理论力学13—动能定理
理论力学第十三章动能定理

例:图示弹簧原长l=100mm,刚性系 图示弹簧原长 , 一端固定在点O, 数k=4.9KN/m,一端固定在点 ,此点 一端固定在点 在半径为R=100mm的圆周上。如弹簧 的圆周上。 在半径为 的圆周上 的另一端由点B拉至点 和由点A拉至 拉至点A和由点 的另一端由点 拉至点 和由点 拉至 垂直BC, 和 为直径 为直径。 垂直 点D,AC垂直 ,OA和BD为直径。 分别计算弹簧力所作的功。 分别计算弹簧力所作的功。
1 2 ⇒ d( mυ ) =δw 2
——质点动能定理 ——质点动能定理 的微分形式
质点动能的增量等于作用在质点上力的元功。 质点动能的增量等于作用在质点上力的元功。
1 1 2 ——质点动能定理 m 2 − m 1 =W ——质点动能定理 υ υ2 12 2 2 的积分形式
在质点运动的某个过程中, 在质点运动的某个过程中,质点动能的改变量等于 作用于质点的力作的功。 作用于质点的力作的功。
0−0 = mgl(1−cosϕ1) −
mgl(1−cosϕ2) −W k
冲断试件需要的能量为
W = 78.92J k
[例3] 行星齿轮传动机构, 放在水平面内。 动齿轮半径r ,重P, 视 行星齿轮传动机构, 放在水平面内。 动齿轮半径r 为均质圆盘;曲柄重Q 作用一力偶, 矩为M 常量), 为均质圆盘;曲柄重Q, 长l , 作用一力偶, 矩为M(常量), 曲柄由 静止开始转动; 的函数表示) 静止开始转动; 求曲柄的角速度 (以转角ϕ 的函数表示) 和角加 速度。 速度。 解:取整个系统为研究对象
dt
由 δW = F·dr 得 ,
dr P = F⋅ = F ⋅ v = Fv t dt 功率等于切向力与力作用点速度的乘积。 功率等于切向力与力作用点速度的乘积。
动能定理(3) 山东建筑大学理论力学

1 2
m1vE2
1 2
1 12
m1l 2
2 AB
vA
1 12
(9m2
2m1
sin 2
)v
2 A
A
m1g
m2g
ABC
B
E
vB
vE
A
T
1 12
(9m2
2m1
sin 2
)vA2
系统的总功率:
P m1g vE cos
m1g
vA 2
cot
代入功率方程:
dT = dt i
dWi dt
i
Pi
B E
v2
0
Ws
v W
将上式对时间求导,并注意 dv a, ds v
dt
dt
解得:
a
WR 2
(JO
W g
R2 )
O
sP
v W
例 题 已知: m ,R, f , 。
求: 纯滚时盘心的加速度。
解:取系统为研究对象
T1 0
T2
1 2
mvC2
1 2
JC 2
T2
3 4
mvC2
vC
R
s
C
vC
F mg
FN
结论与讨论
关于几个动力学定理 的综合应用
动量定理、动量矩定理和动能定理的比较
分析和解决复杂系统的动力学问题时,选择哪一个定理的 原则是:
1、所要求的运动量在所选择的定理中能不能比较容易地 表达出来;
2、在所选择的定理表达式中,不出现相关的未知力。
对于由多个刚体组成的复杂系统,求解动力学问题时,如 果选用动量定理或动量矩定理,需要将系统拆开,不仅涉及 的方程数目比较多,而且会涉及求解联立方程。
理论力学13—动能定理

13.3 动能定理
3. 理想约束及内力作功
• 对于光滑固定面和一端固定的绳索等约束,其约束力 都垂直于力作用点的位移,约束力不作功。
• 光滑铰支座和固定端约束,其约束力也不作功。
• 光滑铰链(中间铰链)、刚性二力杆及不可伸长的细绳 作为系统内的约束时,约束力作功之和等于零。
• 滑动摩擦力作负功。
• 当轮子在固定面上只滚不滑时,滑动摩擦力不作功。
O
力F在刚体从角j1转到j2所作的功为
W12
j2 j1
M
zdj
Mz可视为作用在刚体上的力偶
例1 如图所示滑块重P=9.8 N,弹 簧刚度系数k=0.5 N/cm,滑块在A 位置时弹簧对滑块的拉力为2.5 N, 滑块在20 N的绳子拉力作用下沿光 滑水平槽从位置A运动到位置B,求 作用于滑块上所有力的功的和。
常见力的功
2) 弹力的功
物体受到弹性力
的作用, 作用点的轨 A1
迹 为 图 示 曲 线 A1A2,
在弹簧的弹性极限内,
r1
弹性力的大小与其变
形量d 成正比。设弹
l0
簧原长为l0 , 则弹性 力为
F k(r l0 )r0
W12
A2 F dr =
A1
A2 A1
k
(r
l0
)r0
l 2 2
1 ml2 3
TAB
1 2
I
I
2 AB
mv2
6 sin2
1 mv2 3
T总
1 12
9M
4m v2
例3 长为l,重为P的均质杆OA由球铰链
O固定,并以等角速度 绕铅直线转动, 如图所示,如杆与铅直线的交角为a,
理论力学课件第13章:动能定理

求:切削力F的最大值。
解: P有用 P输入 P无用 3.78kw
P有用
F
F
d · n
2 30
60
60 3.78
F dn P有用 0.1 42 17.19kN
当 n 112r / min 时
F 60 3.78 6.45kN
0.1112
例13-8:
已知 :m ,l0 ,k , R , J。
系的所有力的功率的代数和.
机床
dT dt
P输入 P有用 P无用
或
P输入
P有用
P无用
dT dt
3、机械效率
有效功率 机械效率
P有效
P有用
dT dt
P有效
P输入
多级传动系统 12 n
例13-7
已知: P输入 5.4kw, P无用 P输入 30%
d 100mm, n 42r / min , n ' 112r / min
2 1
M
zd
若 M z 常量
则 W12 M z (2 1)
4. 平面运动刚体上力系的功
由 vi vC viC 两端乘dt,有 dri drC driC 作用在 Mi 点的力 Fi 的元功为 δWi F idri Fi drC Fi driC
其中 Fi driC Fi cos MC d M C (Fi )d
W
Fxdx
Fy dy
Fz dz
力 F 在 M1 ~ M 2 路程上的功为
W12
M2 M1
δW
M2 M1
F ·dr
三、几种常见力的功 1、重力的功
质点
Fx Fy 0 Fz mg
W12
z2 z1
第八章 动能定理

第八章动能定理引言应用动力学基本方程是解决运动变化与力之间的关系的基本方法,但在许多实际问题中,特别是研究运动过程较复杂的质点系问题时,要列出每一个质点的运动方程十分困难。
动能定理建立了物体动能变化与受力所作的功之间的关系,应用动能定理解决动力学问题,淡化了具体的运动过程,使计算得到简化。
在物理中,质点的动能定理已作为重点内容进行了研究。
在理论力学中,动能定理的基本意义与物理所讲的完全相同。
为了避免重复,在本章,重点对动能定理的应用范围进行拓宽。
基本要求1、加深对功和动能概念的理种功和动能的求法,2、加深对动能定理的理解,理的应用。
3、了解功率和效率的概念第一节力的功一、功的概念物体受力的作用后,其运动状态将发生改变,这种改变不仅与力的大小和方向有关,还与物体在力的作用下所走过的路程有关。
功就是描述力在一段路程中对物体的积累效应,我们将(不变的)力F在物体运动方向上的投影F cos 与物体所走过的路程S的乘积,称为力F在路程S中对物体所作的功。
即:W F S =cos α在上式中,α表示力F 与运动方向的夹角,α<90°时,力作正功;反之力做负功。
可见,功是一个只有大小、正负而没有方向的量,是一个代数量。
功的单位由力和路程的单位来确定,在国际单位制中,功的单位是焦耳(J ),即:焦耳=牛顿⨯米(1J 1N m =⋅)若在变力F作用下物体沿曲线运动,则可将路程S 分成为无限多个小微段dS,并将dS 视为直线,将该微段内的力F视为常力。
力在此微段上所作的功称为元功,用dW 表示。
即dW F dS =⋅cos α若求变力F在一段路程S 上所作的功,可对元功积分。
即:W dW F dSSS ==⎰⎰cos α二、几种常见力的功 1、重力的功重力的功等于物体的重力与物体重心始末位置的高度差的乘积,即W G h =±可见,重力的功只与物体的始末位置有关,而与物体运动的具体路径无关。
理论力学第13章动能定理

在理论力学中,动能被定义为物体运动时的能量,其大小与物体的质量和速度有关。根据牛顿第二定律,物体的动量改变量等于作用在物体上的外力的冲量。因此,如果一个力在一段时间内作用在一个物体上,那么这个力就会使物体的动量发生改变,从而产生动能的变化。
动能的定义
外力的功
外力的功等于力的大小与物体在力的方向上发生的位移的乘积。
总结词
外力的功是指力对物体运动所产生的效应,其大小等于力的大小与物体在力的方向上发生的位移的乘积。这是物理学中功的定义,也是计算外力对物体所做功的基本方法。
详细描述
VS
系统动能的增量等于合外力对系统所做的功。
详细描述
系统动能的增量是指在一个过程中,系统动能的增加量。这个增量可以通过计算合外力对系统所做的功来得到。如果合外力对系统做正功,则系统动能增加;如果合外力对系统做负功,则系统动能减少。因此,系统动能的增量与合外力对系统所做的功有直接的关系。
总结词
系统动能的增量
03
CHAPTER
动能定理的应用
适用于单个质点在力的作用下运动的情况,计算质点的动能变化。
单个质点的动能定理指出,质点在力的作用下运动时,外力对质点所做的功等于质点动能的增量。这个定理是理论力学中研究质点运动的基本定理之一,可以用来解决各种实际问题。
总结词
详细描述
单个质点的动能定理
动能定理是能量守恒定律在动力学中的具体表现,是解决动力学问题的有力工具。
动能定理适用于一切宏观低速的物体,对于微观、高速适用于狭义相对论。
动能定理适用于直线运动,对于曲线运动需要积分形式进行处理。
动能定理的适用范围
02
CHAPTER
动能定理的基本内容
总结词
理论力学13-动能定理

动能定理是理论力学中重要的定理之一,描述了物体动能的变化与外力做功 的关系。它为解决各种实际问题提供了有力的工具。
动能的定义与计算方法
动能定义
动能是物体由于运动而具有的能量。
动能计算方法
动能等于物体质量与速度平方的乘积乘以常数1/2。
举例
例如,一个质量为m的物体速度为v,它的动能为Ek=1/2mv^2。
碰撞实验
通过观察简谐摆的运动过程, 可以验证动能定理在实验中 的有效性和准确性。
利用碰撞实验可以验证动能 定理在不同碰撞情况下的适 用性。
滚动小球实验
通过观察滚动小球的动能变 化,可以验证动能定理在滚 动运动中的应用。
结论和要点
结论
动能定理是描述物体动能变化与外力做功关系的重要定理。
要点
动能定理的表达式是功等于动能的变化量,可以通过实验验证。
动能定理的提出及其重要性
1 提出背景
动能定理最早由牛顿提出,是牛顿运动定律的一部分。
2 重要性
动能定理能够精确描述物体动能的变化与外力做功的关系,对研究运动学和动力学等科 学领域具有重要意义。
动能定理的表达式及推导过程
动能定理表达式 推导过程 推导公式
功等于动能的变化量 根据牛顿第二定律和功的定义推导得出 W = ΔK = (1/2)mvf^2 - (1/2)mvi^2
动能定理在实际问题中的应用
1
碰撞问题
2
动能定理在研究碰撞问题中起到关 键作用,如弹性碰撞和非弹性碰撞。
3
机械能守恒
动能定理与势能定理结合可以帮助 解决机械能守恒的问题。
动能定理与其他物理定律的 关系
动能定理与动量定理、能量守恒定 律等相互关联,共同构成了理论力 学的核心部分。
第十二章 动能定理

2. 受力分析 只有重力做功。
3. 建立动力学方程 用动能定理。
v C
A
c
θ
R
★理论力学电子教案
vC (R r) vC / r (R r)/ r
第12章 动能定理
T1 0
T2
1 2
m vC2
1 2
JC2
3 4
m(R
r )22
W12 mg (R r)(1 cos )
力功之和可以不为零。如引力。
2. 刚体间的理想约束做功之和为零。
为什么?
★理论力学电子教案
第12章 动能定理
12
五、功率
单位时间内力(或力偶)所做的功。
P
W
F
dr
F
v
dt dt
力做功之功率
或P W M d M 力偶(力矩)做功之功率
dt
dt
功率的单位:瓦(W)
1.重力功
F FW k
W12
M 2 F
dr
z2
FW
dz FW
z1 z2
M1
z1
2.弹F性力k功r l0 r0
其中r0为r方向的单位矢量,l0为原长
W
F
dr
kr
l0 r0 dr
kr l0 r dr kr l0 dr r
1W 1N 1m / s
★理论力学电子教案
第12章 动能定理
13
例题 鼓轮内半径为r,外半径为R,在常力F作用下作 纯滚动。试求F在s上所作的功。