:∠AEF=∠AFE.12.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.。
八年级数学下册 19.2.2 菱形的性质导学案 新人教版

八年级数学下册 19.2.2 菱形的性质导学案新人教版19、2、2 菱形的性质学习目标:1、自主学习菱形概念,知道菱形与平行四边形的关系、2、经历探究菱形性质过程;会用菱形的性质进行有关的论证和计算,会计算菱形的面积、3、通过运用菱形知识解决具体问题,提高分析能力和观察能力、学习重点:菱形的性质的探究及运用。
学习难点:菱形的性质及菱形知识的综合应用、一、自主学习:1、平行四边形的性质:、2、阅读:请你阅读课本P97-P98内容、3、操作:请准备好一张纸片,对折两次,折出一个直角,剪一刀,得到一个直角三角形,把所得的直角三角形展开,得到一个四边形,这个四边形的两组对边分别,它是一个四边形。
能否找出一组邻边相等?。
你认为它是一个形。
4、归纳:菱形的定义:。
5、举例:请你举出日常生活中菱形的实例:。
二、合作探究:1、观察:上面动手操作得到的菱形,你发现它的四边有什么关系?。
D对角线有什么的位置关系:。
A2、验证:命题1、菱形的四条边都;用符号语言表示C 已知:如图,四边形ABCD是菱形求证:AB=BC=CD=ADB 证明:命题2、菱形的对角线互相垂直,并且每一条对角线平分一组对角已知:求证: 证明:3、归纳:菱形的性质:、。
3、应用举例:1、请你完成P98例2、补充例1、如图3个全等的菱形构成的活动衣帽架,顶点A、E、F、C、G、H是上、下两排挂钩,根据需要可以改变挂钩之间的距离(比如AC两点可以自由上下活动),若菱形的边长为13厘米,要使两排挂钩之间的距离为24厘米,并在点B、M处固定,则B、M之间的距离是多少?例2、证明:菱形的面积是它两条对角线长的乘积的一半、4、知识小结:1、菱形的定义:。
2、菱形的性质:边:;角:;对角线: 、五、课堂检测:1、己知:如图,菱形ABCD中,∠B=60,AB=4,则以AC为边长的正方形ACEF的周长为、2、已知四边形ABCD是菱形,O是两条对角线的交点,AC=8cm,DB=6cm,这个菱形的边长是________cm、面积是:cm23、已知菱形的边长是5cm,一条对角线长为8cm,则另一条对角线长为______cm、(第1题)4、四边形ABCD是菱形,∠ABC=120,AB=12cm,则∠ABD的度数为____ ,∠DAB的度数为______;对角线BD=_______,AC=_______;菱形ABCD的面积为_______、5、下列图形中,即是中心对称图形又是轴对称图形的是()A、等边三角形B、菱形C、等腰梯形D、平行四边形6、如图,将一个长为10cm,宽为8cm的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为()ADEPCBFABEFCDABCDA、10cm2B、20cm2C、40cm2D、80cm2第6题图第7题图第8题图7、如图,在菱形ABCD中,∠A=110,E,F 分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=()A、35B、45C、50D、558、如图,在菱形ABCD中,∠BAD=80,AB的垂直平分线交对角线AC于点E,交AB于点F,F为垂足,连接DE,则∠CDE=_________9、已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,E、F、G、H分别是菱形ABCD各边的中点,求证:OE=OF=OG=OH、5、求证:菱形的对角线的交点到各边的距离相等。
菱形的判定(导学案)-八年级数学下册(人教版)

学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________人教版初中数学八年级下册18.2.4菱形的判定导学案一、学习目标:1.经历菱形判定定理的探究过程,掌握菱形的判定定理.2.会用这些菱形的判定方法进行有关的证明和计算.重点:菱形的判定定理的探究.难点:菱形的性质与判定的综合应用.二、学习过程:课前检测忆一忆1.菱形的定义:_____________________________________________.2.菱形的性质:________________________________________________________________________________________.合作探究探究:用一长一短两根细木条,在它们的中点处固定一个小钉,做成一个可转动的十字架,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形呢?_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________猜想:__________________________________________.已知:如图,在□ABCD 中,对角线AC、BD 相交于O 点,且BD⊥AC.求证:□ABCD是菱形.思考:我们知道,菱形的四条边相等.反过来,四条边相等的四边形是菱形吗?已知:如图,四边形ABCD,AB=BC=CD=AD.求证:四边形ABCD是菱形.【归纳】菱形的判定定理1:__________________________________________.菱形的判定定理2:__________________________________________._______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________定理1几何符号语言:∵_________________________,∴_________________________.定理2几何符号语言:∵_________________________,∴_________________________.典例解析例1.如图,□ABCD 的对角线AC、BD 交于点O,且AB=5,AO=4,BO=3.求证:□ABCD是菱形.【针对练习】一个平行四边形的一条边长是9,两条对角线的长分别是12和56,这是一个特殊的平行四边形吗?为什么?求出它的面积.例2.如图,两张等宽的纸条交叉叠放在一起,重合的四边形ABCD 是一个菱形吗?为什么?_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________例3.如图,矩形ABCD 的对角线AC 的垂直平分线与边AD、BC 分别交于点E、F.求证:四边形AFCE是菱形.【针对练习】如图,在△ABC 中,AD 是角平分线,点E、F 分别在AB、AD 上,且AE=AC,EF=ED.求证:四边形CDEF是菱形.例4.如图,在▱ABCD 中,AD >AB ,∠ABC 的平分线交AD 于点F ,EF ∥AB 交BC 于点E .(1)求证:四边形ABEF 是菱形;(2)若AB =5,AE =6,▱ABCD 的面积为36,求BC 的长._______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________【针对练习】如图,在平行四边形ABCD 中,对角线AC,BD 交于点O,过点O 作EF⊥BD,交AD 于点E,交BC 于点F,连接EB,DF.(1)求证:四边形EBFD 为菱形;(2)若∠BAD =105°,∠DBF =2∠ABE ,求∠ABE的度数.学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________达标检测1.平行四边形ABCD 中,AC,BD 是两条对角线,如果添加一个条件,即可推出平行四边形ABCD 是菱形,以下哪个条件不符合要求()A.AC⊥BDB.AC=BDC.AB=BCD.BC=CD2.顺次连接四边形ABCD 各边的中点所得的四边形是菱形,则四边形ABCD 一定是()A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形3.如图,AD 是△ABC 的中线,四边形ADCE 是平行四边形,增加下列条件,能判定□ADCE 是菱形的是()A.∠BAC=90°B.∠DAE=90°C.AB=ACD.AB=AE4.如图,已知线段AB,分别以A,B 为圆心,大于12AB 同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A.AB 平分∠CADB.CD 平分∠ACBC.AB ⊥CDD.AB=CD_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________5.如图,将等边三角形ABC 沿射线BC 向右平移到△DCE 的位置,连接AD,BD,则下列结论:①AD=BC;②BD,AC 互相平分;③四边形ACED是菱形.其中正确的是___________.6.一边长为5的平行四边形的两条对角线的长分别为24和26,则平行四边形的面积是_______.7.过矩形ABCD 的对角线AC 的中点O 作EF⊥AC,交BC 边于点E,交AD 边于点F,分别连接AE、CF.若AB=3,∠DCF=30°,则EF 的长为______.8.如图,在△ABC 中,AD 平分∠BAC,DF//AB,DE//AC.求证:四边形AEDF 是菱形._______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________9.如图,在矩形ABCD 中,E,F,G,H 分别是AB,BC,CD,AD 的中点.求证:四边形EFGH是菱形.10.如图,△ABC 中,AC 的垂直平分线MN 交AB 于点D,交AC 于点O,CE//AB 交MN 于E,连接AE、CD.(1)求证:AD=CE;(2)填空:四边形ADCE的形状是_______,并说明理由.学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________11.如图,四边形ABCD 是菱形,∠BAD=60°,点H 为对角线AC 的中点,点E 在AB 的延长线上,CE⊥AB,点F 在AD 的延长线上,CF⊥AD.(1)求证:四边形CEHF 是菱形;(2)若四边形CEHF 的面积为18,求菱形ABCD的面积.。
《菱形第2课时 菱形的性质》精品导学案 人教版八年级数学下册导学案(精品)

18.2.2菱形第2课时菱形的性质学习目标:1.探索并证明菱形的面积计算方法;2.应用菱形的性质定理解决相关的计算或证明问题.学习重点:应用菱形的性质定理解决相关的计算或证明问题.自主研习一、课前检测从菱形ABCD的钝角顶点A引BC边的垂线,恰好平分BC,求此菱形各角度数.二、温故知新1.菱形有哪些性质?试用几何语言表示这些性质.2.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.三、预习导航想一想: 1.菱形是特殊的平行四边形,那么能否利用平行四边形面积公式计算菱形ABCD的面积?2.前面我们已经学习了菱形的对角线互相垂直,那么能否利用对角线来计算菱形ABCD的面积呢?3.如图,四边形ABCD是菱形,对角线AC,BD交于点O,试用对角线表示出菱形ABCD的面积.解:∵四边形ABCD是菱形,∴AC⊥BD,∴S菱形ABCD =S△ABC+S△ADC=________+________=____AC(_____+_____)=_____________.要点归纳:菱形的面积 = 底×高 = ___________乘积的一半.四、自学自测如图,已知菱形ABCD的两条对角线长分别为6cm和8cm,试求菱形的高DE的长.五、我的疑惑(反思)一、要点探究探究点1:菱形的面积菱形的面积计算有如下方法:(1)一边长与菱形的高 (即两对边的距离)的积;(2)四个小直角三角形的面积之和(或一个小直角三角形面积的4倍);(3)两条对角线长度乘积的一半.即学即练:如图,在菱形ABCD中,点O为对角线AC与BD的交点,且在△AOB 中,OA=5,OB=12.求菱形ABCD两对边的距离h.二、精讲点拨探究点拨例5(教材P56例3变式)如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是8cm.求:(1)两条对角线的长度;(2)菱形的面积.方法总结:菱形中的相关计算通常转化为直角三角形或等腰三角形,当菱形中有一个角是60°时,菱形被分为以60°为顶角的两个等边三角形.三、变式训练如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm.求:(1)对角线AC的长度;(2)菱形ABCD的面积.四、课堂小结菱形的性质性质边:1.两组对边平行且相等; 2.四条边相等角:两组对角分别相等,邻角互补对角线:1.两条对角线互相垂直平分;2.每一条对角线平分一组对角有关计算1.周长=边长的四倍2.面积=底×高=两条对角线乘积的一半★1.菱形的周长为20 cm,两邻角的比为1:2,则较短对角线的长是________;一组对边的距离是____________.★2.菱形的对角线长分别为6和8,则这个菱形的周长是_______,面积是______.★3.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为.★4.如图,四边形ABCD是菱形,DE⊥AB交BA的延长线于E,DF⊥BC,交BC的延长线于F.请你猜想DE与DF的大小有什么关系?并证明你的猜想.星级达标★★5.如图,O 是菱形ABCD 对角线AC 与BD 的交点,CD =5cm ,OD =3cm ;过点C 作CE∥DB,过B 点作BE∥AC,CE 与BE 相交于点E. (1)求OC 的长;(2)求四边形OBEC 的面积.★★★6.如图,菱形ABCD 是边长为6,面积为28,试求AC+BD 的值.我的反思(收获,不足)分层作业必做(教材 智慧学习 配套) 选做参考答案:课前检测F 4 题图EDCB A试题分析:本题考查了菱形的性质以及等边三角形的判定与性质.首先连接AC ,由从菱形ABCD 的一个钝角的顶点A 向相对的一边BC 作垂线,垂足E 恰好为BC 的中点,易证得ABC ∆是等边三角形,继而求得答案. 详解:连接AC ,四边形ABCD 是菱形,AB BC ∴=,B D ∠=∠,AE BC ⊥,E 恰好为BC 的中点, AB AC ∴=, AB AC BC ∴==,即ABC ∆是等边三角形,60B ∴∠=︒,60D ∴∠=︒,∠A=∠C=120°.故答案为:60︒. 温故知新2.试题分析:在菱形ABCD 中,由SAS 证得ABE ADF ∆≅∆,再由等边对等角可得结论. 证明:ABCD 是菱形,AB AD ∴=,B D ∠=∠.又EB DF =,ABE ADF ∴∆≅∆,AE AF ∴=,AEF AFE ∴∠=∠.自学自测试题分析:先由菱形的性质和勾股定理求出边长,再根据菱形面积的两种计算方法,即可求出菱形的高.详解:如图所示:四边形ABCD 是菱形, 142OA AC ∴==,132OB BD ==,AC BD ⊥, 2222435AB OA OB ∴=+=+=, 菱形ABCD 的面积11862422AB DE AC BD ===⨯⨯=, 244.85DE ∴==. 即学即练:试题分析:先由菱形的性质和勾股定理求出边长,再根据菱形的面积公式求出菱形的高,即可得到菱形ABCD 两对边的距离h .详解:四边形ABCD 是菱形,∴AC BD ⊥,AC=2OA=10,BD=2OB=24. 在Rt △AOB 中,OA =5,OB =12, ∴AB=131252222=+=+OB OA .菱形ABCD 的面积=AB •h=12024102121=⨯⨯=•BD AC , ∴h=13120120=AB . 即菱形ABCD 两对边的距离h 为13120. 精讲点拨例题 试题分析:本题考查了菱形的性质以及含30︒角的直角三角形的性质.(1)由在菱形ABCD 中,ABC ∠与BAD ∠的度数比为1:2,周长是8cm ,可求得ABO ∆是含30︒角的直角三角形,2AB cm =,继而求得AC 与BD 的长;(2)由菱形的面积等于其对角线积的一半,即可求得答案. 详解:(1)四边形ABCD 是菱形,AB BC ∴=,AC BD ⊥,//AD BC , 180ABC BAD ∴∠+∠=︒,ABC ∠与BAD ∠的度数比为1:2,1180603ABC ∴∠=⨯︒=︒,1302ABO ABC ∴∠=∠=︒,菱形ABCD 的周长是8cm . 2AB cm ∴=, 112OA AB cm ∴==,OB ∴=22AC OA cm ∴==,2BD OB ==;(2))211222ABCD S AC BD cm =⋅=⨯⨯菱形. 变式训练试题分析:(1)根据菱形的性质可得BD AC ⊥,12AE CE AC ==,152BE DE BD cm ===,然后利用勾股定理计算出AE 长,进而可得答案;(2)根据菱形面积12ab =.(a 、b 是两条对角线的长度)进行计算即可.详解:(1)四边形ABCD 是菱形,BD AC ∴⊥,12AE CE AC ==,152BE DE BD cm ===, 菱形ABCD 是边长为13cm , 13AB cm ∴=,12()AE cm ∴,24AC cm ∴=.(2)菱形ABCD 的面积:2112410120()22AC DB cm ⨯⨯=⨯⨯=.答:菱形ABCD 的面积为2120cm . 星级达标:1.试题分析:根据已知可得较小的内角为60︒,从而可得到较短的对角线与菱形的一组邻边组成一个等边三角形,则较短的对角线的长等于菱形的边长;一组对边的距离即为等边三角形的高. 详解:因为菱形的两邻角的比为2:1,所以菱形的较小的角为60︒. 可得较短的对角线与菱形的一组邻边组成等边三角形. 则较短的对角线的长为等于菱形的边长2045cm ÷=. 一组对边的距离即为等边三角形的高5×23=235cm. 故答案为5cm ,235cm. 2.试题分析:由菱形的对角线长分别为6和8,根据菱形的面积等于对角线积的一半,可求得菱形的面积,由勾股定理可求得AB 的长,继而求得周长. 详解:如图,6AC =,8BD =, 四边形ABCD 是菱形,AC BD ∴⊥,132OA AC ==,142OB BD ==, 225AB OA OB ∴=+=,∴菱形的周长是:44520AB =⨯=,面积是:11682422AC BD =⨯⨯=. 故答案为:20,24.3.试题分析:根据菱形的边长等于一条对角线的长,说明该对角线和一组邻边组成等边三角形,从而可以判定菱形的一个内角为60︒,根据菱形的邻角之和为180︒可以求得邻角为18060120︒-︒=︒.详解:不妨设AC 为菱形ABCD 的短对角线,由题意知AB BC AC ==,ABC ∴∆为等边三角形. 即60B ∠=︒,根据菱形的性质,18060120BAD ∠=︒-︒=︒. 故答案是:60︒,120︒.4.试题分析:此题主要考查学生对菱形的性质及角平分线的性质的理解及运用.作辅助线DB ,根据菱形对角线平分一组对角,确定DB 为角平分线,运用角平分线的性质解答即可. 详解:DE DF =.证明:连接BD . 四边形ABCD 是菱形,CBD ABD ∴∠=∠.DF BC ⊥,DE AB ⊥,DF DE ∴=.5.试题分析:本题考查了菱形的性质以及矩形的判定,理解菱形的对角线的性质是解题的关键:(1)在直角OCD ∆中,利用勾股定理即可求解;(2)利用矩形的定义即可证明,再利用矩形的面积公式即可直接求解. 详解:(1)ABCD 是菱形,AC BD ∴⊥,∴直角OCD ∆中,2222534()OC CD OD cm =-=-=;(2)//CE DB ,//BE AC ,∴四边形OBEC 为平行四边形,又AC BD ⊥,即90COB ∠=︒,∴平行四边形OBEC 为矩形,0OB D =,()24312OBEC S OB OC cm ∴=⋅=⨯=矩形.6.试题分析:本题考查了菱形的性质,勾股定理,完全平方公式等知识.根据菱形的对角线互相垂直平分,可设对角线分别为2x 和2y ,利用勾股定理得到3622=+y x ,结合对角线之积利用配方法即可求解.详解:设对角线长分别为2x 和2y. 因为菱形的对角线互相垂直平分, 所以3622=+y x .① 又因为S=21×2x ×2y=28,即2xy=28. ② ①+②得 64)(2=+y x . ∴x+y=8(负值舍去). ∴AC+BD=2x+2y=16.。
菱形的性质与判定 导学案(1)

菱形的性质与判定导学案第一课时一、学习准备:1、叫做平行四边形2、平行四边形的性质:边角对角线对称性二、自主学习:叫做菱形。
菱形是的平行四边形。
性质:边:角:对角线:对称性:周长:面积:注意:菱形具有的一切性质。
思考:菱形具有而平行四边形不一定具有的性质有哪些?菱形是图形,对称轴有条,即两条所在的直线。
三、夯实基础:1、(1)菱形的对角线长为24和10,则菱形的边长为,周长为,面积为(2)在菱形ABCD中,已知∠ABC=60°,AC=4,则AB= 。
(3)菱形的两邻角之比为1:2,边长为2,则菱形的面积为__________.(4)已知菱形的面积等于80cm2,高等于8cm,则菱形的周长为 . (5)已知菱形ABCD的周长为20cm,∠A:∠ABC=1:2,则BD= cm. (6)在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,(如图)则∠EAF等于()A.75°B.60°C.45°D.30°(7)菱形ABCD,若∠A:∠B=2:1,∠CAD的平分线AE和边CD之间的关系是()A.相等B.互相垂直且不平分C.互相平分且不垂直 D.垂直且平分(8)如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为____________cm2.四、能力提升:1、已知菱形的周长为20cm,一条对角线长为5cm,求菱形各个角的度数.2、已知菱形ABCD的边长为2 cm,∠BAD=120°对角线AC、BD相交于点O,试求出菱形对角线的长和面积.2、如图,已知菱形ABCD的对角线交于点O,AC=16cm,BD=12cm,求菱形的高.。
菱形的性质导学案

19.2菱形的性质学习目标:1.了解菱形概念,知道菱形与平行四边形的关系.2.探索并掌握菱形的性质,会运用性质进行有关的证明和计算;会计算菱形的周长与面积.学习重点:探索并掌握菱形的性质,会运用性质进行有关的证明和计算.学习难点:探索菱形的性质及应用.学习过程:一、自主学习(15分钟)自学课本,思考下列问题:1. 如何从一个平行四边形中剪出一个菱形来定义: 的平行四边形叫做菱形。
生活中的菱形有 。
2. 课本110页“做一做”剪出的图形是什么图形?有什么性质呢?①所得四边形为什么一定是菱形?(提示:从定义出发思考)②菱形是轴对称图形吗?对称轴是什么?是中心对称图形吗?对称中心呢?③你能从菱形的对称性中得到菱形所具有的特有性质吗?请尝试证明菱形的对角线互相垂直。
已知:求证:证明:④你能用几何语言来描述菱形的性质吗?性质1、菱形的四条边________。
性质2、菱形的对角线互相____,且每一条对角线_________一组对角。
几何语言:∵四边形ABCD 为菱形 几何语言:∵四边形ABCD 为菱形∴_____________________ ∴______________________3.在菱形ABCD 中,BC=5,AC=6,BD=8,求菱形ABCD 的周长、面积和高。
总结:菱形的周长C=面积S= =二、合作探究(10分钟)三、展示反馈(6分钟)1.菱形的对角线的长分别是6cm 和8cm ,菱形的周长为 cm,面积为 cm 2。
2.如图,菱形花坛ABCD 的边长为20dm ,∠ABC=60°沿菱形的两条对角线修建了两条小路AC 和BD ,求两条小路的长和花坛的面积。
四、达标检测(10分钟)1. 的平行四边形叫做菱形.2.菱形除具有平行四边形的性质外,还具有一些特殊性质,四条边_______,对角线__________.3.菱形的对角线长分别为10和24,则这个菱形的周长是 ,面积是 .4.下面性质中,菱形不一定具有的是( )A.对角线相等 B .是中心对称图形C.是轴对称图形 D .对角线互相平分5.如图是边长为16cm 的活动菱形衣帽架,若墙上钉子间的距离AB=BC=16cm ,则∠1= .※ 菱形的周长为24 cm ,两邻角的比为1:2,则较短对角线的长是 ;一组对边的距离是 .教学反思:1 CB A19.2菱形的性质学习目标:1.了解菱形概念,知道菱形与平行四边形的关系.2.探索并掌握菱形的性质,会运用性质进行有关的证明和计算;会计算菱形的周长与面积.学习重点:探索并掌握菱形的性质,会运用性质进行有关的证明和计算.学习难点:探索菱形的性质及应用.学习过程:一、自主学习(10分钟)自学课本,思考下列问题:3. 如何从一个平行四边形中剪出一个菱形来定义: 的平行四边形叫做菱形。
菱形的性质导学案

1.1菱形的性质【基础知识】1.菱形的定义符号语言:∵四边形ABCD是平行四边形,且AB=BC,∴四边形ABCD是菱形 .温馨提示:形,不能错误地认为有一组邻边相等的四边形就是菱形;③菱形的定义既提供了菱形的基本性质,也提供了基本判定方法。
2.菱形的性质(1)菱形具有平行四边形的所有性质.菱形中的全等三角形:点拨:有关菱形问题可转化为直角三角形或等腰三角形的问题来解决(转化思想). 温馨提示:①菱形具有平行四边形的一切性质;②“菱形的对角线互相垂直”这一性质可用来证明两条线段互相垂直,“菱形的每一条对角线平分一组对角”这一性质可用来证明角相等;③菱形的两条对角线分菱形为四个全等的直角三角形。
【基础训练】1、在菱形ABCD中,对角线AC与BD相交于点O,∠BAD=60°,BD=6,求菱形的边长AB和对角线AC的长。
2.如图,3.菱形ABCDA. 28、48B.20、24C.28、24D.20、484.如图,在菱形ABCD中,AB=5,∠B:∠BCD=1:2,则对角线AC等于()A. 5B. 10C. 15D. 20【能力提升】5.如图,已知菱形ABCD的周长为16,面积为,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为( )A. 2B. 2C. 4D. 47.如图,已知E、F分别是▱ABCD的边BC、AD上的点,且BE=DF .(1)求证:四边形AECF是平行四边形;(2)若四边形AECF是菱形,且BC=10,∠BAC=90°,求BE的长.8.如图,在菱形ABCD中,AC和BD相交于点O,过点O的线段EF与一组对边AB,CD分别相交于点E,F.(1)求证:AE=CF;(2)若AB=2,点E是AB中点,求EF的长.答案【菱形的性质】1.A2.1343.B4.A5.B6.∵四边形ABCD 是菱形,∴∠A=∠C ,AD=CD ,又∵DE ⊥AB ,DF ⊥BC ,∴∠AED=∠CFD=90°, 在△ADE 和△CDF 中, ,∴△ADE ≌△CDF (AAS ).7.(1)证明: ∵ 四边形ABCD 是平行四边形, ,且 ,, , ,四边形AECF 是平行四边形.(2)如图,∵四边形AECF 是菱形,∴AE=EC ,∴∠1=∠2,∵∠BAC=90°,∴∠3=90°-∠2,∠4=90°-∠1,∴∠3=∠4∴AE=BE,∴ BE=AE=CE=21BC=58.(1)证明:∵四边形ABCD 是菱形,∴AO=CO ,AB ∥CD ,∴∠EAO=∠FCO ,∠AEO=∠CFO . 在△OAE 和△OCF 中,∠EAO=∠FCO ,AO=CO ,∠AEO=∠CFO ,∴△AOE ≌△COF ,∴AE=CF ;解:∵E 是AB 中点,∴BE=AE=CF .∵BE ∥CF ,∴四边形BEFC 是平行四边形,∵AB=2,∴EF=BC=AB=2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18.2.2 菱形
漂市一中钱少锋
第1课时菱形的性质
一、新课导入
1.导入课题
将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,让学生猜想打开后的图形名称,由此导入新课(板书课题).
2.学习目标
(1)能说出菱形的定义和性质.
(2)能运用菱形的性质定理进行简单的计算与证明.
3.学习重、难点
重点:菱形的性质.
难点:菱形性质的运用.
二、分层学习
1.自学指导
(1)自学内容:P55至P56例3以前的内容.
(2)自学时间:10分钟.
(3)自学方法:动手剪纸观察图案,思考定义的条件限定含义,归纳并进行说理论证.
(4)自学参考提纲:
①有一组邻边相等的平行四边形叫菱形.
②菱形是轴对称图形吗?若是,它有几条对称轴?
③菱形是平行四边形吗?它由一组邻边相等,可得到边有什么特点?画图看一看!
④由三角形全等的性质,通过证明三角形全等,你能得出菱形的所有性质吗?请写出来,同桌交
流一下.
⑤你能归纳出菱形的所有性质吗?请写出来,同桌交流一下.
⑥已知菱形的两条对角线的长,怎样求其面积?
2.自学:结合自学指导自主学习.
3.助学
(1)师助生:
①明了学情:关注学生完成自学提纲时存在的问题和困难.
②差异指导:指导学生通过已学的知识探讨菱形具有的性质中遇到的困难和不全不严之处.
(2)生助生:小组研讨,交流展示,相互帮助.
4.强化
(1)菱形的定义;
(2)菱形的性质:
①它具有一般平行四边形的性质;
②它具有特殊性质;
③它是轴对称图形;
④菱形面积的求法:平行四边形面积公式;对角线乘积的一半.
1.自学指导
(1)自学内容:P56例3.
(2)自学时间:5分钟.
(3)自学要求:根据问题条件,对照菱形的性质,探索解题思路,记录学习疑点.
(4)自学参考提纲:
①求两条小路长就是求菱形的对角线长,求菱形的面积可用的方法有底×高或对角线乘积的一半. ②△AOB 是直角三角形吗?为什么?
③∠ABO 与∠ABC 是什么关系?为什么?
④AO=12
AB 的理由是什么? ⑤为什么AC=2AO ,BD=2BO ?
⑥为什么4OAB S ABCD S 菱形?还可用ABCD S 菱形=错误!未找到引用源。
.
2.自学:结合自学指导自主学习.
3.助学
(1)师助生:
①明了学情:了解学生完成自学提纲时存在的问题,遇到的困难在哪里.
②差异指导:指导学生确定解题过程中每一步的依据,引导反思解题思路.
(2)生助生:学生研讨疑难之处.
4.强化
(1)把菱形问题转化为直角三角形求解.
(2)菱形的两个面积公式.
(3)总结菱形被对角线分成的四个直角三角形与菱形的边、角和对角线的关系.
三、评价
1.学生的自我评价(围绕三维目标):各小组学生代表介绍自己的学、成果及困惑.
2.教师对学生的评价:
(1)表现性评价:对学生在本节课学习中的态度、学习方式、收效及不足进行点评.
(2)纸笔评价:课堂评价检测.
3.教师的自我评价(教学反思).
本节课的教学可先从日常生活入手,让学生回忆身边的菱形物体,然而再用木条、纸片等实物进行演示,并鼓励学生分组交流.最后师生共同总结出菱形的性质:菱形的四条边相等;菱形的两条对角线互相垂直,并且每一条对角线平分一对角.在整个教学过程中,教师应引导学生采用类比的方法,以发展学生的逻辑思维能力和演绎能力.
(时间:12分钟满:100分)
一、基础巩固(60分)
1.(10分)若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为60°和120°.
2.(10分)菱形的两邻角之比为1∶2,边长为2,则菱形的面积为2
3.
3.(10)已知四边形ABCD 菱形,O 是两条对角线的交点,AC=8cm ,DB=6cm ,菱形的边长是 5 cm.
4.(20分)菱形ABCD 的周长为40cm ,两条对角线AC ∶BD=4:3,那么对角线AC=16cm ,BD=12cm.
5.(10分)已知菱形的面积为30平方厘米,如果一条对角线长为12厘米,则另一条对角线长为 5 厘米.
二、综合应用(20分)
6.菱形的两条对角线的长的比3∶4,面积为24cm2,求菱形的周长.
解:设一条对角线长为3x ,则另一条对角线长为4x , S=12
×3x ·4x=24,∴x=2. ∴22345=+=边长.
∴菱形的周长=4×5=20(cm).
三、拓展延伸(20分)
7.已知:如图,菱形ABCD中,E,F分别是CB,CD上的点,且BE=DF.求证:∠AEF=∠AFE.
证明:如图,连接AC,
∵四边形ABCD为菱形,∴BC=CD,∠ECA=∠FCA.
又∵BE=DF,∴EC=FC.
∴△AEC≌△AFC,∴AE=AF,∴∠AEF=∠AFE.
【素材积累】
1、2019年,文野31岁那年,买房后第二年,完成了人生中最重要的一次转变。
这一年,他摘心里对自己的定位,从穷人变成了有钱人。
一些人哪怕有钱了,心里也永远甩不脱穷的影子。
2、10月19 日下战书,草埠湖镇核心学校组织全镇小学老师收看了江苏省泰安市洋思中学校长秦培元摘宜昌所作的教训呈文录象。
秦校长的讲演时光长达两个多小时,题为《打造高效课堂实现减负增效全面提高学生素质》。