中考数学一轮复习知识点总结完整版
中考一轮知识点归纳总结

中考一轮知识点归纳总结中考是对初中学生学业水平的一次全面检测,考察的内容涵盖了多个学科的知识点。
为了便于学生们复习备考,现对中考一轮知识点进行归纳总结,帮助大家理清知识框架,更好地应对考试。
数学数学作为一门基础学科,在中考中占据重要的地位。
下面对中考数学的知识点进行总结:一、整数与有理数1. 整数运算:包括整数的加减乘除、绝对值等。
2. 有理数的概念:包括有理数的定义和性质。
3. 有理数之间的大小比较:包括相同符号的有理数比较大小和不同符号的有理数比较大小。
二、代数基础1. 代数字母的应用:包括对代数字母的认识及在公式和方程中的应用。
2. 一元一次方程:包括方程的定义、解方程的方法等。
3. 列式与方程:包括如何根据问题列方程和解方程。
三、几何1. 几何图形的认识:包括平面图形和立体图形的基本性质。
2. 平面图形的计算:包括平面图形的面积和周长的计算方法。
3. 空间图形的计算:包括空间图形的体积和表面积的计算方法。
四、概率与统计1. 概率的基本概念:包括事件、样本空间、概率等。
2. 计数原理:包括排列组合等计数方法。
3. 统计学:包括平均数、中位数和众数的计算方法。
英语英语作为一门国际性语言,在中考中也有着重要的地位。
以下是对中考英语的知识点进行总结:一、词汇与语法1. 词汇:包括常用词汇的掌握、词义的理解等。
2. 语法:包括主谓一致、时态、语态、被动语态、条件句等。
二、阅读理解1. 短文理解:包括根据短文内容回答问题、判断正误等。
2. 长文阅读:包括对长文的整体理解和主旨归纳。
三、写作能力1. 书面表达:包括书信、日记、作文等不同类型的写作表达。
2. 写作技巧:包括段落结构、语言表达准确性等写作要点。
四、听力技巧1. 听力理解:包括听力材料的整体理解以及细节抓取。
2. 对话和短文听写:包括对短对话和短文的听写和填空。
物理物理是一门实验性科学,它旨在研究物质和能量的基本规律。
以下是对中考物理的知识点进行总结:一、力和压力1. 力的定义:包括力的概念和力的计量单位。
(完整版)最新中考数学复习知识点总结

最新中考数学复习知识点总结第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反对值大的反而小。
3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根(3—10分)1、平方根如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
±”。
正数a的平方根记做“a2、算术平方根正数a的正的平方根叫做a的算术平方根,记作“a”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
aa(a≥0)0≥a2;注意a的双重非负性:=a=-a(a<0)a≥03、立方根如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:33a-,这说明三次根号内的负号可以移到根号外面。
a-=考点四、科学记数法和近似数(3—6分)1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。
中考数学知识点归纳总结

中考数学知识点归纳总结一、数与代数。
(一)有理数。
1. 有理数的概念。
- 整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
- 例如:3是正整数, - 5是负整数,0.25(可化为(1)/(4))是有限小数属于分数,0.3̇(可化为(1)/(3))是无限循环小数属于分数。
2. 有理数的运算。
- 加法:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数。
- 例如:3 + 5=8;-3+(-5)= - 8;3+(-5)= - 2;5+(-5)=0。
- 减法:减去一个数,等于加上这个数的相反数。
即a - b=a+(-b)。
- 例如:5 - 3 = 5+(-3)=2;3 - 5=3+(-5)= - 2。
- 乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘都得0;几个不为0的数相乘,负因数的个数为偶数时,积为正,负因数的个数为奇数时,积为负。
- 例如:3×5 = 15;-3×(-5)=15;3×(-5)= - 15;0×5 = 0;(-2)×(-3)×(-4)= - 24(3个负因数,积为负)。
- 除法:除以一个不等于0的数,等于乘这个数的倒数。
即a÷b=a×(1)/(b)(b≠0)。
两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。
- 例如:15÷3 = 5;-15÷(-3)=5;15÷(-3)= - 5;0÷5 = 0。
- 乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
a^n 中,a叫做底数,n叫做指数。
- 例如:2^3 = 2×2×2 = 8;(-2)^3=-2× - 2× - 2=-8。
初中数学中考一轮复习专题1数与式重点、考点知识、方法总结及真题练习

在实数范围内,正数和零统称为非负数.我们已经学习过的非负数有如下三种形式:
(1)仸何一个实数 a 的绝对值是非负数,即| a |≥0; (2)仸何一个实数 a 的平方是非负数,即 a2 ≥0; (3)仸何非负数的算术平方根是非负数,即 a 0 ( a 0 ).
非负数具有以下性质: (1)非负数有最小值零; (2)有限个非负数乊和仍是非负数; (3)几个非负数乊和等于 0,则每个非负数都等于 0. 4.实数的运算
a a (a 0, b 0) bb
②.加减法
将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数丌变,
即合并同类二次根式.
【典例】
1.计算:5 +
﹣×+ ÷.
【答案】 【解析】解:原式= + ﹣
+3 ÷
=2 ﹣1+3
=2 +2.
x xy xy y
2.若 x 0 ,化简
注:单独一个字母戒一个数也是代数式.
2.代数式的分类:
3.代数式的书写规则: (1)数字不字母相乘戒字母不字母相乘,通常把乘号写作“ ”戒省略丌写,字母乊间的
顺序可以交换,但一般按字母表中的先后顺序写.数字应在字母乊前.如: 3b 丌要写成 b3 (2)在代数式中出现除法运算时,一般都变成分数和乘法来计算.如: 2a b 写成 2a
x
2
0
即
x
1 且x 2
2
.
【难度】易
【结束】
2.若
,则 ( )
A. b>3B. b<3C. b≥3D. b≤3
【答案】D.
【解析】
3 b = 3 b ,所以 3 b ≥0,即 b 3 .
2023年中考数学一轮复习讲义:几何初步与尺规作图

2023年中考复习讲义几何初步与尺规作图第一部分:知识点精准记忆一、直线、射线、线段1.直线的性质:1)两条直线相交,只有一个交点;2)经过两点有且只有一条直线,即两点确定一条直线;3)直线的基本事实:经过两点有且只有一条直线.2.线段的性质:两点确定一条直线,两点之间,线段最短,两点间线段的长度叫两点间的距离.3.线段的中点性质:若C是线段AB中点,则AC=BC=12AB;AB=2AC=2BC.4.两条直线的位置关系:在同一平面内,两条直线只有两种位置关系:平行和相交.5.垂线的性质:1)两条直线相交所构成的四个角中有一个角是直角,则这两条直线互相垂直,其中一条直线叫做另一条直线的垂线;2)①经过一点有且只有一条直线与已知直线垂直;②直线外一点与直线上各点连接的所有线段中,垂线段最短.6.点到直线的距离:从直线外一点向已知直线作垂线,这一点和垂足之间线段的长度叫做点到直线的距离.二、角1.角:有公共端点的两条射线组成的图形.2.角平分线(1)定义:在角的内部,以角的顶点为端点把这个角分成两个相等的角的射线(2)性质:若OC是∠AOB的平分线,则∠AOC=∠BOC =12∠AOB,∠AOB=2∠AOC =2∠BOC.3.度、分、秒的运算方法:1°=60′,1′=60″,1°=3600″.1周角=2平角=4直角=360°.4.余角和补角1)余角:∠1+∠2=90°⇔∠1与∠2互为余角;2)补角:∠1+∠2=180°⇔∠1与∠2互为补角.3)性质:同角(或等角)的余角相等;同角(或等角)的补角相等.5.方向角和方位角:在描述方位角时,一般应先说北或南,再说偏西或偏东多少度,而不说成东偏北(南)多少度或西偏北(南)多少度.当方向角在45°方向上时,又常常说成东南、东北、西南、西北方向.三、相交线1.三线八角1)直线a,b被直线l所截,构成八个角(如图).∠1和∠5,∠4和∠8,∠2和∠6,∠3和∠7是同位角;∠2和∠8,∠3和∠5是内错角;∠5和∠2,∠3和∠8是同旁内角.2)除了基本模型外,我们还经常会遇到稍难一些的平行线加折线模型,主要是下面两类:做这类题型时,一般在折点处作平行线,进而把线的关系转换成角的关系,如上图:2.垂直1)定义:两条直线相交所形成的四个角中有一个是直角时叫两条直线互相垂直.2)性质:过一点有且只有一条直线垂直于已知直线;垂线段最短.3.点到直线的距离:从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.4.邻补角1)定义:两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,互为邻补角.2)邻补角是补角的一种特殊情况:邻补角既包含位置关系,又包含数量关系,数量上两角的和是180°,位置上有一条公共边.3)邻补角是成对出现的,单独的一个角不能称为邻补角,两条直线相交形成四对邻补角.5.对顶角1)定义:两个角有一个公共的顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种关系的两个角,互为对顶角.2)性质:对顶角相等.但相等的角不一定是对顶角.四、平行线1.定义:在同一平面内,不相交的两条直线叫做平行线.2.平行线的判定1)同位角相等,两直线平行.2)内错角相等,两直线平行.3)同旁内角互补,两直线平行.4)平行于同一直线的两直线互相平行.5)垂直于同一直线的两直线互相平行. 3.平行线的性质1)两直线平行,同位角相等.2)两直线平行,内错角相等.3)两直线平行,同旁内角互补. 4.平行线间的距离1)定义:同时垂直于两条平行线,并且夹在这两条平行线的线段的长度,叫做这两条平行线的距离.2)性质:两平行线间的距离处处相等,夹在两平行线间的平行线段相等.五、五种基本作图:1.作一条线段等于已知线段。
中考数学复习知识点归纳总结6篇

中考数学复习知识点归纳总结6篇篇1一、数与代数1. 数的基本概念:整数、分数、小数、百分数、比例、方程等。
2. 数的运算:加减乘除四则运算,乘方、开方运算,分数运算,小数运算等。
3. 代数表达式:用字母表示数,表达数量关系和变化规律。
4. 方程与不等式:解一元一次方程,解一元一次不等式,理解函数的概念。
二、几何与图形1. 几何概念:点、线、面、体,角、度数,平行、垂直等基本几何概念。
2. 图形与变换:平移、旋转、对称等图形变换,相似图形,全等图形。
3. 面积与体积:计算平面图形的面积,计算立体图形的体积。
4. 解析几何:理解直线的方程,理解圆及其方程。
三、函数与图像1. 函数的概念:理解变量间的关系,用解析式表示函数关系。
2. 函数的运算:函数的加减法,函数的乘法,复合函数。
3. 函数的图像:理解函数的图像及其变换,根据图像理解函数的性质。
4. 反函数与对称函数:理解反函数的概念,理解对称函数的概念。
四、数据与概率1. 数据收集与整理:理解数据收集的方法,会用统计图表表示数据。
2. 数据的计算:平均数、中位数、众数等统计量的计算,方差和标准差的计算。
3. 概率的概念:理解概率的基本概念,会计算事件的概率。
4. 概率的应用:理解概率在生活中的应用,会解决与概率相关的问题。
五、综合与实践1. 图形的变换与对称:运用几何知识解决实际问题,理解图形的变换和对称。
2. 函数的实际应用:理解函数在实际问题中的应用,如利润、成本等问题。
3. 数据的分析与决策:运用统计知识解决实际问题,理解数据的分析与决策。
4. 课题学习与研究性学习:理解课题学习与研究性学习的意义和方法。
在中考数学复习过程中,我们需要对以上知识点进行全面的梳理和总结,形成系统的知识框架。
同时,我们需要关注考试动态和命题趋势,结合历年真题进行有针对性的练习和巩固。
此外,我们还要注重解题技巧和策略的学习和应用,提高解题效率和准确性。
希望同学们能够认真复习备考,取得优异的成绩!篇2一、数与代数(一)数的认识复习要点:整数、小数、分数、百分数的认识及其关系,数的运算规则和运算性质。
初中数学知识点归纳完整版免费

初中数学知识点归纳完整版免费中考数学重点知识点梳理1有理数1.有理数的加法运算同号两数来相加,绝对值加不变号。
异号相加大减小,大数决定和符号。
互为相反数求和,结果是零须记好。
“大”减“小”是指绝对值的大小。
2.有理数的减法运算减正等于加负,减负等于加正。
有理数的乘法运算符号法则。
同号得正异号负,一项为零积是零。
3.有理数混合运算的四种运算技巧转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算。
凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解。
分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算。
巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便。
2圆1.圆的对称性(1)圆是轴对称图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是旋转对称图形。
2.垂径定理(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3.圆心角的度数等于它所对弧的度数。
圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4.在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5.夹在平行线间的两条弧相等。
(1)过两点的圆的圆心一定在两点间连线段的中垂线上。
(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。
(直角三角形的外心就是斜边的中点。
)6.直线与圆的位置关系。
d表示圆心到直线的距离,r表示圆的半径。
直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。
中考数学一轮复习全全等三角形截长补短知识点总结含答案

中考数学一轮复习全全等三角形截长补短知识点总结含答案一、全等三角形截长补短1.已知:在ABC 中,90BAC ︒∠=,AB AC =.将ABC 按如图所示的位置放置在平面直角坐标系中,使得点(0,)A m 落在y 轴的负半轴上,使得点(,0)B n 落在x 轴的正半轴上,点C 在第二象限,并且,m n 满足2268250m n m n ++-+=.(1)由题意可知OA =_____,OB =_____(直接写答案);(2)求点C 的坐标;(3)ABC 的斜边BC 交y 轴于D ,直角边AC 交x 轴于E .在AC 上截取AF CE =,连接DF .探究线段DF AD BE 、、的数量关系并证明你的结论.2.如图,△ABC 中,,AD 是BC 边上的高,如果,我们就称△ABC 为“高和三角形”.请你依据这一定义回答问题: (1)若,,则△ABC____ “高和三角形”(填“是”或“不是”); (2)一般地,如果△ABC 是“高和三角形”,则与之间的关系是____,并证明你的结论3.如图,在△ABC 中,AB =AC ,∠BAC =30°,点D 是△ABC 内一点,DB =DC ,∠DCB =30°,点E 是BD 延长线上一点,AE =AB .(1)求∠ADB 的度数;(2)线段DE ,AD ,DC 之间有什么数量关系?请说明理由.4.如图,在ABC 中,AB AC =,30ABC ∠<︒,D 是边BC 的中点,以AC 为边作等边三角形ACE ,且ACE △与ABC 在直线AC 的异侧,连接BE 交DA 的延长线于点F ,连接FC 交AE 于点M .(1)求证:FB FC =;(2)求证:FEA FCA ∠=∠;(3)若8FE =,2AD =,求AF 的长.5.如图,ABC 是边长为1的等边三角形,BD CD =,120BDC ∠=︒,点E ,F 分别在AB ,AC 上,且60EDF ∠=︒,求AEF 的周长.6.如图,ABC ∆中,BE ,CD 分别平分ABC ∠和ACB ∠,BE ,CD 相交于点F ,60A ∠=︒.(1)求BFD ∠的度数;(2)判断BC ,BD ,CE 之间的等量关系,并证明你的结论.7.(1)如图①,Rt ABC 中,AB AC =,90BAC ∠=︒,D 为BC 边上的一点,将ABD △绕点A 逆时针旋转90°至ACF ,作AE 平分DAF ∠交BC 于点E ,易证明:222BD CE DE +=.若2DE BD =,则以BD 、DE 、EC 为边的三角形的形状是______;(2)如图②,四边形ABCD 中,90BAD BCD ∠=∠=︒,AB AD =,若四边形ABCD 的面积是32,2CD =,求BC 的长度;(3)ABC 是以BC 为底的等腰直角三角形,点D 是ABC 所在平面内一点,且满足4=AD ,6BD =,2CD =,请画草图并求ADC ∠的度数.8.已知,在ABCD 中,AB BD AB BD E ⊥=,,为射线BC 上一点,连接AE 交BD 于点F .(1)如图1,若E 点与点C 重合,且25AF =,求AD 的长;(2)如图2,当点E 在BC 边上时,过点D 作DG AE ⊥于G ,延长DG 交BC 于H ,连接FH .求证:AF DH FH =+.(3)如图3,当点E 在射线BC 上运动时,过点D 作DG AE ⊥于G M ,为AG 的中点,点N 在BC 边上且1BN =,已知42AB =MN 的最小值.9.在数学活动课上,数学老师出示了如下题目:如图①,在四边形ABCD 中,E 是边CD 的中点,AE 是BAD ∠的平分线,AD BC ∥.求证:AB AD BC =+.小聪同学发现以下两种方法:方法1:如图②,延长AE 、BC 交于点F .方法2:如图③,在AB 上取一点G ,使AG AD =,连接EG 、CG .(1)请你任选一种方法写出这道题的完整的证明过程;(2)如图④,在四边形ABCD 中,AE 是BAD ∠的平分线,E 是边CD 的中点,60BAD ∠=︒,11802D BCD ∠+∠=︒,求证:CB CE =.10.阅读下面材料,完成(1)﹣(3)题数学课上,老师出示了这样一道题:如图,四边形ABCD ,AD ∥BC ,AB =AD ,E 为对角线AC 上一点,∠BEC =∠BAD =2∠DEC ,探究AB 与BC 的数量关系.某学习小组的同学经过思考,交流了自己的想法:小柏:“通过观察和度量,发现∠ACB =∠ABE ”;小源:“通过观察和度量,AE 和BE 存在一定的数量关系”;小亮:“通过构造三角形全等,再经过进一步推理,就可以得到线段AB 与BC 的数量关系”.……老师:“保留原题条件,如图2, AC 上存在点F ,使DF =CF =k AE ,连接DF 并延长交BC 于点G ,求AB FG的值”. (1)求证:∠ACB =∠ABE ;(2)探究线段AB 与BC 的数量关系,并证明;(3)若DF =CF =k AE ,求AB FG的值(用含k 的代数式表示).【参考答案】***试卷处理标记,请不要删除一、全等三角形截长补短1.(1)3,4;(2)(3,1)C -;(3)BE=DF+AD ,理由见解析【分析】(1)由非负数的性质求出m ,n 即可;(2)如图,作CH ⊥y 轴于点H ,只要证明△ACH ≌△BAO 即可解决问题;(3)在OB 上取一点K ,使得OK=DH ,则△CHD ≌△AOK ,再证明DF=EK ,AD=BK 即可解决问题.【详解】解:(1)∵2268250m n m n ++-+=∴22(3)(4)0m n ++-=,∵2(3)0+≥m ,2(4)0n -≥,∴3,4m n =-=,∴(0,3)A -,(4,0)B∴OA=3,OB=4,故答案为:3,4(2)如图,作CH ⊥y 轴于点H ,∵∠CHA=∠AOB=∠CAB=90°,∴∠CAH+∠ACH=90°,∠CAH+∠BAO=90°,∴∠ACH=∠BAO ,∵AC=BC ,∴△ACH ≌△BAO ,∴AH=OB=4,CH=OA=3,∴OH=1,∴(3,1)C -(3)结论为:BE=DF+AD理由:如图,在OB 上取一点K ,使得OK=DH ,∵CH=OA ,∠CHD=∠AOK=90°,DH=OK ,∴△CHD ≌△AOK (SAS ),∴CD=AK ,∵AD=BK ,AB=AC ,∴△AKB ≌△CDA (SSS ),∴∠KAB=∠ACD=45°,∴∠EAK=45°=∠FCD,∵CE=AF,∴CF=AE,∵CD=AK,∴△CDF≌△AKE(SAS)∴DF=KE,∵BE=EK+BK,∴BE=DF+AD【点睛】本题考查三角形综合题、等腰直角三角形的性质、全等三角形的判定和性质、非负数的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.2.(1)是(2);见解析【解析】【分析】(1)在BC上截取,根据,可得△ABE为等边三角形,,问题得解;(2)在△ABC中,在DC上截取,由AD是BC边上的高且,进而证明,△ABD≌△AED(SAS)就可以得到结论.【详解】解:(1)如图,Rt△ABC中,,,,在BC上截取,则△ABE为等边三角形,∴,∵,,∴,∴,∴∵,且△ABE为等边三角形,∴∴,∴是高和三角形.(2);证明:如上图,在△ABC中,在DC 上截取.∵,∴,∵AD是BC 边上的高且,∴,△ABD≌△AED(SAS ),∴,,∴.【点睛】本题主要考查全等三角形的判定与性质,根据题意构造全等三角形,理解“高和三角形”的定义是解题关键.3.(1)120°;(2)DE=AD+CD,理由见解析【分析】(1)根据三角形内角和定理得到∠ABC=∠ACB=75°,根据全等三角形的性质得到∠BAD =∠CAD=15°,根据三角形的外角性质计算,得到答案;(2)在线段DE上截取DM=AD,连接AM,得到△ADM是等边三角形,根据△ABD≌△AEM,得到BD=ME,结合图形证明结论【详解】解:(1)∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=12(180°﹣30°)=75°,∵DB=DC,∠DCB=30°,∴∠DBC=∠DCB=30°,∴∠ABD=∠ABC﹣∠DBC=45°,在△ABD和△ACD中,AB AC DB DC AD AD=⎧⎪=⎨⎪=⎩,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD=12∠BAC=15°,∴∠ADE=∠ABD+∠BAD=60°,∴∠ADB=180°﹣∠ADE=180°﹣60°=120°;(2)DE=AD+CD,理由如下:在线段DE上截取DM=AD,连接AM,∵∠ADE =60°,DM =AD ,∴△ADM 是等边三角形,∴∠ADB =∠AME =120°.∵AE =AB ,∴∠ABD =∠E ,在△ABD 和△AEM 中,ABD E ADB AME AB AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△AEM (AAS ),∴BD =ME ,∵BD =CD ,∴CD =ME .∵DE =DM +ME ,∴DE =AD +CD .【点睛】本题考查的是全等三角形的判定和性质、等边三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.4.(1)见解析;(2)见解析;(3)4【分析】(1)利用AD 所在直线是BC 的垂直平分线,点F 在直线AD 上即可得出结论. (2)由ACE △是等边三角形,得AC=AE=AB 推得ABF FEA ∠=∠.易证ABF ≌ACF (SSS ),ABF FCA FEA ∠=∠=∠即可,(3)延长AD 至点P 处,使DP AD ,连接CP .先证直角三角形ADC ≌PDC△(SAS ),推出AC CP CE ==,ACD PCD ∠=∠.再证60EFC EAC ∠=∠=︒.求出,FBD 30FCD ∠=∠=︒.用ACD ∠表示30ECF ACD ∠=︒+∠.而30FCP ACD ∠=︒+∠,得ECF FCP ∠=∠.可证ECF △≌PCF (SAS ),可推得AF EF AP =-即可.【详解】(1)证明:∵AB AC =,D 是边BC 的中点,∴AD 所在直线是BC 的垂直平分线,又∵点F 在直线AD 上∴FB FC =.(2)证明:∵ACE △是等边三角形,∴60EAC ACE ∠=∠=︒,AC AE =.∵AB AC =,∴AB AE =,∴ABF FEA ∠=∠.由(1)可知,FB FC =,又∵AF AF =,AB AC =,∴ABF ≌ACF (SSS ),∴ABF FCA ∠=∠,∴FEA FCA ∠=∠. (3)解:如图,延长AD 至点P 处,使DP AD ,连接CP .∵AB AC =,D 是边BC 的中点,∴90ADC PDC ∠=∠=︒.∵ACE △是等边三角形,∴AC CE =,60EAC ∠=︒.∵AD DP =,ADC PDC ∠=∠,CD CD =,∴ADC ≌PDC △(SAS ),∴AC CP CE ==,ACD PCD ∠=∠.由(2)可知,FEA FCA ∠=∠,∵AMC FME ∠=∠,∴60EFC EAC ∠=∠=︒.由(1)可知,BF CF =, ∴()18060260BFD CFD ∠=∠=︒-︒÷=︒,∴906030FCD ∠=︒-︒=︒.∵FCA FCD ACD ∠=∠-∠,∴30FCA ACD ∠=︒-∠.∵ECF ECA FCA ∠=∠-∠,∴()303030ECF ECA ACD ECA ACD ACD ∠=∠-︒-∠=∠-︒+∠=︒+∠.∵FCP FCD PCD ∠=∠+∠,∴30FCP ACD ∠=︒+∠,∴ECF FCP ∠=∠.∵FC FC =,CE CP =,∴ECF △≌PCF (SAS ),∴FE FP =,∴2FE FA AP AF AD =+=+,∴2822=4AF EF AD =-=-⨯.【点睛】本题考查线段垂直平分线性质,等边三角形性质,三角形全等判定与性质,掌握线段垂直平分线性质,等边三角形性质,三角形全等判定与性质,会利用引辅助线构造三角形全等转化线与线关系,角与角关系来解决问题.5.2【分析】延长AC 至点P ,使CP BE =,连接PD ,证明()BDE CDP SAS △△推出DE DP =,BDE CDP ∠=∠,进而得到60EDF PDF ∠=∠=︒,从而证明()DEF DPF SAS ≌△△,推出EF=CP ,由此求出AEF 的周长=AB+AC 得到答案.【详解】解:如图,延长AC 至点P ,使CP BE =,连接PD .∵ABC 是等边三角形, ∴60ABC ACB ∠=∠=︒. ∵BD CD =,120BDC ∠=︒, ∴30DBC DCB ∠=∠=︒, ∴90EBD DCF ∠=∠=︒, ∴90DCP DBE ∠=∠=︒.在BDE 和CDP 中,BD CD DBE DCP BE CP =⎧⎪∠=∠⎨⎪=⎩,∴()BDE CDP SAS △△,∴DE DP =,BDE CDP ∠=∠.∵120BDC ∠=︒,60EDF ∠=︒,∴60BDE CDF ∠+∠=︒,∴60CDP CDF ∠+∠=︒,∴60EDF PDF ∠=∠=︒.在DEF 和DPF 中,DE DP EDF PDF DF DF =⎧⎪∠=∠⎨⎪=⎩,∴()DEF DPF SAS ≌△△, ∴EF FP =,∴EF FC BE =+,∴AEF 的周长2AE EF AF AB AC =++=+=.【点睛】此题考查全等三角形的判定及性质,等边三角形的性质,等腰三角形等边对等角的性质,题中辅助线的引出是解题的关键.6.(1)∠BFD =60°;(2)BC =BD +CE ;证明见解析【分析】(1)根据角平分线和外角性质求解即可;(2)在BC 上截取BG =BD ,连接FG ,证明△BDF ≌△BGF ,△CGF ≌△CEF ,即可得到结果;【详解】(1)∵BE ,CD 分别平分ABC ∠和ACB ∠,BE ,∴ABE CBE ∠=∠,ACD BCD ∠=∠,∵60A ∠=︒,∴120ABC ACB ∠+∠=︒,∴60FBC FCB ∠+∠=︒,∴60DFB ∠=︒.(2)BC =BD +CE ;证明方法:在BC 上截取BG =BD ,连接FG ,在△BDF 和△BGF 中,BD BG DBF GBF BF BF =⎧⎪∠=∠⎨⎪=⎩,∴()△△BDF BGFSAS ≅, ∴60DFB BFG ∠=∠=︒,又∵GCF ECF ∠=∠,∴△CGF ≌△CEF (ASA ),∴CE =CG ,∴BC =BD +CE .【点睛】本题主要考查了三角形内角和定理、外角定理、三角形全等应用,准确分析是解题的关键.7.(1)等腰直角三角形;(2)723)图见解析,135°或45°【分析】(1)要判断以BD 、DE 、EC 为边的三角形形状,根据题干中所给条件,只需证明BD EC =即可;(2)先构造出ABE ADC △≌△,进而判断出CAE 是等腰直角三角形,四边形的面积等于ACE △的面积,由此求出AC ,CE 即可;(3)分情况讨论:①当点D 在ABC 内时,作AE AD ⊥,使AE AD =,连接CE ,DE ,利用全等三角形的性质以及勾股定理的逆定理解决问题;②当点D 在ABC 外时,作AE AD ⊥,使AE AD =,连接CE ,DE ,利用全等三角形的性质以及勾股定理的逆定理解决问题.【详解】解:(1)222BD CE DE +=,∴以BD 、DE 、EC 为边的三角形是直角三角形, 2DE BD =,设BD a =,则2DE a =,2222a EC a ∴+=,EC a ∴=,BD EC ∴=,∴以BD 、DE 、EC 为边的三角形的形状是等腰直角三角形.故答案:等腰直角三角形.(2)如图①,延长CB 至E ,使BE CD =,连接AE ,在四边形ABCD 中,90BAD BCD ∠=∠=︒,180ABC ADC ∴∠+∠=︒,180ABC ABE ∠+∠=︒,ABE ADC ∴∠=∠,在ABE △和ADC 中,,,,AB AD ABE ADC BE CD =⎧⎪∠=∠⎨⎪=⎩()ABE ADC SAS ∴△≌△,AE AC ∴=,BAE DAC ∠=∠,90CAE BAE BAC DAC BAC ∴∠=∠+∠=∠+∠=︒,212ACE S AC ∴=△, 四边形ABCD 的面积为32,ACE ABCD S S =△四边形, 21322AC ∴=, 8AC ∴=(负值已舍),282EC AC ∴==,82272BC EC BE ∴=-=-=.图①(3)①画图如图②,③.当点D 在ABC 内时,如图②,过点A 作AE AD ⊥,使AE AD =,连接CE ,DE , 90BAC DAE ∠=∠=︒,BAD CAE ∴∠=∠, 在BAD 和CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()BAD CAE SAS ∴≌,6BD CE ∴==,242DE ==2CD =,222EC ED CD ∴=+,90EDC ∴∠=︒,45ADE ∠=︒,4590135ADC ∴∠=︒+︒=︒;②当点D 在ABC 外时,如图③,过点A 作AE AD ⊥,使AE AD =,连接CE ,DE ,90BAC DAE ∠=∠=︒,BAD CAE ∴∠=∠,在BAD 和CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()BAD CAE SAS ∴≌,6BD CE ∴==, 242DE AD ==,2CD =,222EC ED CD ∴=+,90EDC ∴∠=︒,45ADE ∠=︒,45ADC ∴∠=︒.综上所述,ADC ∠的度数为135°或45°.图② 图③【点睛】本题考查了等腰三角形的判定和性质,全等三角形的判定和性质,勾股定理以及逆定理等知识,解题的关键是利用旋转法添加辅助线,构造全等三角形解决问题,用分类讨论的思想思考问题,属于中考压轴题.8.(1)42AD =2)见解析;(3)MN 的最小值为3.【分析】(1)如图1中,利用等腰三角形的性质可得90ABD ∠=︒,利用平行四边形的性质可得F 为BD 中点,在Rt ABF ∆中,由勾股定理可求得BF ,则可求得AB ,在Rt ABD ∆中,再利用勾股定理可求得AD ;(2)如图2中,在AF 上截取AK HD =,连接BK ,可先证明ABK DBH ∆≅∆,再证明BFK BFH ∆≅∆,可证得结论;(3)连接AN 并延长到Q ,使NQ AN =,连接GQ ,取AD 的中点O ,连接OG ,得到90AGD ∠=︒,于是得到点G 的轨迹是以O 为圆心,以OG 为半径的弧,且4OG =,求得GQ 最小值为6,根据三角形的中位线定理即可得到结论.【详解】(1)45AB BD BAD =∠=︒,,45BDA BAD ∴∠=∠=︒90 ABD ∴∠=︒,四边形ABCD 是平行四边形,∴当点E 与点C 重合时,1122BF BD AB == 在Rt ABF 中,222AF AB BF =+()()222252BF BF ∴=+ 24BF AB ∴==,Rt ABD ∴中,42AD =.(2)证明:如图2中,在AF 上截取AK HD =,连接BK ,23AFD ABF FGD ∠=∠+∠=∠+∠,90ABF FGD ∠=∠=︒,23∴∠=∠,在ABK 和DBH ∆中,23AB BD AK HD =⎧⎪∠=∠⎨⎪=⎩, ABK DBH ∴∆≅∆,BK BH ∴=,61∠=∠,AK DH =,四边形ABCD 是平行四边形,//AD BC ∴,41645∴∠=∠=∠=︒,5645ABD ∴∠=∠-∠=︒,51∴∠=∠,在FBK ∆和FBH ∆中,51BF BF BK BH =⎧⎪∠=∠⎨⎪=⎩, FBK FBH ∴∆≅∆,KF FH ∴=,AF AK KF =+,AF DH FH ∴=+;()3解:连接AN 并延长到Q ,使NQ AN =,连接GQ ,取AD 的中点O ,连接OG ,作AK ⊥BC ,交BC 延长线于点K ,作QP ⊥AD ,交AD 延长线于点P .90AGD ∠=︒,∴点G 的轨迹是以O 为圆心,以OG 为半径的弧,且4OG =,根据△ABD 为等腰直角三角形,可得AD 228AB BD +=, ∴AO=142AD =, 根据△ABK 为等腰直角三角形,可得AK =BK =4,可得QE =PE =4,∴PQ =8,∵BK=4,BN =1,∴KN =5,∴KE=AP =10,∴OP =6,10OQ ∴=,4OG =,GQ ∴最小值为6, MN 是AGQ ∆的中位线,MN ∴的最小值为3.【点睛】本题考查四边形综合题、等腰直角三角形的判定和性质、全等三角形的判定和性质、中位线定理,解题的关键是学会添加常用辅助线,构造全等三角形.9.(1)方法1:证明见解析;方法2:证明见解析;(2)证明见解析.【分析】(1)方法1:先根据角平分线的定义、平行线的性质得出BAF DAE F ∠=∠=∠,再根据等腰三角形的性质可得AB BF =,根据三角形全等的判定定理与性质得出AD FC =,然后根据线段的和差即可得证;方法2:先根据角平分线的定义得出DAE GAE ∠=∠,再根据三角形全等的判定定理与性质可得,DE GE D AGE =∠=∠,然后根据线段中点的定义、等腰三角形的性质可得ECG EGC ∠=∠,最后根据平行线的性质、平角的定义可得BCG BGC ∠=∠,由等腰三角形的定义可得BG BC =,由此根据线段的和差即可得证;(2)如图(见解析),参照方法1构造辅助线,先根据等腰三角形的性质得出EF 平分AFG ∠,从而有12EFC AFG ∠=∠,再根据平行线的性质、角的和差得出60EFC BFC ∠=∠=︒,ECF BCF ∠=∠,然后根据三角形全等的判定定理与性质即可得证.【详解】(1)方法1:如图②,延长AE 、BC 交于点FAE ∵是BAD ∠的平分线BAF DAE ∴∠=∠//AD BCDAE F ∴∠=∠BAF F ∴∠=∠AB BF FC BC ∴==+E 是边CD 的中点DE CE ∴=在ADE 和FCE △中,DAE F AED FEC DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩()ADE FCE AAS ∴≅AD FC ∴=AB FC BC AD BC ∴=+=+;方法2:如图③,在AB 上取一点G ,使AG AD =,连接EG 、CGAE ∵是BAD ∠的平分线DAE GAE ∴∠=∠在ADE 和AGE 中,AD AG DAE GAE AE AE =⎧⎪∠=∠⎨⎪=⎩()ADE AGE SAS ∴≅,DE GE D AGE ∴=∠=∠E 是边CD 的中点DE CE ∴=CE GE ∴=ECG EGC ∴∠=∠//AD BC180D BCD ︒∴∠+∠=,即180D ECG BCG ∠+∠+∠=︒180AGE EGC BCG ∴∠+∠+∠=︒,即180AGC BCG ∠+∠=︒又180AGC BGC ∠+∠=︒BCG BGC ∴∠=∠BG BC ∴=AB AG BG AD BC ∴=+=+;(2)如图,过点C 作//CG AD ,交AE 延长线于点G ,延长GC 交AB 于点F ,连接EF 由方法1可知:,AF GF AE GE ==AFG ∴是等腰三角形EF ∴平分AFG ∠12EFC AFG ∴∠=∠ //CG AD ,60BAD ∠=︒60,180120BFC BAD AFG BAD ∴∠=∠=︒∠=︒-∠=︒60EFC ∴∠=︒//CG AD180D ECF ∴∠+∠=︒11802D BCD ︒∠+∠=,即1()1802D ECF BCF ∠+∠+∠=︒ 1()2ECF ECF BCF ∴∠=∠+∠ ECF BCF ∴∠=∠在ECF △和BCF △中,60EFC BFC CF CF ECF BCF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()ECF BCF ASA ∴≅ CB CE ∴=.【点睛】本题考查了角平分线的定义、平行线的性质、三角形全等的判定定理与性质等知识点,较难的是题(2),参照方法1,通过作辅助线,构造全等三角形是解题关键. 10.(1)见解析;(2)CB=2AB ;(3)3AB k FG k = 【分析】(1)利用平行线的性质以及角的等量代换求证即可;(2)在BE 边上取点H ,使BH=AE ,可证明△ABH ≌△DAE ,△ABE ∽△ACB ,利用相似三角形的性质从而得出结论;(3)连接BD 交AC 于点Q ,过点A 作AK ⊥BD 于点K ,得出12AD DK CB DB ==,通过证明△ADK ∽△DBC 得出∠BDC=∠AKD=90°,再证DF=FQ ,设AD=a ,因此有DF=FC=QF=ka ,再利用相似三角形的性质得出AC=3ka ,3AB ka =,1122FG DF ka ==,从而得出答案.【详解】解:(1)∵∠BAD=∠BEC∠BAD=∠BAE+∠EAD∠BEC=∠ABE+BAE∴∠EAD=∠ABE∵AD ∥BC∴∠EAD=∠ACB∴∠ACB=∠ABE(2)在BE 边上取点H ,使BH=AE∵AB=AD∴△ABH ≌△DAE∴∠AHB=∠AED∵∠AHB+∠AHE=180°∠AED+∠DEC=180°∴∠AHE=∠DEC∵∠BEC=2∠DEC∠BEC=∠HAE+∠AHE∴∠AHE=∠HAE∴AE=EH∴BE=2AE∵∠ABE=∠ACB∠BAE=∠CAB∴△ABE ∽△ACB ∴EB AE CB AB= ∴CB=2AB ; (3)连接BD 交AC 于点Q ,过点A 作AK ⊥BD 于点K∵AD=AB∴12DK BD = ∠AKD=90°∵12AB AD BC == ∴12AD DK CB DB == ∵AD ∥BC∴∠ADK=∠DBC∴△ADK ∽△DBC∴∠BDC=∠AKD=90°∵DF=FC∴∠FDC=∠DFC∵∠BDC=90°∴∠FDC+∠QDF=90°∠DQF+∠DCF=90°∴DF=FQ设AD=a∴DF=FC=QF=ka∵AD ∥BC∴∠DAQ=∠QCB∠ADQ=∠QBC∴△AQD ∽△CQB ∴12AD QA BC CQ== ∴AQ=ka=QF=CF∴AC=3ka∵△ABE ∽△ACB ∴AE AB AB AC= ∴AB =同理△AFD ∽△CFG12DF AF FG FC == ∴1122FG DF ka ==AB FG = 【点睛】本题是一道关于相似的综合题目,难度较大,根据题目作出合适的辅助线是解此题的关键,解决此题还需要较强的数形结合的能力以及较强的计算能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学一轮复习知识点总结完整版
中考数学是一个综合性较强的学科,考察的知识点广泛且涵盖面较大。
下面是中考数学一轮复习的知识点总结,希望对大家的复习有所帮助。
一、数字与运算
1.自然数、整数、有理数、实数、正负数的概念和性质;
2.整除与倍数的概念和性质;
3.分数的概念、性质和简化;
4.百分数的概念、性质和应用;
5.有理数四则运算,包括加减乘除的计算和性质;
6.根号的概念和性质;
7.科学计数法的概念和应用。
二、代数式与方程式
1.代数式的概念、字母与数的关系和计算;
2.方程的概念和性质;
3.一次方程和一元一次方程;
4.一元一次方程的解法和应用;
5.二元一次方程组;
6.一元二次方程及其解法。
三、几何基本概念
1.点、线、面、角的基本概念;
2.平行线与垂直线的性质;
3.直角三角形的基本性质;
4.同位角、内错角、同旁内角的概念和性质;
5.一次性证明、角度和长度的估算。
四、函数与图像
1.函数和自变量、因变量的概念;
2.一次函数的图像和性质;
3.二次函数的图像和性质;
4.函数与方程的关系;
5.线性函数和二次函数的应用。
五、统计与概率
1.统计调查、样本和总体;
2.频数、频率和密度的概念和计算;
3.四则运算和统计的应用;
4.试验、样本空间、事件的概念;
5.概率的定义、性质和计算;
6.简单事件、必然事件、不可能事件的概念。
六、数与图的表示与分析
1.数量的估算、数轴、符号表示和近似计算;
2.表格和图表的读取、分析和应用;
3.直方图、折线图、饼图的绘制、读取和分析。
七、三角与圆
1.三角形的基本概念和性质;
2.三角形的相似性;
3.角的平分线与垂直平分线;
4.周长、面积和体积的计算;
5.圆的基本概念和性质;
6.圆内接四边形的性质。
八、空间与形体
1.空间直线的判定和性质;
2.平面与空间直线的位置关系和夹角的判定;
3.空间点距离的计算;
4.空间图形的投影和旋转;
5.空间图形的展开和折叠。
这是中考数学一轮复习的知识点总结,希望对同学们的复习有所帮助。
复习过程中,同学们要根据自己的实际情况逐个进行复习,理解每个知识
点的概念、性质和解题方法,并进行大量的练习和题型训练。
通过系统的
复习和训练,提高数学知识掌握的深度和广度,为中考取得优异的成绩奠定坚实的基础。
祝同学们顺利备考,取得好成绩!。