电磁场边界条件
电磁场的边界条件

将⑧代入⑨,得: sin 2 cos 1 sin 1 cos 2 sin(1 2 ) rs sin 2 cos 1 sin 1 cos 2 sin(1 2 )
2n1 cos 1 ts n1 cos 1 n2 cos 2
对绝大多数物质, 1 2
所以得到方程:
E1 y z E1' y z E2 y z
z 0
⑥
代入边界条件,可得:
k1 cos 1 A1s k1' cos 1' A1' s k2 cos 2 A2 s
k1 k1' 整理得: cos 1 A1s cos 1' A1' s cos 2 A2 s k2 k2' k1 sin 2 将 代入上式,得: k2 sin 1
AB BC CD DA
针对麦克斯韦 方程组积分形 式的第三个与 第四个方程, 建立如左图模 型,积分可得
E2t CD ( E2 n DF E1n FA) 0
E1t E2t 同理可得 H1t =H 2t
电磁场边界条件
(1)电场强度E 在分界面上的平行分量连续。
从右图可以看出, 对于s光:
Ex 0 E y ES Ez 0
根据几何关系,可知:
k x k sin 1 , k y 0, k z k cos 1
对于单色平面光波: E0 e E
i[t ( k x x k y y k z z )]
将上面的结论带 i[1t ( k sin 1 x k cos1 z )] E E0 e 入方程可得: 对于s光,可以分解为:
i ( k2 sin 2 x )
电磁场的边界条件

媒质2
§8
2.7.1 边界条件一般表达式 D ) dS C H dl S ( J en ( H 1 H 2 ) J S t B en ( E1 E 2 ) 0 dS C E dl S t e n (B1 B 2 ) 0 S B dS 0 en (D1 D 2 ) S S D dS V ρdV en 分界面上的电荷面密度
媒质1 媒质2 分界面上的电流面密度
§8
边界条件的推证 (1) 电磁场量的法向边界条件
媒质 1 媒质 2
en
ΔS
D1
Δh
在两种媒质的交界面上任取一
点P,作一个包围点P 的扁平圆柱 曲面S,如图表示。 令Δ h →0,则由
S
P
D2
即 同理 ,由
S
D dS ρdV
V
(D1 D2 ) en S S S
d
x
π ez sin( z ) cos(t k x x ) (A/m) 0 d k x E0
(2) z = 0 处导体表面的电流密度为
J S ez H
z 0
πE0 ey sin(t k x x) 0 d
(A/m)
z = d 处导体表面的电流密度为
J S (ez ) H
4 30
107 cos(15 108 t ) A/m
可见,在 z = 0 处,磁场强度的切向分量是连续的,因为在分界面 上(z = 0)不存在面电流。
§8
例 2.7.2 如图所示,1区的媒质参数为1 5 0、1 0、 1 0, 2区的媒质参数为 2 0、2 0、 2 0。若已知自由空间的电 场强度为 E2 ex 2 y ey 5z ez (3 z ) V/m
《电磁场理论》5.6 磁介质分界面上的边界条件

J ms | a M 2 (e ) 0 I ]e z J ms | b M 2 e [( 1) 0 2 b
在垂直于z轴平面内的磁化电流为
Im
S
Jm dS
2 b
J ms dl (
1) I ( 1) I 0 0 0
B
B
0
B
I
0 I B e ( 0 )
0 I H e (0 ) B I H0 e 0 (0 )
13
(2)磁介质中的磁化强度为 ( 0 ) I M ( 1) H e 0 ( 0 ) 则磁化电流密度为 1 d 1 d ( 0 ) I ( M )e z [ ]e z 0 J m M d d ( 0 ) 在磁介质的表面上,当 0时,磁化电流面密度为
8
求磁化电流:
( 1 0 ) I 介质磁化强度为: M e H 20 0
B
体磁化电流为:
e
e
ez
J m M M rM
面磁化电流为:
0 z Mz
J sm
( 1 0 ) I ( 1 0 ) I e e ez M n 20 20
l
H 1 dl H 2 2 I
H1 I 2 e
I b
O a
3
2
1
0 I B1 H 1 e 2
11
0 a时 (3 )
H
l
3
dl H 3 2 0
H3 0
I b
3.5 电磁场的边界条件(一)

E1t E1 E1n
( 7 aˆ 124 aˆ 95 aˆ ) 50 x 50 y 50 z
根据边界条件: E1t E2t
D1n D2n 0
30E1n 0 E2n
E2 n
( 279 50
aˆ x
372 50
aˆ y
465 50
aˆz )
得: E2 E2t E2n 5.72aˆx 4.96aˆy 11.2aˆz
A B
故: 1 S 2 S
该式表明:在两种媒质分界面处, 标量电位是连续的。
因为:E
D1n D2n S
2
2
n
S
1
1
n
S
S
在理想导体表面上:
S
C
(常数)
例1: 试求两个平行板电容器的电场强度。
解:忽略边缘效应 图(a) 电场方向与分界面垂直
3.5 电磁场的边界条件(一)
1. 电场法向分量的边界条件 2. 电场切向分量的边界条件 3. 标量电位的边界条件
决定分界面两侧电磁场变化关系的方程称为边界条件。
1. 电场法向分量的边界条件
如图所示,在柱形闭合面上应 用电场的高斯定律
S D dS nˆ1D1S nˆ2D2S S S
小结:
1. 电场法向分量的边界条件 D1n D2n S
2. 电场切向分量的边界条件 E1t E2t
3. 标量电位的边界条件
1 S 2 S
合回路abcd ,在此回路上应用法拉第电磁
感应定律
l
E
dl
S
B t
dS
因为: l E dl E1t l E2tl
B dS B lh 0
S t
电磁场的边界条件与电磁波的辐射和传播

电磁场的边界条件与电磁波的辐射和传播[摘要]:本文结合相关示意图简要总结了电磁场的边界条件,在参考大量相关文献的基础上,由边界条件出发分析了交变电磁场传播的原理,联系实际解释了电磁场的辐射和传播。
关键字:电磁场;电磁波;边界条件;辐射;传播。
一、电磁场的边界条件电磁场在两种不同媒质分界面上,从一侧过渡到另一侧时,场矢量E、D、B、H一般都有一个跃变。
电磁场的边界条件就是指场矢量的这种跃变所遵从的条件,也就是两侧切向分量之间以及法向分量之间的关系。
电磁场的边界条件可以由麦克斯韦方程组的积分形式推出,它实际上是积分形式的极限结果。
这些边界条件是:n·(D1-D2)=ρs; (1)n×(E1-E2)=0; (2)n·(B1-B2)=0; (3)n×(H1-H2)=J)s。
(4)式中n为两媒质分界面法线方向的单位矢量,场矢量E、D、B、H的下标1或2分别表示在媒质1或2内紧靠分界面的场矢量,ρ为分界面上的自由电荷面密度,J为分界面上的传导电流面密度。
式(1)表示在分界面两侧电位移矢量D的法向分量的差等于分界面上的自由电荷面密度。
当分界面上无自由电荷时,两侧电位移矢量的法向分量相等,即其法向分量是连续的。
式(2)表示在分界面两侧电场强度E的切向分量是连续的。
式(3)表示在分界面两侧磁通密度B的法向分量是连续的。
式(4)表示在分界面两侧磁场强度H的切向分量的差等于分界面上的表面传导电流面密度。
当分界面上无表面传导电流时,两侧磁场强度的切向分量相等,即其切向分量是连续的。
当媒质2为理想导体时,E2、D2、B2、H2等于零,式(1)表示D1的法向分量等于自由电荷面密度;式(2)表示E1无切向分量.式(3)表示B1的法向分量为零;式(4)表示H1的切向分量等于表面传导电流面密度,并且与电流方向正交。
二、电磁波的辐射和传播电磁波的产生与发射是通过天线来实现的。
由振荡电路产生的强大交变讯号通过互感耦合到天线上,天线就有交变电流产生,如下图所示。
电磁场电磁场的媒质边界条件

ars
nr S S
环路围面法向
3 电场强度的关系
rr r nnErrr 2EElrrr 22aErrnrs1
rr
l 0,l
nr r
r E1
r as
nr
r as
0
rE1 0
n E2 n E1 0 E2t E1t
两种媒质界面处电场强度的切向分量相等 (无条件连续)
4 电通密度的关系
以理想导体为边界的区域中,空间电磁场 可以看成是源电荷、电流激发场与导体表面 感应电荷,电流激发场(散射场)的叠加。 在一定条件下,散射场可以等效为位于导体 区域内等效像电荷、电流激发的场,等效像 电荷、电流的分布决定于导体的边界条件。 这种通过寻找像电荷电流求解空间区域电磁 场分布的方法称为镜像法。
l r
Hr2
H1 l
r as
r
nr
Jrl ,
rH1
l
r
ars
as
r Jl
n
r as
n H2 n H1 Jl
H2t H1t J l
在两种媒质界面处,磁场强度的切向分量是 有条件连续的。
4 磁通密度的关系
nr
rr B2 B1
0 Bn2 Bn1 0
在两种媒质的界面处,磁通密度矢量的法向分量 无条件连续。
T? ? 1 f
3 理想导体内部的电磁场
• 理想导体内部不存在电场,只要电场不为 零,在电场的作用下就会有自由电荷分布, 另外导体内的电流密度会成为无穷大,这是 不符合物理的。
• 由麦克斯韦第二方程可得理想导体中的时变 磁场也必为零。
r E
0,
r B
0,
r
Bt
r B
时变电磁场的边界条件

时变电磁场的边界条件
1、在任何边界上电场强度的切向分量是连续的(条件:磁感应强度的变化率有限)
2、在任何边界上,磁感应强度的法向分量是连续的
3、电通密度的法向分量边界条件与媒质特性有关。
两种理想介质形成的边界上,电通密度的法向分量是连续的
4、磁场强度的切线分量边界条件也与媒质特性有关。
在一般边界上,磁场强度的切向分量是连续的(条件:电通密度的时间变化率有限)。
但在理想导电体表面上可以形成表面电流,此时磁场强度的切向分量是不连续的
5、理想导体内部不可能存在电场,否则将会导致无限大的电流;理想导体内部也不可能存在时变磁场,否则这种时变磁场在理想导体内部会产生时变电场。
在理想导体内部也不可能存在时变的传导电流,否则这种时变的传导电流在理想导体内部会产生时变磁场。
所以,在理想导电体内部不可能存在时变电磁场及时变的传导电流,它们只可能分布在理想导电体的表面。
6、在任何边界上,电场强度的切向分量及磁感应强度的法向分量是连续的,因此理想导体表面上不可能存在电场切向分量及磁场法向分量,只可能存在法向电场及切向磁场,也就是说,时变电场必须垂直于理想导电体的表面,而时变磁场必须与其表面相切。
7、无源区中的正弦电磁场被其边界上的电场切向分量或磁场切向分量唯一地确定。
电磁场的边界条件

2.7 电磁场的边界条件
第二章 电磁场的基本规律
二、理想导体表面上的边界条件
理想导体 E、D、B、H=0
n×H1=JS n×E1=0 n•B1=0 n•D1=ρS
n×(H1-H2)=JS n×(E1-E2)=0 n•(B1-B2)=0 n•(D1-D2)=ρS
2.7 电磁场的边界条件
第二章 电磁场的基本规律
一、边界条件的一般形式
磁场强度H的边界条件 1 2
H C
dl H1
l H2
l JS
N l
l (N n)l
n H1 h
H2 Δl
n×(H1-H2)=JS
2.7 电磁场的边界条件
第二章 电磁场的基本规律
电场强度E的边界条件
n×(E1-E2)=0
磁感应强度B的边界条件
S B dS B1nS B2nS 0 1
n
B1
ΔS h
n•(B1-B2)=0
2
B2
2.7 电磁场的边界条件
第二章 电磁场的基本规律
电位移矢分界面两侧,电场强度的切向分 量和磁感应强度的法向分量总是连续的;若分 界面上不存在面电流和面电荷,则磁场强度的 切向分量和电位移矢量的法向分量是连续的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁场边界条件
电磁场边界条件是指电磁场的变化情况在物体的表面上的变化情况,它决定了电磁场的变化特性。
它是电磁场的基本规律,在物理学中有着重要的地位。
它的主要内容有:无磁性介质的电磁场边界条件,有磁性介质的电磁场边界条件和电磁辐射的边界条件。
无磁性介质的电磁场边界条件由电场强度和磁场强度的法向分量构成;有磁性介质的电磁场边界条件由电场强度和磁场强度的法向分量以及介质的磁导率构成;电磁辐射的边界条件由电磁辐射的波功率流密度和波向分量构成。
电磁场边界条件的求解是物理学中最重要的问题之一。