智能电网全方位介绍
2024版智慧电力解决方案(智能电网解决方案)

平台层技术及应用场景
平台层技术包括云计算、大数据、 人工智能等,用于对感知层采集 的数据进行处理、分析和挖掘。
应用场景包括电网规划、调度控 制、故障诊断等。
通过平台层技术,实现对电网的 智能化管理和优化运行,提高电
网的经济效益和社会效益。
应用层技术及应用场景
1
应用层技术包括电力市场交易、需求侧管理、综 合能源服务等,用于实现电网与用户之间的互动 和增值服务。
通信信道
采用230MHz无线专网、GPRS/CDMA无线公网、光纤专网等多种 通信方式,确保用电信息采集的实时性和准确性。
分布式能源接入设备与系统
分布式电源接入设备
包括光伏逆变器、风电变流器、储能变流器等,实现分布式电源 的灵活接入和高效利用。
微电网控制系统
实现微电网的并网运行、孤岛运行以及两种模式间的平滑切换, 提高供电可靠性和电能质量。
深化产学研合作,促进成果转化
通过深化产学研合作,促进科技创新成果的转化和应用,为智慧电力的发展提供有力支持。
培育新兴产业,拓展应用领域
通过培育新兴产业,拓展智慧电力的应用领域,推动电力行业的转型升级和可持续发展。
THANKS
感谢观看
结合新能源发电特性和市场需 求,开发新能源发电与传统能 源发电的联合调度和优化运行
模式。
05
智慧电力解决方案价值体现
提高供电可靠性和安全性
01
02
03
通过实时监测和预警系统, 及时发现并处理电网故障,
减少停电时间和范围。
利用先进的信息技术和通 信技术,实现对电网设备 的远程监控和操作,提高
运维效率。
通过智能用电设备和家庭能源管理系统,实现用户侧能源消费的可视化、可控制和 可优化。
电力系统中的智能电网

电力系统中的智能电网随着社会的发展和人们生活水平的提高,能源消费量逐渐增加,传统的电力系统已无法满足人们的需求。
而智能电网则成为了一种解决方案,它可以提供更高效、更可靠、更智能的电力供应,为人们的生活带来更多的便利。
一、智能电网的概念智能电网是指电力系统中加入了先进的通信、控制、监测等技术,在保证电力供应可靠性和稳定性的同时,实现对电力系统状态的实时监测、故障快速识别和处理、优化调度等功能。
它既可以使传统的电力系统更加智能化,也可以促进新能源的接入和利用,从而实现电力系统的可持续发展。
二、智能电网的特点1.高度可靠性智能电网采用多层次的保护措施,防范和避免电力系统中的突发事件和故障,保证电力供应的可靠性和稳定性。
2.可持续发展智能电网可以有效地实现新能源的接入和利用,降低能源消耗和环境污染,从而实现电力系统的可持续发展。
3.高效节能智能电网在电力供应的同时,通过能源管理和调度,实现对电力系统的节能和优化,提高电力的利用效率。
4.智能化管理智能电网采用先进的通信和控制技术,可以对电力系统的状态进行实时监测和管理,快速识别和处理故障,实现电力系统的智能化管理和运行。
三、智能电网的应用1.城市电力系统城市电力系统是智能电网的主要应用领域之一。
智能电网可以优化城市电力系统的能源分配和管理,提高供电质量和效率,使城市电力系统更加可靠和智能化。
2.新能源电力系统智能电网可以有效地实现新能源的接入和利用,提高电力系统的可持续发展性。
新能源电力系统通过智能电网可以实现对太阳能、风能等新能源的实时监测和管理,实现新能源电力的优化分配和利用。
3.工业电力系统工业电力系统对电力质量要求高,智能电网可以对工业电力系统进行实时监测和管理,提高电力系统的供电质量和效率,降低电力成本和消耗。
四、智能电网的发展趋势随着科技的不断发展和应用领域的不断扩大,智能电网将会呈现出以下几个趋势:1.智能化水平不断提高随着技术的不断发展和应用,智能电网的智能化水平将会不断提高,实现电力系统的智能化管理和优化调度。
电力行业智能电网技术调研报告

电力行业智能电网技术调研报告一、引言随着社会的不断发展和对可持续能源的需求增加,电力行业正面临着新的挑战和机遇。
为了适应这一发展趋势,智能电网技术应运而生。
本报告旨在对电力行业智能电网技术进行深入调研,分析其应用现状和未来发展前景。
二、智能电网技术概述1. 智能电网概念智能电网是利用现代信息通信技术和能量转换技术,实现电力系统的高效、可靠、安全运行的一种电力系统。
它通过集成先进的传感器、通信和控制技术,实现对电力系统各环节的实时监控和精确调度,以提高能源利用效率和供电质量。
2. 智能电网技术特点(1)高度自动化:智能电网利用先进的自动化技术,实现电力系统各环节的自主控制和自动化运行,提高系统的运行效率和响应速度。
(2)全方位感知:智能电网通过多种传感器和监测设备,实时获取电力系统各环节的运行状态信息,形成全面的监测数据,为后续决策提供数据支持。
(3)智能调度与优化:基于先进的数据分析和优化算法,智能电网可以进行准确的负荷预测和优化调度,最大限度地提高供电效率,减少能源浪费。
三、智能电网技术应用现状1. 智能电表智能电表是智能电网技术最常见的应用之一。
它通过与用户端的电能计量设备连接,实现了对用户能耗的实时监测和数据传输。
智能电表的广泛应用不仅提升了用户对电能使用的认知,还为电力公司提供了精准的用电需求预测信息。
2. 分布式能源管理系统分布式能源管理系统是智能电网的核心技术之一。
它通过将可再生能源、储能设备和传统电力系统相互融合,实现对各类型能源和负荷的统一管理和最优控制。
分布式能源管理系统的应用有助于提高电力系统的稳定性和可靠性,降低系统运行成本。
3. 智能配电网智能配电网是指利用智能电网技术对配电系统进行升级和改造,实现对分布式能源的接入、智能充电桩的管理以及电力质量的监测与控制。
智能配电网的应用有效提高了配电系统的灵活性和可扩展性,满足了用户对电力质量和供电可靠性的需求。
四、智能电网技术发展趋势1. 人工智能与大数据分析的应用随着人工智能和大数据分析技术的快速发展,智能电网技术正朝着更加智能化和自主化的方向发展。
智能电网的发展趋势与前景

智能电网的发展趋势与前景伴随着科技的不断发展,智能电网作为一个重要的领域也在不断发展壮大。
未来,智能电网将会越来越普及,其发展趋势和前景备受瞩目。
一、智能电网的概念和作用智能电网是一种基于互联网、大数据、云计算等新一代信息技术的智能化电力系统。
它采用先进的监控、控制、通信和计算技术,实现了能源的高效利用、灵活调度和可持续发展。
智能电网的作用非常广泛,它能够优化能量配置,提高电网运行的效率和可靠性。
同时,它还能够实现能源的清洁和可持续发展,达到节能减排的目标,提高社会经济效益。
二、智能电网的发展趋势在未来,智能电网将会具有以下的发展趋势:1. 多能互联。
智能电网将采用多种能源互联的形式,实现了太阳能、风能、水能等多种清洁能源的互联,可实现能源的持续使用。
2. 多源协同。
智能电网将会实现电力、热力、气体全方位井然协作,实现资源的共享和综合利用。
3. 分布式发电。
智能电网将会采用分布式发电的形式,利用太阳能、风能等可再生能源进行发电,实现能源的高效利用。
4. 电动汽车充电。
智能电网将实现与电动汽车充电站联网,有效利用可再生能源进行充电,进而实现用电的高效利用。
5. 能源储存系统。
智能电网将会广泛运用储能设备,将太阳能、风能等可再生能源储存在储能系统中,以便于未来的使用。
三、智能电网的发展前景目前,智能电网披荆斩棘,获得了十分可观的成绩。
智能电网的发展前景将会有以下几点:1. 实现廉价电力。
智能电网可以有效利用可再生能源进行发电,降低了电力成本,使得电能价格变得更加实惠。
2. 实现能源共享。
智能电网实现了电力、热力、气体全方位井然协作,实现资源的共享和综合利用。
3. 实现绿色环保。
智能电网可以利用太阳能、风能等可再生能源进行发电,实现绿色环保的目的,减少污染物排放,推广低碳经济。
4. 提高电网安全。
智能电网采用了先进的监控、控制、通信和计算技术,对电力系统进行全方位的监控和防护,实现电网的高可靠性和安全性。
智能电网智能电网总体概念分析

智能电网智能电网总体概念分析智能电网(Smart Grid)是一种基于先进的信息通信技术,将传统的电力系统与现代信息技术相结合,以实现电力系统的自动化、智能化、高效化和可靠性提升的电力系统。
它将电力系统从传统的集中式、单向输送改造成为分布式、双向输送的智能电力网络。
智能电网的总体概念包括以下几个方面:1.全球能源转型:智能电网是全球能源转型的重要组成部分。
随着全球对清洁能源和可持续发展的需求不断增加,智能电网可以更好地集成可再生能源、储能技术和电动汽车等分布式能源资源,有效地管理和优化能源供需平衡,促进可持续发展。
2.先进的能源技术:智能电网采用先进的能源技术和设备,如智能计量、智能电表、智能传感器、智能开关等,实现对电力系统各个环节的监测、控制和管理。
通过实时监测和预测,可以提供更准确的能量使用信息,帮助用户优化能源消耗和管理。
3.双向能量交互:智能电网支持双向能量交互,不仅能够将电力从发电厂输送到用户,还可以将用户产生的电力反馈到电网中。
这使得用户可以成为能源的生产者和消费者,实现能量的共享和交易,促进能源的高效利用和环境的减排。
4.自动化和智能化管理:智能电网通过先进的控制和管理系统,实现电力系统的自动化和智能化管理。
它可以实时监测和控制电网中各个节点的电压、电流、频率等参数,通过智能分析和优化算法,实现对电力系统的自动调节和优化。
5.高效、可靠和安全的电力供应:智能电网通过主动监测和预测技术,及时识别和隔离故障,并实施快速的恢复措施,以确保电力供应的高可靠性和连续性。
同时,智能电网还具备实时数据监测和安全保护机制,对电力系统进行实时监测和保护,以防止潜在的安全隐患。
总之,智能电网是以先进的信息通信技术为基础,通过集成可再生能源、实现双向能量交互、实现自动化和智能化管理等手段,实现电力系统的高效、可靠和安全供应,促进能源的可持续发展和环境的保护。
它是未来电力系统发展的重要方向,对于推动全球能源转型和实现可持续发展具有重要意义。
智能电网信息工程

智能电网信息工程智能电网信息工程一、背景介绍近年来,随着经济的快速发展和人口的快速增长,能源需求不断上升。
同时,气候变化和环境保护也成为全球关注的重要问题。
针对能源危机和环境保护的双重挑战,发展智能电网已成为全球范围内的共识。
智能电网是利用现代信息与通信技术,将传统电网与信息网络融合起来,实现对电能的高效、智能化使用和管理,具有高度可靠性、安全性、经济性和环保性等优点。
二、智能电网信息工程的定义智能电网信息工程是智能电网建设中的重要组成部分,其主要职责是建设和维护电网信息化平台,实现电网的智能化运行和管理。
其中,电网信息化平台包括电力物联网传感器、电力终端设备、通信网络、安全设备、云计算与大数据平台等,其核心在于信息的采集、传输、处理和应用。
智能电网信息工程的目标是建成一个具有高度可靠性、优质服务、高效能源使用和智能管理的智能电网。
三、智能电网信息工程的主要特点1. 信息化平台具有高度的可靠性信息化平台通过多样化的电力物联网传感器和电力终端设备,实现对电网的全方位监测和控制,并通过安全设备提供可靠的安全保障,大幅提高电网的可靠性和安全性。
2. 信息化平台具有极高的智能化程度信息化平台采用现代通信和计算技术,对电网运行数据进行采集、传输、处理和应用,实现对电网的智能化监控、预测和调度,提高电网管理和能源利用效率。
3. 信息化平台具有高效的资源利用信息化平台采用云计算和大数据技术,对电网运行数据进行综合分析和处理,提高资源利用效率,减少能源浪费和污染,推动可持续发展。
四、智能电网信息工程的应用现状目前,全球智能电网信息工程建设正在加速推进,相关技术正在不断成熟和应用。
具体来说,智能电网信息工程的典型应用场景包括:1. 智能化配电网智能化配电网通过实时监测电力设备的运行状态和用电负荷,将电力资源分配到最需要的地方,提高电网的可靠性和经济性。
2. 智能化输电网智能化输电网通过对电网状态进行预测和调度,提高电网的能源利用效率和经济性,同时减少电网故障和安全事故的发生。
智能用电简介

新增用电信息采集用户超过300万户;电动 汽车充放电站达到千座规模;电能占终端能 源消费比重提高到20.9%。
智能用电分阶段发展目标
2020年
标志性工程
2016年
第三阶段
2011年 2010年 2009年
2015年
标志性工程为双向互动营销增值服务 和分布式电源“即插即用”;标志性 研究项目为双向互动营销增值服务、 智能用电与智能电网系统集成技术。
1 智能用电 2 用电信息采集系统 3 智能用电技术研究检测中心
是对电力用户的用电信息 进行采集、处理和实时监 控的系统,实现用电信息 的自动采集、计量异常和 电能质量监测、用电分析 和管理,具备电网信息发 布、分布式能源的监控、 智能用电设备的信息交互 等功能。
用电信息采集系统概念
系统主站
终端设备
智能用电概念
智能用电:依托坚强电网和现代管理理念,利用高级 量测、高效控制、高速通信、快速储能等技术,实现 市场响应迅速、计量公正准确、数据采集实时、收费 方式多样、服务高效便捷,构建电网与客户能量流、 信息流、业务流实时互动的新型供用电关系。
以坚强智能电网 为坚实基础,以 智能用电管理组 织架构和标准规 范体系为坚强支 柱,以营销技术 支持平台为可靠 支撑,通过建立 与完善双向互动 营销平台,实现 与客户进行能量 流、信息流、业 务流的友好互动
兆
主
G PS时 钟
以
站
数据库
太
系
网
统
负载均衡器
前置服务器组 加密机
防火墙
3A 认 证 服 务 器
通
信
信
光纤专网
道
3 G /G P R S /C D M A 公 网
低压居
电力行业智能电网监测系统

电力行业智能电网监测系统智能电网是当前电力行业的热门话题之一,其核心是智能电网监测系统的建设与应用。
本文将深入探讨电力行业智能电网监测系统的意义、构成要素以及应用案例,旨在为读者全面呈现智能电网的发展现状和前景。
一、智能电网监测系统的意义随着电力行业的发展,传统电网已不能满足用户对电量质量、供电可靠性以及电网安全的要求。
智能电网监测系统的意义在于提供了对电力系统的全方位监测和控制能力,从而实现了电力系统的智能化管理和运营。
智能电网监测系统可以实时监测电力系统的运行状态、负载情况、电压稳定性等关键指标,通过对这些数据的采集和分析,电力运营企业可以及时做出决策,提高供电可靠性和效率。
同时,智能电网监测系统还具备故障预警和远程监控的功能,可以快速定位和排除电力系统故障,降低停电时间和损失。
二、智能电网监测系统的构成要素智能电网监测系统主要包括数据采集装置、数据通信网络、数据存储与处理平台以及应用系统等几个重要组成要素。
1. 数据采集装置:用于采集电力系统各个节点的数据,如电流、电压、功率等信息。
常见的采集装置有智能电表、传感器等。
2. 数据通信网络:负责将采集到的数据传输到数据存储与处理平台,常见的通信网络包括以太网、无线通信网络等。
3. 数据存储与处理平台:用于存储和处理来自数据采集装置的数据,一般采用数据库技术进行数据的存储与管理,并通过数据分析算法提取有用信息。
4. 应用系统:根据不同的需求,构建针对电力系统运行状态、负荷预测、故障诊断等应用系统,帮助电力运营企业进行运营决策。
三、智能电网监测系统的应用案例1. 精准负荷预测:通过对电力系统运行数据的采集和分析,智能电网监测系统可以精确预测用户的用电负荷,从而调整发电和供电计划,提高电力系统的供需匹配度。
2. 实时监测与控制:智能电网监测系统可以实时监测各个节点的电压、电流等指标,一旦发现异常,系统会自动发出报警并进行远程控制,保障电力系统的安全稳定运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
智能电网目录1 智能电网的概念和特点 (1)1.1 概念 (1)1.2 特点 (1)2 智能电网的结构与特征 (3)2.1 智能电网结构 (3)2.2 智能电网特征 (4)3 智能电网系统组成 (6)3.1 发电系统 (6)3.2 输电系统 (9)3.3 配电系统 (12)3.4 用电系统 (13)4 智能电网的关键技术 (17)4.1 通信技术 (17)4.2 量测技术 (18)4.3 设备技术 (19)4.4 控制技术 (20)4.5 支持技术 (22)5 重视领域 (24)5.1 智能规划 (24)5.2 智能操作 (24)5.3 智能管理 (24)6 总结 (25)1智能电网的概念和特点1.1概念智能电网是指一个完全自动化的供电网络,其中的每一个用户和节点都得到实时监控,并保证从发电厂到用户端电器之间的每一点上的电流和信息的双向流动。
智能电网通过广泛的应用分布式智能和宽带通信,以及自动控制系统的集成,保证市场交易的实时进行和电网上各成员之间的无缝连接及实时互动。
美国电力科学研究院对智能电网的定义为:利用传感器对发电、输电、配电、供电等关键设备的运行状况进行全面的实时监控,然后把获得的数据通过网络系统进行收集、整合,最后通过对数据的分析、挖掘,实现对整个电力系统运行的优化管理。
1.2特点1.安全:更好地对人为或自然发生的扰动作出辨识与反应。
在遭遇自然灾害、人为破坏等不同情况下保证人身、设备和电网的安全。
2.经济:支持电力市场竞争的要求,优化资源配置;提高设备传输容量和利用率,有效控制成本,实现电网经济运行。
3.清洁:既能适应大电源的集中接入,也能对分布式发电方式友好接入,做到“即插即用”。
支持风电、太阳能等可再生能源的大规模应用。
4.优质:实现与客户的智能互动,以友好的方式、最佳的电能质量和供电可靠性满足客户的需求,向客户提供优质服务。
2智能电网的结构与特征2.1智能电网结构从广义上来说,智能电网包括可以优先使用清洁能源的智能调度系统、可以动态定价的智能计量系统以及通过调整发电、用电设备功率优化负荷平衡的智能技术系统。
未来智能电网的基本结构,电能不仅从集中式发电厂流向输电网、配电网直至用户,同时电网中还遍布各种形式的新能源和清洁能源:太阳能、风能、燃料电池、电动汽车等等;此外,高速、双向的通信系统实现了控制中心与电网设备之间的信息交互,高级的分析工具和决策体系保证了智能电网的安全、稳定和优化运行。
图2.1中国特色智能电网总体示意图2.2智能电网特征智能电网包括八个方面的主要特征,这些特征从功能上描述了电网的特性,而不是最终应用的具体技术,它们形成了智能电网完整的景象。
智能电网是自愈电网:“自愈”指的是把电网中有问题的元件从系统中隔离出来并且在很少或不用人为干预的情况下可以使系统迅速恢复到正常运行状态,从而几乎不中断对用户的供电服务。
智能电网激励和包括用户:在智能电网中,用户将是电力系统不可分割的一部分。
鼓励和促进用户参与电力系统的运行和管理是智能电网的另一重要特征。
智能电网将抵御攻击:智能电网的设计和运行都将阻止攻击,最大限度地降低其后果和快速恢复供电服务。
智能电网也能同时承受对电力系统的几个部分的攻击和在一段时间内多重协调的攻击。
智能电网提供满足21世纪用户需求的电能质量:智能电网将以不同的价格水平提供不同等级的电能质量,以满足用户对不同电能质量水平的需求,同时要将优质优价写入电力服务的合同中。
智能电网将减轻来自输电和配电系统中的电能质量事件:通过其先进的控制方法监测电网的基本元件,从而快速诊断并准确地提出解决任何电能质量事件的方案。
智能电网将容许各种不同类型发电和储能系统的接入:从小到大各种不同容量的发电和储能在所有的电压等级上都可以互联,包括分布式电源如光伏发电、风电、先进的电池系统、即插式混合动力汽车和燃料电池。
智能电网将使电力市场蓬勃发展:智能电网通过市场上供给和需求的互动,可以最有效地管理如能源、容量、容量变化率、潮流阻塞等参量,降低潮流阻塞,扩大市场,汇集更多的买家和卖家。
智能电网优化其资产应用,使运行更加高效:智能电网将应用最新技术以优化其资产的应用。
3智能电网系统组成3.1发电系统光伏发电光伏发电是根据光生伏特效应原理,利用太阳能电池将太阳光能直接转化为电能。
不论是独立使用还是并网发电,光伏发电系统主要由太阳能电池板(组件)、控制器和逆变器三大部分组成,它们主要由电子元器件构成,不涉及机械部件,所以,光伏发电设备极为精炼,可靠稳定寿命长、安装维护简便。
理论上讲,光伏发电技术可以用于任何需要电源的场合,上至航天器,下至家用电源,大到兆瓦级电站,小到玩具,光伏电源无处不在。
太阳能光伏发电的最基本元件是太阳能电池(片),有单晶硅、多晶硅、非晶硅和铜铟镓硒薄膜电池等。
一、太阳能光伏发电系统的设计原理图3.1独立发电系统独立发电系统由太阳能电池组件方阵、蓄电池组、控制器组成,可为直流负载供电。
如负载为交流型的,发电系统还包括逆变器。
图3.2并网发电系统网发电系统由太阳能电池组件方阵、并网逆变器及连接器组成,可发电并把电能送上电网。
并网发电系统还可以为负载供电。
二、系统各部分功能(一)太阳能电池组件方针:由若干太阳能电池组件串联或并联而成,主要功能为利用太阳能进行发电。
(二)蓄电池组:一般采用免维护铅酸蓄电池作为储能装置,用来储蓄太阳能光伏组件发出的电能。
(三)控制器:用来充、放电和其他方面的自动控制。
(四)逆变器:是将直流和交流相互转换的设备。
三、光伏系统监控光伏系统数据检测、远传是采用太阳能专用工控机、环境监测仪、数据采集器和显示装置及与其配套的太阳能专用监控软件来检测、远传太阳辐射量、温度、光伏组件直流输入电压、电流、逆变器输入/输出电压及电流及输出计量等。
由于采集参数的多样性和分散性,系统可分布式数据采集的结构模式。
所谓分布式数据采集,就是利用电量隔离变送器、温度传感器、太阳辐射测量仪等设备就近分散采集现场数据,通过智能数据采集模块的串行数据总线技术将采集到的数据传送至监测计算机进行集中的数据统计和处理。
智能数据采集模块中设有独立的中央处理模块,可以在现场对采集的信号进行数字滤波和简单的数据处理,然后通过数据总线将处理后的数据传送至监测计算机,监测计算机负责将各个现场的数据进行汇总和处理。
图3.3光伏系统监控示意图3.2输电系统智能柔性交流输电系统智能电网中的智能柔性交流输电系统( f le xible AC tra nsmissio n system, FACTS) 面临装置平台相关性强和装置间差异性很大的问题, 为此, 建立智能FACTS 装置的分层参考模型, 如功率层、驱动层、实时层和应用层, 通过层与层间的电气隔离和应用隔离, 使具体的智能FACTS 装置功能抽象成为软、硬件相结合的服务元并具有标准定义的服务; 把智能FACTS 中众多服务元进行组织, 建立面向服务的智能FACTS 构架, 即具有统一服务接口的非层次结构, 并定义响应服务时服务元与服务接口间、服务元与服务元间关系, 大大提高整个系统对服务进行组织、管理和调用的效率。
面向服务的智能FACTS 构架智能电网中的智能FACTS 不再是众多实体FACTS 装置, 而是一个虚拟的服务元集合。
此时系统中还需要一个服务接口, 用于连接上层调度控制系统和FACTS 装置应用层。
面向服务的智能FACTS 构架结构如图3.4 所示。
图3.4面向服务的智能FACTS构架结构图3.4中, 指向服务接口的实线箭头表示把智能FACTS 中所有服务元的服务状态( 包括提供服务种类、服务是否可用等) 注册到服务接口。
上层调度控制系统可以通过服务接口查询服务元的服务状态, 合理选择、组合一个或多个服务元提供服务。
指向服务元的实线箭头表示服务请求由上层调度控制系统发出, 服务接口程序接收到服务请求后, 将相应的系统调用命令转发至相应的服务元。
服务元间的虚线箭头表示在上层调度控制系统授权允许的情况下, 服务元间可以进行协作请求, 如果此时被请求服务元能够提供协作服务,则可以返回一个允许的协作响应, 反之则为一个拒绝的协作响应。
设立服务元间的协作关系, 可以优化智能FACTS 装置的服务, 在非正常运行时进行紧急协调控制。
对于一些混合FACTS 装置, 可以将其划分为多个服务元, 服务元间的协调控制通过服务元间的协作关系实现, 这种实现方式如4.5所示。
图3.5智能FACTS 中的服务元在图3.5中, 流经服务元的信息流要求其对电力流进行控制和协作请求, 也包括对服务状态进行反馈和协作响应。
在这一系统中, 构成最小单位的服务元具有层次结构, 是服务的载体, 通过面向服务的体系结构进行组织、管理和调用。
基于服务元和面向服务体系结构的智能FACTS 构架, 具有服务执行效率高、可靠性高的优点。
智能配电网(Smart Distribution Automation)是智能电网(Smart Grid) 中配电网部分的内容。
功能特征与传统的配电网相比,SDG具有以下功能特征。
1) 自愈能力;2) 具有更高的安全性;3) 提供更高的电能质量;4) 支持DER 的大量接入;5) 支持与用户互动;6) 对配电网及其设备进行可视化管理;7) 更高的资产利用率;8) 配电管理与用电管理的信息化。
智能配电网的主要技术内容:1) 配电数据通信网络;2) 先进的传感测量技术,如光学或电子互感器、架空线路与电缆温度测量、电力设备状态在线监测、电能质量测量等技术;3) 先进的保护控制技术,包括广域保护、自适应保护、配电系统快速模拟仿真、网络重构等技术;4) 高级配电自动化;5) 高级量测体系( Advanced MeteringArchitecture ,AMA)是一个使用智能电表通过多种通信介质,按需或以设定的方式测量、收集并分析用户用电数据的系统;6) DER 并网技术,包括DER 在配电网的“即插即用”以及微网(Micro Grid)两部分技术内容;7) DFACTS是柔性交流输电(FACTS)技术在配电网的延伸,包括电能质量与动态潮流控制两部分内容;8) 故障电流限制技术,指利用电力电子、高温超导技术限制短路电流的技术。
智能用电系统由组成1.系统主站;2.远程信道;3.智能电表;4.本地信道;5.互动终端;6.智能开关组成。
图3.6智能用电系统组成主站系统包括:用电信息采集子系统;营销服务支持子系统;电力负荷预测子系统;电价策略制定、发布子系统组成。
电力企业通过对用户用电信息的全面自动采集、实时监视,及时掌握用户用电信息,全面提升市场分析能力;大量用户用电信息的采集和存储,为营销服务支持子系统和负荷预测子系统的正常运行提供了数据基础。