散热器热工性能实验报告 (1)
民用建筑散热器热工性能检测报告及原始记录

校核:
主检:
样品名称
委托编号
样品状态
规格型号
测试结果
在证实记录值符合标准要求的偏差范围内之后,进行以下计算:
样品照片
1
该散热器的标准特征公式:Q=Kw∆Tn
工况
1
2
3
Q
ΔT
2、通过最小二乘法计算求得:
KM=;n=
3、当计算温度^Ts=64∙5K时,
1)散热器的标准散热量:
Qs=Km×(64.5)11=
2)散热器的金属热强度q=Qs∕(64.5×G)=
标准特征公式曲线
检测说明
校核:
主检:
底部距地(mm)
背部距墙(mm)
样品宽度
表面涂料
质量G(kg)
接管尺寸
连接方式
大气压力
工况
采样次数
基准空气点温to
进口水温H
出口水温t2
E□比焰hl
出口比焰h2
流量Gm
平均水温tp
过余温度4
散热量Q
工况1
1
2
3
4
5
6
7
8
9
10
11
12
平均值
抽样信息
抽样基数
抽样数量
抽样地点
虫样人
抽样时间
检测说明
校核:
出口水温(C)
基准点空气温度CO
水的质量流量(kg∕h)
过余温度(K)
散热量(W)
标准特征公式曲线
检测说明
热工测试技术与实验(一)

实验目的
差热曲线分析可应用于对物质进行鉴别分析、成分 分析、热参数测定、纯度测定和反应动力学参数测 定;热重曲线分析可对被测物质的相变、分解、化 合、脱水、吸附、解析、凝固、升华、蒸发、质量 变化等现象进行研究。
本实验的目的是:
1. 了解微机差热天平的基本原理及仪器装置; 2. 学习使用微机差热天平鉴定未知矿物。 3、在氮气氛下进行标煤的热重曲线分析。
表的类型及规格); (6) 实验数据,包括1)实验数据记录和2)实验数据整理。 (7) 计算示例,其中引用的数据要说明来源,简化公式要写
出导出过程,要列出某一组数据的计算过程作为计算示例。
(8) 实验结果及讨论。根据实验任务,明确提出本次实验的 结论,用图示法、经验公式或列表法均可,但必须注明实验 条件。对实验结果作出评价,分析误差大小及原因,对实验 中发现的问题等做必要的讨论,对实验方法,实验设备有何 建议也可写入此栏。
不同的物质,产生热效应的温度范围不同,差热曲 线的形状亦不相同。把试样的差热曲线与相同实验 条件下的已知物质的差热曲线作比较,就可以定性 地确定试样的矿物组成。差热曲线的峰(谷)面积 的大小与热效应的大小相对应,根据热效应的大小, 可对试样作定量估计。
微机差热天平能对样品在一次测量中同时取得该实
验品的重量变化,热量差别与重量变化速度等热学
相关信息。其包括差热测量系统、热重测量系统和 热重微分系统。
差热测量系统:本仪锯采用哑铃型平板式差热电偶,它 检测到的微伏级差热信号送入差热放大器进行放大。差 热放大器为直流放大器,它将微伏级的差热信号放大到 0-5伏,送入计算机进行测量采样。
热重测量系统:本仪器的测量系统采用上皿、不等臂、 吊带式天平、光电传感器,带有微分、积分校正的测量 放大揣,电磁式平衡线阴以及电调零线线圈等。当天平 因试样质量变化而出现微小倾斜时,光电传感器就产生 一个相应极性的信号,送到测重放大揣,测重放大器输 出0-5伏信号送入计算机进行测量采样。
热工实验二传热实验报告

实验日期:2018年12月19日 姓名: 班级: 学号:常功率平面热源法测绝热材料的导热系数 λ 和导温系数 a一)实验目的1. 巩固和深化对非稳态导热理论的理解,更直观地认识非稳态导热过程中温度的变化。
2. 学习用常功率平面热源法同时测定绝热材料的导热系数 λ 和热扩散率 a 的实验方法和技能。
3. 掌握获得非稳态温度场的方法。
4. 加深理解导热系数 λ 和热扩散率 a 对温度场的影响。
二)实验原理在初始温度t 0分布均匀的半无限大的物体中,从τ=0起,半无限大的物体表面受均匀分布的平面热源q 0作用,在常物性条件下,离表面x 处的温度升高θx,τ=t x,τ−t 0=2q 0λ√aτierfc(x2√aτ) 式中和是材料的导热系数和热扩散率,ierfc(x2√aτ)是变量x2√aτ的高斯误差补偿函数的一次积分,可以查表得出数值。
且在x =0时,有ierfc (0)=√π, θ0,τ=2q 0λ√aτ√π分别测定τi 时刻 x =0处与τj 时刻 x =x 1处的温升,根据上式就有:θx 1,τj θ0,τi √τi τj =√πierfc(x 12√aτj) 上式左边是可以测量的量,通过查表就可以的到12√aτ的值,进而算出相当于在平均温度t =12(t 0,τi +t x 1,τj )的热扩散率。
再代入式子λ=2q 0θ0,τ√aτ1√π,可求出导热系数λ。
x = x1x三)实验装置常功率平面热源法同时测定绝热材料的导热系数λ 和导温系数 a 的实验系统试材Ⅰ、Ⅱ、Ⅲ的材料相同,其厚度分别为 x1、δ 和x1 + δ。
试材Ⅰ的长宽是厚度的 8~10 倍。
试材Ⅰ和Ⅲ之间放置一个均匀的平面加热片。
电加热片用直流稳压电源供电。
在试材Ⅰ的上、下表面中间分别装有铜-康铜热电偶 2 和热电偶 1,用以测试试材Ⅰ上、下表面的温度 t2 和 t1;热电偶 3 和热电偶 4 则分别用来测试试件周围的温度环境 t3 和试材Ⅱ 的上表面温度 t4。
热工实验报告

GDOU-B-11-112广东海洋大学学生实验报告书(学生用表)实验名称课程名称课程号学院(系) 专业班级学生姓名学号实验地点实验日期实验一. 金属泊式应片:直流单臂、半桥、全桥比较一:实验目的:验证单臂、半桥、全桥的性能,比较它们的测量结果。
二:实验所需单元:直流稳压电源、差动放大器、电桥、F/V(频率/电压)表。
三:实验注意事项:(1)电桥上端虚线所示的四个电阻实际并不存在。
(2)在更换应变片时应关闭电源。
(3)实验过程中如发现电压表过载,应将量程扩大。
(4)接入全桥时,请注意区别各应变片的工作状态,桥路原则是:对臂同性,邻臂异性。
(5)直流电源不可随意加大,以免损坏应变片。
四:实验步骤:(1)直流电源旋在±2V档。
F/V表置于2V,差动放大器增益打到最大。
(2)观察梁上的应变片,转动测微头,使梁处于水平位置(目测),接通总电源及副电源。
放大器增益旋至最大。
(3)差动放大器调零,方法是用导线将放大器正负输入端与地连接起来,输出端接至F/V表输入端,调整差动放大器上的调零旋钮,使表头指示为零。
(4)根据图1的电路,利用电桥单元上的接线和调零网络连接好测量电路。
图中r及w1为调平衡网络,先将R4设置为工作片。
(5)直流电源打到±4V,调整电桥平衡电位器使电压表为零(电桥调零)。
(6)测微头调整在整刻度(0mm)位置,开始读取数据。
(R4工作状态相反的另一个应变片,形成半桥电路,(8)保持差动放大器增益不变,将R3换为与广东海洋大学学生实验报告书(学生用表)实验名称课程名称课程号学院(系) 专业班级学生姓名学号实验地点实验日期(9)保持差动放大器增益不变,将R1、R2两个电阻换成另外两个应变片,接成一个直流全桥,(10)观察正反行程的测量结果,解释输入输出曲线不重合的原因。
(11)在同一坐标上描绘出X—V曲线,比较三种接法的灵敏度。
思考题1.根据X—V曲线,计算三种接法的灵敏度K=∆V/∆X,说明灵敏度与哪些因素有关?2.根据X—V曲线,描述应变片的线性度好坏。
热加工实训报告

热加工实训报告1. 引言热加工是一种常见的工艺,通过加热材料使其软化、变形或改变性质,以实现不同的加工目的。
在本次实训中,我们学习了热加工的基本原理和常用方法,并进行了相关的实操训练。
本报告将对实训过程和结果进行总结和分析。
2. 实训目的本次热加工实训的主要目的如下:•掌握常见的热加工方法和设备的使用;•理解热加工对材料性质的影响;•学习常见的热加工缺陷及其预防方法。
3. 实训内容3.1 热加工方法在实训中,我们学习了几种常见的热加工方法,包括:•热轧:通过在高温下将金属材料压延成板、带、型材等。
•热挤压:将金属材料加热至熔点以上,然后施加压力使其通过模具进行挤压变形。
•热粗锻:将金属材料加热至塑性变形温度,然后施加压力进行锻造。
•热处理:通过加热和冷却的过程,改变材料的组织和性能。
3.2 实操训练在实操训练中,我们使用了热轧机、热挤压机、锻压设备等工具和设备进行热加工操作。
具体的实操训练内容包括:1.热轧实操:使用热轧机对金属材料进行板材的热轧加工,观察加工过程中的变化。
2.热挤压实操:使用热挤压机对金属材料进行坯料挤压加工,观察加工后材料的变形情况。
3.热粗锻实操:使用锻压设备对金属材料进行锻造加工,观察材料在锻造过程中的变形及组织变化。
4.热处理实操:选择不同的材料进行热处理实验,观察热处理对材料性能的影响。
4. 实训结果分析在实训过程中,我们成功完成了热轧、热挤压、热粗锻和热处理等实操训练,并观察到以下结果:1.热轧:通过热轧加工,我们成功将金属材料加工成平整的板材,表面光滑度较高,尺寸精确度较高。
2.热挤压:经过热挤压加工,金属坯料发生了明显的形变,变成了带有特定形状的产品。
3.热粗锻:经过热粗锻处理,材料的形状和尺寸得到了改变,并且组织结构发生了明显变化,晶粒尺寸增大。
4.热处理:通过选择不同的热处理方法和工艺参数,我们成功改善了材料的硬度、强度等性能指标。
5. 实训心得通过本次热加工实训,我深刻认识到了热加工在工程实践中的重要性和应用广泛性。
供热工程第一篇 室内热水供暖系统项目三

• 任务一 散热器 • 任务二 暖风机 • 任务三 热水供暖系统的附属设备
返回
任务一 散热器
• 一、对散热器的要求
• 散热器是供暖系统中重要的基本组成部件,热媒通过散热器向室内散 热实现供暖的目的,散热器的正确选择涉及系统的经济指标和运行效 果。对散热器的基本要求有以下几点:
• 1. 热工性能方面的要求 • 散热器的传热系数K值越高,说明其散热性能越好。提高散热器的散
热量,增大散热器传热系数的方法,可以采用增加外壁散热面积(在 外壁上加肋片)、提高散热器周围空气流动速度和增加散热器向外辐 射强度等途径。 • 2. 经济方面的要求
下一页 返回
任务一 散热器
• 散热器传给房间的单位热量所需金属耗量越少,成本越低,其经济性 越好。散热器的金属热强度是衡量散热器经济性的一个标志。金属热 强度是指散热器内热媒平均温度与室内空气温度差为1℃时,每千克 质量散热器单位时间所散出的热量。即
• q值越大,说明散出同样的热量所耗的金属量越小。这个指标可作为 衡量同一材质散热器经济性的一个指标。对各种不同材质的散热器, 其经济评价标准宜以散热器单位散热量的成本(元/W)来衡量。
• 3. 安装使用和工艺方面的要求
上一页 下一页 返回
任务一 散热器
• 散热器应具有一定的机械强度和承压能力,散热器的结构形式应便于 组合成所需要的散热面积,结构尺寸要小,少占房间面积和空间,散 热器的生产工艺应满足大批量生产的要求。
温度tn 相差1 ℃时,每平方米散热器面积所放出的热量,它是散热 器散热能力强弱的主要标志。选用散热器时,散热器传热系数越大越 好。
• 1. 铸铁散热器 • 铸铁散热器长期以来得到广泛应用。它具有结构简单、耐腐蚀、使用
建筑环境与设备工程专业实验指导书

建筑环境与设备工程专业实验指导书目录等截面伸展体传热特性实验 (2)离心泵综合性能测定实验 (5)散热器热工性能测定实验 (10)室内气象参数测定实验 (14)流量和流速测定实验 (20)热网水力工况实验 (26)空调系统运行工况实验 (30)除尘器性能测定实验 (34)燃料发热量测定实验 (38)等截面伸展体传热特性实验一、实验目的及要求本实验是传热学课程的一门综合性实验,包含传热学和建筑环境测试技术这两门课程的知识点:等截面伸展体传热特性和电位差计的使用。
本实验的目次是:1、通过实验和对实验数据的分析,深入了解伸展体传热的特性,并掌握求解具有对流换热条件的伸展体传热特性的方法。
2、掌握手动电位差的工作原理及使用方法。
二、根本原理具有对流换热的等截面伸展体,当长度与横截面之比很大时〔常物性〕其导热微分方程式为:0222=-θθm dxd 式中:m —系数,Fum λα=θ—过余温度;C t t f ︒-=,θ t —伸展体温度,℃f t —伸展体周围介质温度,℃;α—空气对壁面的换热系数;)/(2C m W ︒⋅ u —伸展体周长;m d u ,π=; F —伸展体截面积;)(42122d d F -=π伸展体内的温度分布规律,由边界条件和m 值定。
三、实验装置及测量系统1、实验装置试验装置由风道、风机、试验元件、主副加热器、测温热电偶等组成。
试件是一紫铜管,放置在风道中。
空气均匀地横向流过管子外表进行对流换热。
管子外表各处的换热系数根本上是相同的。
管子两端装有加热器,以维持两端所要求的温度状况。
构成两端处于某温度而中间具有对流换热条件的等截面伸展体。
管子两端的加热器,通过调压变压器某控制其功率,以到达控制两端温度的目的。
为了改变空气对管壁的换热系数。
风机的工作电压亦相应地可作调整,以改变空气流过管子外表时的速度。
为了测量铜管沿管长的温度的分布,在管内安装有可移动的热电偶测温头,其冷端放置在空气流中,采用铜—康铜热电偶。
实验一围护结构热工性能的测定

实验一 围护结构热工性能的测定一.验验目的:1. 了解围护结构内温度的观测方法和数据整理方法;对比空气层内有无反射材料对热阻的影响;并验证稳定传热的理论。
2. 了解所用设备的一般原理和使用方法。
二.基本原理:是以稳定传热条件下,确定围护结构的保温性能,即在冬季室内外温度变化不大时,建筑热工的观测。
根据公式: Rw q 0θθι−= ∴ q Rw 0θθι−=三.实验仪器及设备:1. 偶温度计:热电偶的原理是利用金属的热电效应。
用两种不同的金属线(常用铜和鏮铜)组成一个闭合回路(图一),当两个接合点A 和的温度不等时,回路中有电流通过,即B A 、两端点之间存在着电位差。
B AB E ()==0,t t E AB )t (f -)t (0f冷铜 鏮铜热热电偶测试示意图若冷端的温度固定,则热电偶的热电动势将是热端温度的涵数。
AB E t ()==0,t t E AB )t (f用热电偶测温因其热惰性小,感应快,体积小不易损坏,所以除能测定气温外,还能测定围护结构表面及内部的温度,并具有多点同时观测的优点。
注意事项:① 事先标定热电偶的热电势随温度变化的曲线,以便测定时根据曲线由热电势换算成温度。
② 热电偶的感热接点必须与测温表面紧密接触。
可用石膏、环氧树脂等粘贴,粘贴材料的颜色应尽量与围护结构表面材料颜色一致。
2. 温度自动控制设备:一种由水银导电表及电子继电器两部分组成。
导电表下部是一普通温度计,上部有一铁块,可利用磁铁调整铁块的高度,在铁片的位置刻有度数即为控制温度的读数,铁片下常有一金属片,其位置随铁块的位置而改变,当铁块3. 的位置在表上部60°C 的位置,因此当下部温度计的水银到达60°C 就和金属片接触。
在水银导电表上有两根电线,将它接在电子继电器上,并将所控制的热电器电源也接在继电器的插座上,将电源接通,当到达所控制温度时,继电器就断路,低于控制温度就接通。
另一种用仪器控制温度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二散热器性能实验
班级:姓名:学号:
一、实验目的
1、通过实验了解散热器热工性能测定方法及低温水散热器热工实验装置的结构。
2、测定散热器的散热量Q,计算分析散热器的散热量与热媒流量G和温差T
的关系。
二、实验装置
1.水位指示管
2.左散热器
3. 左转子流量计
4. 水泵开关及加热开关组
5. 温度压差巡检仪
6.温度控制
仪表 7. 右转子流量计 8. 上水调节阀 9.右散热器 10. 压差传感器 11.温度测点T1、T2、T3、T4
图1散热器性能实验装置示意图
三、实验原理
本实验的实验原理是在稳定的条件下测定出散热器的散热量:
Q=GC
P (t
g
-t
h
) [kJ/h]
式中:G——热媒流量, kg/h;
C
P
——水的比热, kJ/Kg.℃;
t
g 、t
h
——供回水温度,℃。
散热片共两组:一组散热面积为:1m2
二组散热面积为:0.975 m2
上式计算所得散热量除以3.6即可换算成[W]。
低位水箱内的水由循环水泵打入高位水箱,被电加热器加热,并由温控器控制其温度在某一固定温度波动范围,由管道通过转子流量计流入散热器中,经其传热将一部分热量散入房间,降低温度后的回水流入低位水箱。
流量计计量出流经每个散热器在温度为t
g
时的体积流量。
循环泵打入高位水箱的水量大于散热器回路所需的流量时,多余的水量经溢流管流回低位水箱。
四、实验步骤
1、测量散热器面积。
2、系统充水,注意充水的同时要排除系统内的空气。
3、打开总开关,启动循环水泵,使水正常循环。
4、将温控器调到所需温度(热媒温度)。
打开电加热器开关,加热系统循环水。
5、根据散热量的大小调节每个流量计入口处的阀门,使之流量、温差达到一个相对稳定的值,如不稳定则须找出原因,系统内有气应及时排除,否则实验结果不准确。
6、系统稳定后进行记录并开始测定:
当确认散热器供、回水温度和流量基本稳定后,即可进行测定。
散热器供回水温度
t
g 与t
h
及室内温度t均采用pt100.1热电阻作传感器,配数显巡检测试仪直接测量,
流量用转子流量计测量。
温度和流量均为每10分钟测读一次。
G
t
=L/1000=L·10-3 m3/h
式中:L——转子流量计读值; l/h;
G
t ——温度为t
g
时水的体积流量;m3/h
G=G
t
·ρ
t
(kg/h)
式中:G——热媒流量,(kg/h);
ρ
t ——温度为t
g
时的水的密度,(kg/ m3)。
7、改变工况进行实验:
a、改变供回水温度,保持水量不变。
b、改变流量,保持散热器平均温度不变。
即保持
2h
g p t
t t +
=恒定8、求散热器的传热系数K
根据Q=KA(t
p -t
)
其中:Q——为散热器的散热量,W
K——散热器的传热系数,W/m2.℃
A ——散热器的面积,一种为0.975 m2,另一种为1 m2
t
p
——供回水平均温度,℃
t
——室内温度,℃
9、实验测定完毕:
a、关闭电加热器;
b、停止运行循环水泵;
c、检查水、电等有无异常现象,整理测试仪器。
五、注意事项
1、测温点应加入少量机油,以保持温度稳定;
2、上水箱内的电热管应淹没在水面下时,才能打开,本实验台有自控装置;但亦应经常检查。
六、实验内容及数据处理
由Q=GC
P (t
g
-t
h
),代入第一组数据,得到
Q
1
=102.4*4.18*(61.1-60.2)=385.2 kj/h=107.0W
Q
2
=100.8*4.18*(61.2-60.3)=379.2 kj/h=105.3W
Q
1
=101.2*4.18*(61.3-60.2)=465.3 kj/h=129.3W
由Q=KA(t
p -t
),t
p1
=60.65℃, t
p2
= t
p3
=60.75℃,算的
K1=107.0/(0.825*(60.65-22))=3.4 W/m2.℃
K2=105.3/(0.825*(60.75-22))=3.3W/m2.℃
K3=129.3/(0.825*(60.75-22))=4.0 W/m2.℃
七、思考题
1.分析实验误差产生的原因?
答:在改变流量,测定供给水温度时,未能够是散热器的平均温度保持绝对的恒定
2.如何减小或避免实验误差?
答:测温点应加入少量机油。