离心泵的气缚与气蚀现象

合集下载

离心泵的气蚀现象及原因

离心泵的气蚀现象及原因

离心泵的气蚀现象及原因离心泵的气蚀现象及原因(1)气蚀现象离心泵的叶轮在高速旋转时产生很大的离心力,液体在离心力的作用下,使泵的入口处产生低于离心泵的气蚀现象及原因(1)气蚀现象离心泵的叶轮在高速旋转时产生很大的离心力,液体在离心力的作用下,使泵的入口处产生低于大气压的真空度,当入口压力达到在该温度下的液体气化压力时,液体就开始汽化形成气泡。

这样,在运动的液体中形成的气泡随液体一起流动。

当气泡达到静压超过饱和蒸汽压区域时,气泡迅速溃灭。

周围的液体以高速向气泡中心运动,这就形成了高频的水锤作用,打击叶轮表面,并产生噪音和振动。

这种气泡的产生和破灭过程反复进行就对这一区域的叶轮表面产生破坏作用,使泵流量减少,扬程下降,效率降低等,这种现象叫气蚀现象。

(2)造成汽蚀的主要原因有:a.进口管路阻力过大或者管路过细;b.输送介质温度过高;c.流量过大,也就是说出口阀门开的太大;d.安装高度过高,影响泵的吸液量;e.选型问题,包括泵的选型,泵材质的选型等。

(3)离心泵的气缚:由于泵内气体的存在,离心泵的叶轮在高速旋转时,由于气体的密度小,其离心力不能产生足够的真空度,而无法将液体吸上来。

气缚是泵体内有空气,一般发生在泵启动的时候,主要表现在泵体内的空气没排净;而汽蚀是由于液体在一定的温度下达到了它的汽化压力,和输送介质,工况有密切的关系.(4)气蚀余量:泵在工作时液体在叶轮的进口处因一定真空压力下会产生汽体,汽化的气泡在液体质点的撞击运动下,对叶轮等金属表面产生剥蚀,从而破坏叶轮等金属,此时真空压力叫汽化压力,汽蚀余量是指在泵吸入口处单位重量液体所具有的超过汽化压力的富余能量。

单位用米标注,用(NPSH)r。

吸程即为必需汽蚀余量Δh:即泵允许吸液体的真空度,亦即泵允许的安装高度,单位用米。

离心泵吸程=标准大气压(10.33米)-汽蚀余量-安全量(0.5米)水泵气蚀余量有两个概念:其一是与安装方式有关,称有效的气蚀余量NPSHA,它是指水流经吸入管路到达泵吸入口后所余的高出临界压力能头的那部分能量,是可利用的气蚀余量,属于“用户参数”;其二是与泵结本身有关,称必需的气蚀余量NPSHR,它是流体由泵吸入口至压力最低处的压力降低值,是临界的气蚀余量,属于“厂方参数”。

离心泵的常见汽蚀现象和原因

离心泵的常见汽蚀现象和原因

离心泵的常见汽蚀现象和原因
离心泵的常见汽蚀现象有:
1. 吸入气泡:当泵的进口侧发生压力降低或过高挡齿扩展时,会导致液体中的气体析出,形成气泡。

这些气泡会在离心泵的叶轮中产生均匀的分布,从而降低泵的效率。

2. 涡旋汽蚀:当液体在进口侧发生过高速度变化时,会形成涡旋。

这些涡旋会增加液体的动能,降低液体的压力,从而导致汽蚀现象。

3. 液体蒸发:当液体流经离心泵时,由于压力降低,液体中的低沸点液体或液体中的溶解气体会蒸发。

这些蒸发的液体或气体会形成气泡,从而导致汽蚀现象。

4. 液体沸腾:当液体的温度超过其饱和温度时,液体中的气体会迅速蒸发并形成气泡。

这些气泡在叶轮中会瞬间崩溃,形成震荡振动,从而导致汽蚀现象。

汽蚀的原因主要有:
1. 泵入口压力过低:当泵入口的压力低于饱和汽压时,液体会部分蒸发从而形成气泡,导致汽蚀。

2. 泵出口压力过高:当离心泵的出口压力过高时,液体流速过快,造成液体动能增大,压力降低,从而引发汽蚀。

3. 进口管道设计不当:进口管道过长、过细,存在弯曲或阻塞等情况,会导致液体流速变化过快,形成涡旋,引发汽蚀。

4. 泵运行条件不稳定:如果泵运行条件频繁变化,如流量变化大,压力波动等,会导致液体的压力降低和涩蚀。

5. 液体本身的特性:液体中的溶解气体过多,低沸点液体成分过多,液体温度过高等都会增加汽蚀的风险。

离心泵发生气缚与气蚀现象的原因是什么

离心泵发生气缚与气蚀现象的原因是什么

D11. 传热速率公式q=KAΔTm中,ΔTm是指()。

A.器壁内外壁面的温度差B.器壁两侧流体对数平均温度差C.流体进出口的温度差D.器壁与流体的温度差答案:B12. 工业采用翅片状的暖气管代替圆钢管,其主要目的是()。

A. 增加热阻,减少热量损失 B. 节约钢材、增强美观 C. 增加传热面积,提高传热效果答案:C C. 冷热两种流体的热阻 D. 金属壁的热阻答案:D13. 液-液热交换过程中,热阻通常较小可以忽略不计的是()。

A. 热流体的热阻 B. 冷流体的热阻四、问答题:1. 传热有哪几种方式?各有何特点? 答案:传导、对流、辐射传导传热:是物质内部分子微观运动,是由于相邻分子在碰撞时传递振动能的结果。

也可因物质内部自由电子的转移而发生。

需要介质。

对流传热:是由流体质点发生相对位移即宏观运动而引起。

需要介质。

辐射传热:物体吸收来自外界其它物体的辐射能转化为热能。

不需要介质,可在真空中传播。

一、选择题1. 蒸发操作中,从溶液中汽化出来的蒸汽,常称为()。

B A. 生蒸汽; B. 二次蒸汽;C. 额外蒸汽2. 蒸发室内溶液的沸点()二次蒸汽的温度。

B A. 等于; B. 高于; C. 低于3. 在蒸发操作中,若使溶液在()下沸腾蒸发,可降低溶液沸点而增大蒸发器的有效温度差。

A A. 减压; B. 常压; C. 加压4. 在单效蒸发中,从溶液中蒸发1kg水,通常都需要()1kg的加热蒸汽。

C A. 等于;B. 小于;C. 不少于5. 蒸发器的有效温度差是指()。

AA. 加热蒸汽温度与溶液的沸点之差;B. 加热蒸汽与二次蒸汽温度之差;C. 温度差损失6. 提高蒸发器生产强度的主要途径是增大()。

C A. 传热温度差; B. 加热蒸汽压力; C. 传热系数; D. 传热面积;7. 中央循环管式蒸发器属于()蒸发器。

A A. 自然循环; B. 强制循环; C. 膜式8. 蒸发热敏性而不易于结晶的溶液时,宜采用()蒸发器。

离心泵的汽蚀现象

离心泵的汽蚀现象

(二)离心泵的安装高度(允许汽蚀余量法)
3、实际安装高度
为了安全起见, 离心泵实际安装高度应比计算出 的 H g 小 0.5-1.0 m。
注意:当允许安装高度为负值时,离心泵的吸入口 低于贮槽液面。
思考:离心泵安高度是不是任意的高?它受哪些因素的 影响?
知识链接1:
极限理论吸上高度Hgmax
在0-0、1-1之间列Bernoulli方程:
整理, 得 或
——离心泵允许安装高度方程
(二)离心泵的安装高度(允许汽蚀余量法)
2、离心泵的允许安装高度(允许吸上高度)
依据定义 由离心泵允许安装高度方程, 又可得到
显然
h

uk2 2g

H f ,1k
即 ——离心泵允许安装高度方程
讨论:u1一定,p0一定,p1减小,则Hg增大,即向上吸液高
度越大,当p1≤pv时,产生汽蚀现象
H g

p0 p1
g

u12 2g

Hf01
即使假设u1<<1,∑Hf 1-2≈0,P1 ≈0
则:
Hg

H` g max

P0
g
当 P1 = Pa=760mmHg 时
H
g
` m
ax

10.336米H2O
可见:离心泵的安装高度不是任意的,而是受流体输送温度、
管道特性、及流体性质的影响。
知识链接2:安装的其他注意事项
(二)离心泵的安装高度(允许汽蚀余量法)
2、离心泵的允许需安装高度(允许吸上高度)
离心泵的允许吸上高度 又称为允许安
装高度, 是指泵的吸入口与吸入贮槽液面
间实际允许达到的最大垂直距离, 以 Hg 表 示。

离心泵性能综合实验(化工原理实验)

离心泵性能综合实验(化工原理实验)

离心泵性能综合实验一、实验目的1、观察离心泵汽蚀、气缚现象,了解汽蚀、气缚现象产生原因及其防止方法;2、学习工业上流量、功率、转速、压力和温度等参数的测量方法,了解转子流量计的工作原理;3、测定离心泵特性曲线,绘制出扬程、功率和效率与流量的关系曲线图。

二、实验原理1、气缚现象离心泵靠离心力输送液体。

离心力大小,除与叶轮直径及叶轮旋转速度有关外,还与流体重度有关。

若离心泵启动时,泵壳内存在大量空气,则由于空气的重度远远低于液体的重度,叶轮旋转所造成的离心力也很小,导致泵入口与水池液面间的压差太小,不能把水池内液体抽压到叶轮中心,就会发生离心泵空转却送不出液体的状况,这种现象称“气缚”。

所以,离心泵若安装在液面上方时,启动前必须先使泵体及吸入管路中充满液体(所谓“灌泵”)。

同时,在运转过程中也要防止外界空气大量漏入,以免产生气缚。

2、汽蚀现象离心泵之所以能吸取液体,是由于泵的叶轮旋转时,将液体抛向外沿,而中心形成真空,而贮槽液面上的压力却为大气压,因此,泵就依靠此压差将液体压入泵内,如果输送的是水,并设叶轮进口处为绝对真空,管路阻力为零,液面上为一个标准大气压,那么最大几何吸上高度也不超过10.33米。

图1离心泵吸上真空度参照图1,列0~0,1~1截面间柏努利方程式:0120112s f p p u Z h g g g ρρ-⎛⎫=-++∑ ⎪⎝⎭(1)式中s Z 为几何安装高度。

设:01s p p H gρ-=,s H 为吸上真空高度,则012112o s s f p p u H Z h g gρ--==++∑(2)由此可知,1p 愈小,s H 愈大。

但当1p 低达v p (输送液体的饱和蒸汽压)时,液体就要汽化,就产生汽蚀现象,使泵无法工作,所以对1p 的降低幅度应有限制。

由上式可见,1p 随着泵的几何安装高度s Z 提高而降低,故最终应对泵的几何安装高度加以限制。

在离心泵的铭牌(性能表)上一般都列有允许吸上真空高度s H 允许和汽蚀余量h ∆允许,二者均是对泵的安装高度加以限制,以避免汽蚀现象发生。

水泵发生气缚和气蚀的原因

水泵发生气缚和气蚀的原因

水泵发生气缚和气蚀的原因”气缚”:由于泵内存气,启动泵后吸不上液的现象,称“气缚”现象。

“气缚”现象发生后,泵无液体排出,无噪音,振动。

为防止“气缚”现象发生,启动前应灌满液体。

“气蚀”:由于泵的吸上高度过高,使泵内压力等于或低于输送液体温度下的饱和蒸汽压时,液体气化,气泡形成,破裂等过程中引起的剥蚀现象,称“气蚀”现象,“气蚀”发生时液体因冲击而产生噪音、振动、使流量减少,甚者无液体排出。

为防止“气蚀”现象发生;泵的实际安装高度应不高于允许吸上高度。

1、离心泵气缚现象1)气缚发生原因离心泵在启动前没有灌满被输送的液体,或者是在运转过程中泵内渗入了空气,因为气体的密度小于液体的密度,产生的离心力小,无法把空气甩出去,泵壳内的流体在随电机作离心运动产生负压不足以吸入液体至泵壳内,泵象被“气体”缚住一样,失去了自吸能力而无法输送液体,称作离心泵的气缚现象。

2)产生危害情况泵打不出液体来,机组产生剧烈振动,同时伴有强烈刺耳的噪音,电机空转,容易烧坏电机。

影响输送液体的效率和离心泵的正常工作。

3)预防措施集锦启动前要灌泵并使泵壳内充满待输送的液体,启动时关闭出口阀。

为防止灌入泵壳内的液体因重力流入低位槽内,在泵吸入管路的入口处装有止逆阀(底阀);如果泵的位置低于槽内液面,则启动时无需灌泵。

做好壳体的密封工作,灌水的阀门不能漏水,密封性要好。

2、离心泵气蚀现象1)气蚀发生原因当泵壳内吸入的液体在泵的吸入口处因压强减小恰好气化时,给泵壳内壁带来巨大的水力冲击,使壳壁象被“气体”腐蚀一样,该现象称为汽蚀现象。

造成汽蚀的主要原因有:(1)进口管路阻力过大或者管路过细;(2)输送介质温度过高;(3)流量过大,也就是说出口阀门开的太大;(4)安装高度过高,影响泵的吸液量;(5)选型问题,包括泵的选型,泵材质的选型等。

含气泡的液体挤入高压区后急剧凝结或破裂。

因气泡的消失产生局部真空,周围的液体就以极高的速度流向气泡中心,瞬间产生了极大的高达几万kpa的高速冲击力,造成对叶轮和泵壳的冲击,使材料受到侵蚀和破坏。

9 汽蚀和气缚

9 汽蚀和气缚

9.1.汽蚀现象根据离心泵的工作原理可知,液流是在吸入罐压力•和叶轮入口最低压力间形成的压差作用下流入叶轮的,•则叶轮入口处压力越低,吸入能力就越大。

但若压力降低到某极限值(目前多以液体在输送温度下的饱和蒸汽压力Pt为液体汽化压力的临界值)时,就会出现汽蚀现象。

汽蚀会引起的严重后果:(1)产生振动和噪音。

(2)对泵的工作性能有影响:当汽蚀发展到一定程度时,•汽泡大量产生,会堵塞流道,使泵的流量、扬程、效率等均明显下降。

(3)对流道的材质会有破坏:主要是在叶片入口附近金属的疲劳剥蚀.离心泵的吸入特性:1•泵发生汽蚀的基本条件是:叶片入口处的最低液流压力≤该温度下液体的饱和蒸汽压。

2•有效汽蚀余量:液体流自吸液罐,经吸入管路到达泵吸入口后•,所富余的高出汽化压力的那部分能头。

用Δha表示。

NPSHa——装置汽蚀余量,越大越不易汽蚀.3•必须汽蚀余量:液流从泵入口到叶轮内最低压力点处的全部能量损失,用Δhr表示。

NPSHr——泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好4•Δhr与Δha的区别和联系:Δha>Δhr 泵不汽蚀Δha=Δhr 泵开始汽蚀Δha<Δhr 泵严重汽蚀5•对于一台泵,为了保证其安全运行而不发生汽蚀,对于泵的必须汽蚀余量还应加一个安全裕量,一般取0.5米液柱。

于是,泵的允许汽蚀余量为:[Δhr]=Δhr+0.5。

6•提高离心泵抗汽蚀性能的方法有:A.改进机泵结构,降低Δhr,属机泵设计问题。

B.提高装置内的有效汽蚀余量.最主要最常用的方法是采用加大灌注压头.此外,尽量减少吸入管路阻力损失,降低液体的饱和蒸汽压,即在设计吸入管路时尽可能选用管径大些,长度短些,弯头和阀门少些,输送液体的温度尽可能低些等措施,都可提高装置的有效气蚀余量。

9.2气缚现象不灌液,则泵体内存有空气,由于ρ空气≤ρ液,所以产生的离心力很小,因而叶轮中心处所形成的低压不足以将贮槽内的液体吸入泵内,达不到输液目的.。

气蚀和气缚现象

气蚀和气缚现象

气蚀和气缚现象气蚀和气缚现象是在流体力学中常见的现象。

在一些特定的条件下,当液体中存在气体时,就会发生气蚀和气缚现象。

这些现象会给流体系统带来很多问题,影响其正常的运行。

本文将详细介绍气蚀和气缚现象的定义、原理、机理以及防止措施。

一、气蚀现象的定义及原理气蚀现象是指液体中存在气体时,流体中的气泡在流动过程中与流体中的壁面相互作用,使壁面上的材料被腐蚀或磨损的现象。

这种现象往往会发生在高速流动的液体中,特别是在液体中存在气体时更为明显。

气蚀现象不仅会导致流体系统的泄漏和损坏,还会使流体系统的效率降低,影响其正常的运行。

气蚀现象的原理是液体中存在气体时,气泡在流动过程中会与流体中的壁面相互作用,使壁面上的材料被腐蚀或磨损。

这是由于气泡周围的液体在流动过程中会形成高速的涡流,产生很高的局部压力和温度,从而导致局部腐蚀或磨损。

如果气泡的数量和流体速度越大,气蚀现象就会越明显。

二、气缚现象的定义及原理气缚现象是指在液体中存在气体时,气泡被卡在液体流道中,阻碍了流体的正常流动。

这种现象通常会发生在液体中存在气体时,液体的流动速度较慢或流道中存在突出的凸起物时。

气缚现象会导致流体系统的效率降低,对流体系统的正常运行产生不利影响。

气缚现象的原理是液体中存在气体时,气泡容易被卡在液体流道中,阻碍了流体的正常流动。

这是由于气泡的直径和密度与液体相比较小,容易被卡在流道中。

当气泡被卡在流道中时,会形成流动的障碍,使流体的速度降低,从而影响流体系统的正常运行。

气蚀和气缚现象的机理都与气泡在液体中的行为有关。

当气泡在液体中流动时,会与液体相互作用,产生局部的压力和温度变化。

这些变化会导致液体局部腐蚀和磨损,或者使气泡被卡在液体流道中,阻碍了流体的正常流动。

气蚀现象的机理主要包括以下几个方面:1.气泡在流动过程中会与流体中的壁面相互作用,产生局部的压力和温度变化,从而导致壁面上的材料被腐蚀或磨损。

2.当气泡数量和流体速度越大时,气蚀现象就会越明显,因为液体周围的压力和温度变化会更加剧烈。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离心泵的气缚与气蚀现象
为区分离心泵的“气缚”与“汽蚀”现象,有必要先简要了解离心泵的结构和理解其工作原理。

离心泵的外观是一个蜗牛状的泉壳,里面装有与泵轴相连的叶轮及泵的进出口阀门等构成。

离心泵在开泵前,泵内必须充满液体。

启动电机后,电机通过轴带动叶轮高速旋转。

高速旋转的叶轮带动液体转动,因叶轮的特殊结构,在离心力的作用下使液体获得很高的能量,表现为流速、压力的增大。

在泵壳中崮泵壳的蜗壳形状.流速会逐渐减小,而压力会进一步增大,最终以较高的压力从泵的出口排出。

同时,当叶轮中心的液体被甩出后,在叶轮中心形成一定的真空度,而液面的压强比叶轮中心处要高,液面与叶轮中心形成一定压力差。

在压差的作用下,液体被吸入泵内。

通俗地说离心泵的工作过程是吸进来压出去。

“气缚”现象
离心泵运转时,如果泵内没有充满液体。

或者在运转中泵内漏入了空气,由于空气很轻(密度很小),产生的离心力小,在吸入口处所形成的真空度低,不足以将液体吸入泵内。

这时,虽然叶轮转动,却不能输送液体,这种现象称为“气缚”。

可见“气缚”现象是由于泵内存有气体而不能吸液的现象。

没有液体的吸入,当然就没有液体的排出。

如果泵安装在液面以上时,在
吸入管底部必须安装一个单向底阀。

目的是为了不使泵内液体漏掉,以防“气缚”产生。

对于“气缚”现象,只要赶跑泵内空气,使泵内充满液,泵就能恢复正常运行。

“汽蚀”现象
“汽蚀”现象是由于泵的安装高度过高,泵内叶轮中心附近压力过低,当压力低到等于被输送液体的饱和蒸汽压时,入口处液体将在泵内汽化,产生大量汽泡,随同液体一起进入高压区,在高压区内便被周围高压液体压碎。

瞬间内周围的高压液体以极高的速度打向原汽泡所占据的空间,类似于子弹打在这些点上。

使叶轮或泵壳出现麻点和小的裂缝,久而久之,叶轮或泵壳将烂成海绵状,这种现象称为“汽蚀”。

简要地说,“汽蚀”现象是由于泵的安装高度过高,叶轮中心附近压力过低.液体在泵内汽化而损坏泵体的现象。

当“汽蚀”现象发生时,其特征是泵体震动并发出噪音,泵的流量、扬程也明显下降。

可见“气缚”与“汽蚀”直接导因是不同的。

“气缚”是由于泵内存有空气而产生,不会严重损坏泵体。

“汽蚀”是由于液体在泵内汽化而产生.会严重损坏泵体。

因此在使用中,应严禁“汽蚀”现象的发生。

相关文档
最新文档