电力电子第四版 第5章 思考题与习题答案详解
电路分析基础(第四版)张永瑞答案第5章

解 两线圈顺接时(两线圈连接端子为异名端), 由二 P=UIcosjz 得
P 96 cos j z 0.8 UI 60 2
这时的阻抗模值
U 60 Z 30 I 2
24
第5 章
互感与理想变压器
回路中阻抗Z中的电阻部分即相串联两线圈的损耗电阻之和
R r1 r2 Z cosjz 30 0.8 24
加在串联线圈两端进行实验。 当两线圈顺接(即异名端相
连)时, 如图(a)所示, 测得电流有效值为2 A, 平均功率为 96 W;当两线圈反接(即同名端相连)时, 如图(b)所示, 测得 电流为2.4 A。 试确定该两线圈间的互感值M。
22
第5 章
互感与理想变压器
题5.5图
23
第5 章
互感与理想变压器
题5.6图
29
第5 章
互感与理想变压器
解 将互感线圈画为T形等效电路, 如题解5.6图(a)
所示, 再应用电感串并联等效将题解5.6图(a)等效为题解5.6
图(b)。
因原电路已处于稳态, 所以由题解5.6图(b)求得
6 i1 (0 ) 3A 2
则由换路定律, i1(0+)=i1(0-)=3 A
互感与理想变压器
解 根据同名端的定义, 由原图电路线圈的绕向判定同
名端如题解5.10图(a)所示。 互感线圈用T形等效电路代替并画
出相量模型电路, 如题解5.10图(b)所示。 当ab端的阻抗Zab=0
时, 则有
U ab U ab 0 I 0 Z L j ( L2 M )
46
5.11 题5.11图所示电路中的变压器有两个额定电压为110
电路 第四版 答案(第五章)

第五章 含有运算放大器的电阻电路运算放大器是电路理论中一个重要的多端器件。
在电路分析中常把实际运算放大器理想化,认为其(1)输入电阻∞→in R ;(2)输出电阻00=R ;(3)电压放大倍数∞→A 。
在分析时用理想运算放大器代替实际运算放大器所引起的误差并不严重,但使分析过程大大简化。
由理想化的条件,可以得出理想运放的两条规则:(1)侧向端和非倒向端的输入电流均为零,即,0==+-i i (称为“虚断路”); (2)对于公共端(地),倒向输入端电压u -与非倒向输入端的电压+u 相等,即+-=u u (成为“虚短路”)。
以上两条规则是分析含有理想运放电路依据,合理的应用这两条规则,并与结点电压法结合起来加以运用,是分析含有理想运放电路的有效方法。
5-1 设要求图示电路的输出o u 为212.03u u u o +=-已知Ω=k R 103,求1R 和2R 。
解:题5-1图所示电路中的运放为理想运放,应用其两条规则,有解法一:由规则1,0=-i ,得21i i i +=,故22113R u u R u u R u u o ----+-=-- 根据规则2,得0==+-u u ,代入上式中,可得)(2211322113R u R u R u R u R u R u o o +=-+=-代入已知条件,得213113212.03u R Ru R R u u +=+ 故,Ω==Ω==k RR k R R 502.0 ; 33.333231解法二:对结点○1列出结点电压方程,并注意到规则1,0=-i ,可得 221133211)111(R u R u u R u R R R o +=-++- 应用规则2,得0=-u ,所以)(2211332113R uR u R u R u R u R u o o +=-+=-后面求解过程和结果同解法一。
注:对含有理想运放电路的分析,需要紧紧抓住理想运放的两条规则:○1“虚断”——倒向端和非倒向端的输入电流均为零;○2“虚短”——对于公共端(地),倒向端的电压与非倒向输入端的电压相等。
高频电子线路课本习题答案(第四版)五章

第5章 振幅调制、振幅解调与混频电路填空题(1) 模拟乘法器是完成两个模拟信号 相乘 功能的电路,它是 非线性 器件,可用来构成 频谱 搬移电路。
(2) 用低频调制信号去改变高频信号振幅的过程,称为 调幅 ;从高频已调信号中取出原调制信号的过程,称为 解调 ;将已调信号的载频变换成另一载频的过程,称为 混频 。
(3) 在低功率级完成的调幅称 低电平 调幅,它通常用来产生 DSB 、SSB 调幅信号;在高功率级完成的调幅称为 高电平 调幅,用于产生 AM 调幅信号。
(4)包络检波器,由 非线性器件 和 低通滤波器 组成,适用于解调 AM 信号。
(5) 取差值的混频器输入信号为36()0.1[10.3cos(210)](cos210)V s u t t t ππ=+⨯⨯,本振信号为6()cos(2 1.510)V L u t t π=⨯⨯,则混频器输出信号的载频为 0.5M Hz ,调幅系数m a 为 ,频带宽度为 2k Hz 。
(6) 超外差式调幅广播收音机的中频频率为465kHz ,当接收信号频率为600kHz 时,其本振频率为 1065 kHz ,中频干扰信号频率为 465 kHz ,镜像干扰信号频率为 1530 kHz 。
|理想模拟相乘器的增益系数1M 0.1V A -=,若X u 、Y u 分别输入下列各信号,试写出输出电压表示式并说明输出电压的特点。
(1) 6X Y 3cos(2π10)V u u t ==⨯;(2) 6X 2cos(2π10)V u t =⨯,6Y cos(2π 1.46510)V u t =⨯⨯; (3) 6X 3cos(2π10)V u t =⨯,3Y 2cos(2π10)V u t =⨯; (4) 6X 3cos(2π10)V u t =⨯,3Y [42cos(2π10)]V u t =+⨯[解] (1) 22660.13cos 2π100.45(1cos 4π10)V O M x y u A u u t t ==⨯⨯=+⨯ 为直流电压和两倍频电压之和。
电力电子技术最新版配套习题答案详解第5章

目录第1章电力电子器件 (1)第2章整流电路 (4)第3章直流斩波电路 (20)第4章交流电力控制电路和交交变频电路 (26)第5章逆变电路 (31)第6章PWM控制技术 (35)第7章软开关技术 (40)第8章组合变流电路 (42)第5章逆变电路1.无源逆变电路和有源逆变电路有何不同?答:两种电路的不同主要是:有源逆变电路的交流侧接电网,即交流侧接有电源。
而无源逆变电路的交流侧直接和负载联接。
2.换流方式各有那几种?各有什么特点?答:换流方式有4种:器件换流:利用全控器件的自关断能力进行换流。
全控型器件采用此换流方式。
电网换流:由电网提供换流电压,只要把负的电网电压加在欲换流的器件上即可。
负载换流:由负载提供换流电压,当负载为电容性负载即负载电流超前于负载电压时,可实现负载换流。
强迫换流:设置附加换流电路,给欲关断的晶闸管强迫施加反向电压换流称为强迫换流。
通常是利用附加电容上的能量实现,也称电容换流。
晶闸管电路不能采用器件换流,根据电路形式的不同采用电网换流、负载换流和强迫换流3种方式。
3.什么是电压型逆变电路?什么是电流型逆变电路?二者各有什么特点。
答:按照逆变电路直流测电源性质分类,直流侧是电压源的称为逆变电路称为电压型逆变电路,直流侧是电流源的逆变电路称为电流型逆变电路电压型逆变电路的主要特点是:①直流侧为电压源,或并联有大电容,相当于电压源。
直流侧电压基本无脉动,直流回路呈现低阻抗。
②由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。
而交流侧输出电流波形和相位因负载阻抗情况的不同而不同。
③当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。
为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。
电流型逆变电路的主要特点是:①直流侧串联有大电感,相当于电流源。
直流侧电流基本无脉动,直流回路呈现高阻抗。
②电路中开关器件的作用仅是改变直流电流的流通路径,因此交流侧输出电流为矩形波,并且与负载阻抗角无关。
电力电子课后习题答案 5

第五章 直流—直流交流电路1.简述图5-1a 所示的降压斩波电路工作原理.答:降压斩波器的原理是:在一个控制周期中,让V 导通一段时间t on ,由电源E 向L 、R 、M 供电,在此期间,u o =E 。
然后使V 关断一段时间t off ,此时电感L 通过二极管VD 向R 和M 供电,u o =0.一个周期内的平均电压U o =E t t t ⨯+offon on。
输出电压小于电源电压,起到降压的作用。
2.在图5-1a 所示的降压斩波电路中,已知E =200V ,R =10Ω,L 值极大,E M =30V ,T =50μs ,t on =20μs ,计算输出电压平均值U o ,输出电流平均值I o 。
解:由于L 值极大,故负载电流连续,于是输出电压平均值为U o =E T t on =5020020⨯=80(V)输出电流平均值为I o =R E U M o -=103080-=5(A)3.在图5-1a 所示的降压斩波电路中,E =100V , L =1mH,R =0。
5Ω,E M =10V ,采用脉宽调制控制方式,T =20μs ,当t on =5μs 时,计算输出电压平均值U o ,输出电流平均值I o ,计算输出电流的最大和最小值瞬时值并判断负载电流是否连续。
当t on =3μs 时,重新进行上述计算。
解:由题目已知条件可得:m =E E M =10010=0。
1τ=RL =5.0001.0=0.002 当t on =5μs 时,有ρ=τT =0。
01αρ=τont =0。
0025由于11--ραρe e =1101.00025.0--e e =0.249>m 所以输出电流连续。
此时输出平均电压为U o =E T t on =205100⨯=25(V) 输出平均电流为I o =R E U M o -=5.01025-=30(A) 输出电流的最大和最小值瞬时值分别为I max =R E m e e ⎪⎪⎭⎫ ⎝⎛-----ραρ11=5.01001.01101.00025.0⎪⎪⎭⎫ ⎝⎛-----e e =30.19(A )I min =R E m e e ⎪⎪⎭⎫ ⎝⎛---11ραρ=5.01001.01101.00025.0⎪⎪⎭⎫ ⎝⎛---e e =29。
电力电子技术-第五章习题解析

交流-直流变换器(14)
3.题图5-2为具有变压器中心抽头的单相全波可控整流电路,问该变压器 还有直流磁化问题吗?试说明:①晶闸管承受的最大反向电压为2
②当负载是电阻或电感时,其输出电压和电流的波形与单相全控桥时相同 。
答:该变压器不存在直流磁化问题。
①在正半周时,VTl工作,变压器二次绕组上 半部分流过电流。变压器二次电压通过VTl加 在 VT2 两 端 , 且 是 反 向 电 压 , 其 最 大 值 是 。2 2U2
解:
Ud
=
2.34U2[1+ cos(α
+ π )] =
3
2.34× 400× (1+ cos 5 π )
6
= 125.4V
Id
= Ud Rd
= 12.54A
交流-直流变换器(14)
2.在三相半波整流电路中,如果a相的触发脉冲消失,试绘出在电阻性负载 和电感性负载下整流电压ud的波形。
ud
ua
ub
交流-直流变换器(14)
第5章 习题(1)
第1部分:简答题 1. 如题图5-1所示的单相桥式半控整流电路中可能发生失控现象,何为失 控,怎样抑制失控?
答:当 α 突然增大至 180o 或触发脉冲丢失时,由于电感储能不经变压 器二次绕组释放,只是消耗在负载电阻上,会发生一个晶闸管持续导通而两 个二极管轮流导通的情况,这使 ud 成为正弦半波,即半周期 ud 为正弦,另 外半周期 ud 为零,其平均值保持恒定,相当于单相半波不可控整流电路时 的波形,称为失控。
6.PWM整流电路可分为 电压型 和电流型两大类,目前研究和应用较多的是 电压型 PWM整流电路。
7.PWM整流电路的控制方法有间接电流控制和直接电流控制 ,基于系统的 静态模型设计、动态性能较差的是间接电流控制,电流响应速度快、系统鲁棒
电力电子技术课后习题及解答

《电力电子技术》习题及解答第1章思考题与习题晶闸管的导通条件是什么? 导通后流过晶闸管的电流和负载上的电压由什么决定?答:晶闸管的导通条件是:晶闸管阳极和阳极间施加正向电压,并在门极和阳极间施加正向触发电压和电流(或脉冲)。
导通后流过晶闸管的电流由负载阻抗决定,负载上电压由输入阳极电压U A决定。
晶闸管的关断条件是什么? 如何实现? 晶闸管处于阻断状态时其两端的电压大小由什么决定?答:晶闸管的关断条件是:要使晶闸管由正向导通状态转变为阻断状态,可采用阳极电压反向使阳极电流I A减小,I A下降到维持电流I H以下时,晶闸管内部建立的正反馈无法进行。
进而实现晶闸管的关断,其两端电压大小由电源电压U A决定。
温度升高时,晶闸管的触发电流、正反向漏电流、维持电流以及正向转折电压和反向击穿电压如何变化?答:温度升高时,晶闸管的触发电流随温度升高而减小,正反向漏电流随温度升高而增大,维持电流I H会减小,正向转折电压和反向击穿电压随温度升高而减小。
晶闸管的非正常导通方式有哪几种?答:非正常导通方式有:(1) I g=0,阳极电压升高至相当高的数值;(1) 阳极电压上升率du/dt 过高;(3) 结温过高。
请简述晶闸管的关断时间定义。
答:晶闸管从正向阳极电流下降为零到它恢复正向阻断能力所需的这段时间称为关断时间。
即gr rr q t t t +=。
试说明晶闸管有哪些派生器件?答:快速晶闸管、双向晶闸管、逆导晶闸管、光控晶闸管等。
请简述光控晶闸管的有关特征。
答:光控晶闸管是在普通晶闸管的门极区集成了一个光电二极管,在光的照射下,光电二极管电流增加,此电流便可作为门极电触发电流使晶闸管开通。
主要用于高压大功率场合。
型号为KP100-3,维持电流I H =4mA 的晶闸管,使用在图题所示电路中是否合理,为什么?(暂不考虑电压电流裕量)图题答:(a )因为H A I mA K V I <=Ω=250100,所以不合理。
电力电子技术(第四版)课后答案

第5章逆变电路5.l.无源逆变电路和有源逆变电路有何不同?答:两种电路的不同主要是:有源逆变电路的交流侧接电阿,即交流侧接有电源。
而无源逆变电路的交流侧直接和负载联接。
5.2.换流方式各有那儿种?各有什么特点?答:换流方式有4种:器件换流:利用全控器件的自关断能力进行换流。
全控型器件采用此换流方式。
电网换流:由电网提供换流电压,只要把负的电网电压加在欲换流的器件上即可。
负载换流:由负载提供换流电压,当负载为电容性负载即负载电流超前于负载电压时,可实现负载换流。
强迫换流:设置附加换流电路,给欲关断的晶闸管强追施加反向电压换流称为强迫换流。
通常是利用附加电容上的能量实现,也称电容换流。
晶闸管电路不能采用器件换流,根据电路形式的不同采用电网换流、负载换流和强迫换流3种方式。
5.3.什么是电压型逆变电路?什么是电流型逆变电路?二者各有什么特点?答:按照逆变电路直流测电源性质分类,直流侧是电压源的称为逆变电路称为电压型逆变电路,直流侧是电流源的逆变电路称为电流型逆变电路电压型逆变电路的主要持点是:①直流侧为电压源,或并联有大电容,相当于电压源。
直流侧电压基本无脉动,直流回路呈现低阻抗。
②由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。
而交流侧输出电流波形和相位因负载阻抗情况的不同而不同。
③当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。
为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。
电流型逆变电路的主要特点是:①直流侧串联有大电感,相当于电流源。
直流侧电流基本无脉动,直流回路呈现高阻抗。
②电路中开关器件的作用仅是改变直流电流的流通路径,因此交流侧输出电流为矩形波,并且与负载阻抗角无关。
而交流侧输出电压波形和相位则因负载阻抗情况的不同而不同。
③当交流侧为阻感负载时需要提供无功功率,直流测电惑起缓冲无功能量的作用。
因为反馈无功能量时直流电流并不反向,因此不必像电压型逆变电路那样要给开关器件反并联二极管。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题与思考题1.无源逆变电路和有源逆变电路有什么不同?答: 有源逆变是将逆变电路的交流侧接到交流电网上,把直流电逆变成同频率的交流电返送 到电网。
应用于直流电机的可逆调速、绕线转子异步电机的串级调速、高压直流输电和太阳 能发电等方面。
无源逆变是逆变器的交流侧直接接到负载,即将直流电逆变成某一频率或可 变频率的交流电供给负载。
蓄电池、干电池、太阳能电池等直流电源向交流负载供电时,需 要采用无源逆变电路。
2.电力电子电路中的开关器件有哪些换流方式?各有什么特点?答:换流方式可分为以下四种:①器件换流:利用全控型器件(GTO、GTR、IGBT和电力 MOSFET等)的自关断能力进 行换流。
②电网换流:由电网提供换流电压称为电网换流。
在换流时,只要把负的电网电压 施加在欲关断的晶闸管上即可使其关断。
这种换流方式不需要器件具有门极可关断能力,也 不需要为换流附加元件,但不适用于没有交流电网的无源逆变电路。
③负载换流:由负载提 供换流电压称为负载换流。
在负载电流相位超前于负载电压的场合, 即负载为电容性负载时, 可实现负载换流。
④强迫换流:强迫换流需要设置附加的换流电路。
给欲关断的晶闸管强迫 施加反向电压或反向电流的换流方式称为强迫换流。
强迫换流通常利用附加电容上储存的能 量来实现,也称为电容换流。
上述四种换流方式中,器件换流只适用于全控型器件,其余方式针对晶闸管而言。
3.什么是电压型逆变电路和电流型逆变电路?各有什么特点?答:逆变电路按照直流侧电源性质,可分为电压型逆变电路和电流型逆变电路两类。
直流侧 电源是电压源的逆变电路,称为电压型逆变电路,而直流侧电源为电流源的逆变电路,称为 电流型逆变电路。
电压型逆变电路有如下主要特点:1)直流侧为电压源或并联大电容,电容抑制了直流电压纹波,使直流侧电压基本无脉 动,直流侧近似为恒压源,直流回路呈现低阻抗。
2)输出电压为矩形波,输出的电流波形和相位因负载阻抗不同而不同。
3)当交流侧为电感性负载时需提供无功功率,直流侧电容起缓冲无功能量的作用。
为 了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各桥臂并联了反馈二极管。
电流型逆变器的特点:1)直流侧串联大电感,直流侧电流基本无脉动,由于大电感的抑流作用,直流回路呈 现高阻抗,短路的危险性也比电压型逆变器小得多。
2)电路中开关器件的作用仅是改变直流电流的流通路径,因此交流侧输出的电流为矩 形波,与负载性质无关。
而交流侧电压波形因负载阻抗角的不同而不同。
3)当交流侧为阻感负载时,需要提供无功功率,直流侧电感起缓冲无功能量的作用。
因反馈无功能量时,直流电流不必反向,故不必给开关器件反并联二极管,电路相对电压型 也较简单。
4.电压型逆变电路中反馈二极管的作用是什么?为什么电流型逆变器中没有反馈二极 管?答:在电压型逆变电路中,当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无 功能量的作用。
为了给交流侧向直流侧反馈的无功能量提供通道, 逆变桥各臂都并联了反馈 二极管。
当输出交流电压和电流的极性相同时,电流经电路中的可控开关器件流通,而当输 出电压电流极性相反时,由反馈二极管提供电流通道。
在电流型逆变电路中,直流电流极 性是一定的,无功能量由直流侧电感来缓冲。
当需要从交流侧向直流侧反馈无功能量时,电 流并不反向,依然经电路中的可控开关器件流通,因此不需要并联反馈二极管。
5.三相桥式电压型逆变电路(见图 510),180°导电方式,U d =200V 。
试求相电压的基 波幅值 U UN1m 和基波有效值 U UN1、输出线电压的基波幅值 U UV1m 和基波有效值 U UV1、输出 线电压中 7次谐波的有效值U UV7。
解:相电压的基波幅值 U UN1m 和基波有效值 U UN1:V 4 . 127 637 . 0 2 1 = = = d d m UN U U U pV 90 45 . 0 21 1 1 = = = d m UN UN U U U 相电压基波幅值 U UV1m 和基波有效值U UV1 分别为V 220 1 . 1 3 2 1 = = = d d m UV U U U pV 156 78 . 0 21 1 1 = = = d m UV UV U U U( ) ú ûù ê ë é - + = - + + - - = å n k d d UV t n n t U t t t t t U u w w p w w w w w p sin 1 1 sin 3 2 ) 13 sin 131 11 sin 11 1 7 sin 7 1 5 sin 5 1 (sin 32 L V3 . 22 71 1 7 = = UV UV U U 6.并联谐振式逆变器(见图 512)是如何进行换流的?为保证换流应满足什么条件?与 负载并联的电容的作用是什么?答:t < 1 t 时,VT 1、VT 4 导通,VT 2、VT 3 关断,u o 、i o 均为正,VT 2、VT 3 承受电压即为 u o ,即为电容 C 两端电压。
此时电容充电,极性为左正右负;t = 1 t 时,触发 VT 2、VT 3 使其开通,电容放电经过 VT 1、VT 4,使流过 VT 1、VT 4 中的电 流为零,u o 加到 VT 1、VT 4 上使其承受反压而关断,电流从 VT 1、VT 4 换到 VT 2、VT 3。
为保证换流应使触发 VT 2、VT 3 的时刻 1 t 必须在 u o 过零前并留有足够裕量,保证 VT 1、 VT 4 承受反压的时间大于其关断和恢复正向阻断能力所需的时间,才能使换流顺利完成。
并联电容 C 作用是补偿负载的功率因数;参与电路谐振,提供负载无功功率;使负载 电路呈现容性,负载电流 i o 超前电压 u o ,实现负载换流,达到关断晶闸管的目的。
7.串联二极管式电流逆变电路 (见图516) 中, 二极管的作用是什么?试分析换相过程。
答:二极管的主要作用是为换流电容器充电提供通道。
并使换流电容的电压能够得以保持, 为晶闸管在关断之后能够承受一定时间的反向电压, 确保晶闸管可靠关断, 从而确保晶闸管 换流成功。
触发 VT 3 使 VT 1 关断为例来说明换流过程。
当给 VT 3 触发脉冲使其立即导通时,在 C 13 的充电电压作用下 VT 1 承受反压而关断,实现了 VT 1 到 VT 3 之间的换流。
由于电容 C 13 两端 电压不能突变,使二极管 VD 3 承受反压处于截止状态,此时负载电流 I d 由电源正端经 VT 3、 等效电容 C 13、VD 1、U 相负载、W 相负载、VD 2、VT 2 到电源负端构成通路,如图 517b 所示,由于直流侧电感 L 的作用,对电容恒流放电再反充。
在 C 13 放电到零之前,VT 1 一直 承受反压,保证其可靠关断。
8.逆变电路多重化的目的是什么?如何实现?串联多重和并联多重逆变电路各用于什么 场合?答:逆变电路多重化的目的之一是使总体上装置的功率等级提高, 二是可以改善输出电压的 波形。
因为无论是电压型逆变电路输出的矩形电压波,还是电流型逆变电路输出的矩形电流 波,都含有较多谐波,对负载有不利影响,采用多重逆变电路,可以把几个矩形波组合起来 获得接近正弦波的波形。
逆变电路多重化就是把若干个逆变电路的输出按一定的相位差组合起来, 使它们所含的某些 主要谐波分量相互抵消,就可以得到较为接近正弦波的波形。
组合方式有串联多重和并联多 重两种方式。
串联多重是把几个逆变电路的输出串联起来,并联多重是把几个逆变电路的输 出并联起来。
串联多重逆变电路多用于电压型逆变电路的多重化。
并联多重逆变电路多用于电流型逆变电 路得多重化。
9.多电平逆变电路的优缺点有哪些?答:多电平逆变器具有开关器件电压应力小、输出电压谐波含量低等优点,而且,采用从而改善逆变器的电磁兼容性, 多电平技术可以降低开关器件在开关过程中的d u/d t和d i/d t,在高电压逆变器领域有着广泛的应用前景。
缺点是线路及控制较复杂。
10.试说明 PWM 控制的基本原理。
答:脉宽调制(PWM)。
控制方式就是对逆变电路开关器件的通断进行控制,使输出端得到 一系列幅值相等的脉冲,用这些脉冲来代替正弦波或所需要的波形。
也就是在输出波形的半 个周期中产生多个脉冲,使各脉冲的等值电压为正弦波形,所获得的输出平滑且低次斜波谐 波少。
按一定的规则对各脉冲的宽度进行调制,即可改变逆变电路输出电压的大小,也可改 变输出频率。
在采样控制理论中有一个重要的结论,即冲量相等而形状不同的窄脉冲加在具有惯性的 环节上,其效果基本相同。
冲量既指窄脉冲的面积。
这里所说的效果基本相同。
是指该环节 的输出响应波形基本相同。
如把各输出波形用傅里叶变换分析,则它们的低频段特性非常接 近,仅在高频段略有差异。
根据上面理论我们就可以用不同宽度的矩形波来代替正弦波,通过对矩形波的控制来模 拟输出不同频率的正弦波。
例如,把正弦半波波形分成 N 等份,就可把正弦半波看成由 N个彼此相连的脉冲所组成 的波形。
这些脉冲宽度相等,都等于π/n ,但幅值不等,且脉冲顶部不是水平直线,而是 曲线,各脉冲的幅值按正弦规律变化。
如果把上述脉冲序列用同样数量的等幅而不等宽的矩 形脉冲序列代替,使矩形脉冲的中点和相应正弦等分的中点重合, 且使矩形脉冲和相应正弦 部分面积(即冲量)相等,就得到一组脉冲序列,这就是 PWM 波形。
可以看出,各脉冲宽 度是按正弦规律变化的。
根据冲量相等效果相同的原理,PWM 波形和正弦半波是等效的。
对于正弦的负半周,也可以用同样的方法得到 PWM波形。
10.单极性和双极性 PWM 调制有什么区别?答:单极性调制时,调制波为正弦波电压,载波在正半周时为正向三角波,负半周时为负向 三角波。
主电路输出电压正半周为正向 SPWM 波形,负半周为负向 SPWM 波形,其瞬时有 三种+U d、0V、U d。
双极性调制时,调制波为正弦波电压,载波为正负三角波。
主电路输出电压正负 SPWM 波 形,其瞬时有+U d、U d 两种。
11.什么是异步调制?什么是同步调制?二者各有何特点?分段同步调制有什么优点? 答:载波信号和调制信号不保持同步的调制方式称为异步调制。
在异步调制方式中,通常保 持载波频率 f c 固定不变,因而当信号波频率 f r 变化时,载波比N 是变化的。
异步调制的主要特点是:在信号波的半个周期内,PWM 波的脉冲个数不固定,相位也不固 定,正负半周期的脉冲不对称,半周期内前后 1/4周期的脉冲也不对称。