凹模的结构设计

合集下载

凹模冲压模具设计

凹模冲压模具设计

更多得难点,但也会有更多得收获。
由于个人水平有限,在设计过程中不可避免地出现各种各样得问题,还请老
师批评指正、
致谢
在本设计完成之际,衷心感谢指导老师与同学们对我得指导与帮助、在我设
计过程中,张春元老师给予了极大得帮助与指导,并为我们提供了舒适得工作、学
习环境,老师认真负责得工作态度、严谨得治学风格,使我深受启发,在此我要感
1)大型精密塑料模具 塑料模具占我国模具总量得比例正逐年上升,发展 潜力巨大.目前虽然已有相当技术基础并正在快速发展,但技术水平与国外仍有 较大差距,总量也供不应求,每年进口几亿美元、
2)主要模具标准件 目前国内已有较大产量得模具标准件主要就是模架、 导向件、推杆推管、弹性元件等、这些产品不但国内配套大量需要,出口前景也 很好,应继续大力发展、
B-Δ= 其中:B—条料板公称宽度(mm)
D—垂直于送料方向得工件尺寸(mm) a1—侧搭边值(mm) b0—条料与导板之间得间隙(mm)
Δ-条料宽度公差(mm) 查表3—18,有Δ=0、6,b0=0.2 则;B-Δ=
=50+2(3+0.6) +0。2
=57、4-0.60mm
条料步距L=72+a=72+3=75mm按图排样板料可剪成 1600mm×57、
5。3 凹模设计.
因制件材料简单,总体尺寸不大,选用整体式矩形凹模较为合理。因生产批
量较大,由文献《模具设计指导》[1]表 3—5 选用T10A 为凹模材料。凹模孔型由
该文献中表2—38选出第三种孔型,且β=3°,h=5mm 由该文献表 2—39 得
凹模高度 h=22mm 与凹模壁厚 c=30mm、
5、4 凹模刃口与边缘得距离、
由文献《冲压手册》表2—41 得 a=30mm 5。5 确定凹模周界尺寸 L×B、

《塑料模具设计》-陈志刚-主编第3

《塑料模具设计》-陈志刚-主编第3
3.4 成型零件的设计
3.4.1 成型零件的结构设计
在进行成型零件的结构设计时,首 先应根据塑料的性能和塑件的形状、尺寸 及其它使用要求,确定型腔的总体结构、 压缩模的加压方向或压注模和注射模的浇 注系统及浇口位置、分型面、脱模方式、 排气等,然后根据塑件的形状、尺寸和成 型零件的加工及装配工艺要求进行成型零 件的结构设计和尺寸计算。
9
②如塑件结构需要,也可将凹模侧壁做成镶拼 的,如图3-53所示,
10
③对于大型型 腔,由于塑料 的压力很大, 螺钉易被拉伸 变形或剪切变 形。为此,可 将侧壁镶拼部 分压入模板中, 如图3-54所示。 但这样却增加 了模具的尺寸 和重量。
11
12
3)瓣合式凹模 对于侧壁带凹的塑件(如线圈骨架),
24
3 . 螺纹型芯和螺纹型环的结构设计 螺纹型芯是用来成型塑件上的内螺
纹(螺孔)的,螺纹型环则是用来成型 塑件上的外螺纹(螺杆)的,此外它们 还可用来固定金属螺纹嵌件。无论螺纹 型芯还是螺纹型环,在模具上都有模内 自动卸除和模外手动卸除两种类型。此 处仅介绍手动卸除的结构。
25
在模具内安装螺纹型芯或型环的主要要求是: ➢ 成型时要可靠定位,不因外界振动或料 流的冲击而位移; ➢ 在开模时能随塑件一起方便地取出,并 能从塑件上顺利地卸除。
(3—1)
式中 S ——塑料成型收缩率(%); LM ——模具型腔在室温下的尺寸; Ls ——塑件在室温下的尺寸。
LM = Ls + Ls S
(3—2)
38
收缩率在一定范围 内的变化与波动
偶然误差
塑件尺寸误差
一副已完 工的模具 出现的产 品误差
在设计计算时对 收缩率估计不准
系统误差

4 1 成型零件的结构设计 凹模的结构设计讲解

4 1 成型零件的结构设计 凹模的结构设计讲解

4.4 成型零件的结构设计
一、凹模结构设计
装配情况
※过渡配合:H7/js6(较松过渡配合)
H7/n6(较紧过渡配合)
※防转
H7/m6(介于二者之间))
※凹模从上表面嵌入固定板
4.4 成型零件的结构设计
一、凹模结构设计
局部镶嵌式凹模
将凹模中易磨损的部位做成镶件嵌入模体中 结构特点:易磨损镶件部分易加工易更换
4.4 成型零件的结构设计
一、凹模结构设计
成型零件:是与塑料直接接触、构成型腔的零件,包括 凹模、凸模、型芯、螺纹型芯、型环等等。
型腔:指合模时用来填充 塑料、成型塑件的空间。
凹模:成型塑件外表面的 零件。
4.4 成型零件的结构设计
一、凹模结构设计
凹模的结构形式 凹模的技术要求
凹模的装配
4.4 成型零件的结构设计
4.4 成型零件的结构设计
一、凹模结构设计
大面积镶拼凹模 凹模由许多拼块镶制组合而成
组合目的:满足大型塑件凸凹形状的需求,便于机加、维修、 抛光、研磨、热处理以及节约贵重模具钢材。
适用范围:广泛应用于大型塑件上
根据镶拼方式的不同可分为:
底部镶拼结构
四壁镶拼结构
瓣合式凹模
4.4 成型零件的结构设计
大型模具不易采用整体式结构: ※不便于加工,维修困难 ※切削量太大,浪费钢材 ※大件不易热处理(淬不透) 搬运不便 ※模具生产周期长,成本高
4.4 成型零件的结构设计
一、凹模结构设计
整体嵌入式凹模 凹模由整块金属材料加工成并镶入模套中 结构特点:型腔尺寸小,凹模镶件外形多为旋转体,更换方便。 适用范围:塑件尺寸较小的多型腔模具
一、凹模结构设计
1.凹模的结构形式

凹凸模高度设计

凹凸模高度设计

凹凸模具设计厚度高度在一般情况下,凸模的强度是足够的,不必进行强度计算。

但是,对细长的凸模,或凸模断面尺寸较小而毛坯厚度又比较大的情况下,必须进行承压能力和抗纵向弯曲能力两方面的校验。

1.凸模承载能力校核凸模最小断面承受的压应力σ,必须小于凸模材料强度允许的压力[σ],即:σ=P/Fmin ≤[σ]故非圆凸模Fmin ≥P/[σ](2—27)对圆形凸模dmin ≥4tτ[σ](2—28)式中σ——凸模最小断面的压应力(MPa);P——凸模纵向总压力(N);Fmin ——凸模最小断面积(mm 2);dmin ——凸模最小直径(mm);t——冲裁材料厚度(mm)τ——冲裁材料抗剪强度(MPa);[σ]——凸模材料的许用压应力(MPa)。

2.凸模抗弯能力校核凸模冲裁时稳定性校验采用杆件受轴向压力的欧拉公式。

根据模具结构的特点,可分为无导向装置和有导向装置的凸模(图2.8.4)进行校验。

对无导向装置的凸模,其受力情况相当于一端固定另一端自由的压杆,其纵向的抗弯能力可用下列公式校验:对圆形凸模Lmax ≤30d 2/(2—29)对非圆形凸模Lmax ≤135(2—30)图2.8.4 凸模的自由长度(a)无导向装置的凸模(b)有导向装置的直通式凸模(c)有导向装置的阶梯式凸模有导向装置的凸模,其不发生失稳弯曲的凸模最大长度为:对圆形凸模Lmax ≤85d 2/P(2—31)对非圆形凸模Lmax ≤380 (2—32)以上各式中,I为凸模最小截面的惯性距(mm 4);P为凸模的冲裁力(N);d为凸模最小直径(mm)。

据上述公式可知,凸模弯曲不失稳时的最大长度Lmax ,与凸模截面尺寸、冲截力的大小、材料机械性能等因素有关。

同时还受到模具精度、刃口锋利程度、制造过程、热处理等影响。

为防止小凸模的折断,常采用如图2.8.5所示的结构进行保护。

(五)凸模的护套图2.8.5a、b是两种简单的圆形凸模护套。

图a所示护套1、凸模2均用铆接固定。

各种冲压模具结构形式与设计

各种冲压模具结构形式与设计

各种冲压模具结构形式与设计普通冲模的结构形式与设计凹模结构尺寸1.凹模厚度 H 和壁厚 C 凹模厚度 H可按下式计算:式中 F ——最大冲裁力( N)。

但 H 必须大于 10mm,如果冲裁轮廓长度大于 51mm,则上式计算值再乘以系数1.1 ~ 1.4 。

凹模壁厚按下式确定:C=(1.5 ~2)H(mm)2.凹模刃口间最小壁厚一般可参照表1。

表 1 凹模刃口间最小壁厚(mm)材料厚度 t冲件材料≤ 0.50.6 ~ 0.8≥1铝、紫铜0.6 ~ 0.80.8 ~ 1.0(1.0~ 1.2)t 黄铜、低碳钢0.8 ~ 1.0 1.0 ~ 1.2(1.2~ 1.5)t 硅钢、磷铜、中碳钢 1.2 ~ 1.5 1.5 ~ 2.0(2.0~ 2.5)t常用凸模形式简图特点适用范围典型圆凸模结构。

下端为工作部分,中间的圆柱部分用以与固定板配合冲圆孔凸模,用以冲裁(安装),最上端的台肩承受向下拉(包括落料、冲孔)的卸料力直通式凸模,便于线切割加工,如各种非圆形凸模用以冲凸模断面足够大,可直接用螺钉固定裁(包括落料、冲孔)断面细弱的凸模,为了增加强度和凸模受力大,而凸模相刚度,上部放大对来说强度、刚度薄弱凸模一端放长,在冲裁前,先伸入单面冲压的凸模凹模支承,能承受侧向力整体的凸模结构上部断面大,可直单面冲压的凸模接与模座固定节省贵重的工具钢或硬凸模工作部分组合式质合金组合式凸模,工作部分轮廓完整,圆凸模。

节省工作部分与基体套接定位的贵重材料冲裁凹模的刃壁形式简特点适用范围图刃壁带有斜度,冲件或废料不易滞留在刃孔内,因而减轻对刃壁的磨适用于冲件为任何形状、各损,一次刃磨量较少。

刃口尺寸随刃种板厚的冲裁模(但料太薄不磨变化宜采用)凹模工作部分强度好α一般取5′~ 30 ′刃壁带有斜度,漏料畅通,但由于适用于材料厚度小于3mm 刃壁与漏料孔用台肩过渡,因此凹模的冲裁模工作部分强度较差凹模厚度即有效刃壁高度。

刃壁带有斜度,冲件或废料不易滞留在刃孔内,因而刃壁磨损小,一次刃磨量少。

《冷冲模工艺与设计》课件——课题十一:冲裁模具工作零件的结构——凹模的结构形式和凸凹模的结构

《冷冲模工艺与设计》课件——课题十一:冲裁模具工作零件的结构——凹模的结构形式和凸凹模的结构
冲压工艺与模具结构
课题十一:冲裁模具工作零件的结构—— 凹模的结构形式和凸凹模的结构
知识目标: 1、掌握冲裁模工作零件的凹模、凸凹模结构形式。
能力目标: 1、能够对几种凹模、凸凹模结构形式有很好的认识。
2.4.3 凹模的结构形式 1、凹模的外形结构 凹模零件图如图2-22所示。凹 模是所有模板设计的基础,其他 模板(如凸模固定板、模座等) 的外形尺寸主要根据凹模外形尺 寸设计。凹模板的主要结构要素 包括凹模洞口、与下模座连接和 定位的螺钉孔和销钉孔,以及定 位零件的安装孔等。
图2-24 凹模洞口结构
3、与下模座连接和定位的螺钉孔和销钉孔 在布置凹模与下模连接螺钉孔时,可以将连接螺纹布置在凹模上,也可
将连接螺纹布置在下模座上,但最好将螺纹布置在下模座上,凹模上布置阶 梯沉孔,如图2-22所示。因为凹模制造时需要热处理,凹模零件结构图
凹模外形结构有整体式、镶拼式、镶嵌式三种。若模具工 位少,刃口少,则可以采用如图2-22所示的整体式。若凹模刃 口形状复杂,有较小的狭槽、细长的悬臂等易损结构,则最好 采用如图2-23(a)所示的镶拼结构。若工位多,个别凹模刃 口更换频繁,则最好采用如图2-23(b)所示的镶嵌方式。
凹模上的销钉孔应尽量与螺钉过孔布置在同一条直线上,美观,孔布置 不凌乱。一般布置两个,应尽量斜对角布置。
4、定位零件的安装孔 定位零件的安装孔主要与定位零件的尺寸有关,应尽量离凹模洞口远点,
以免影响凹模刃口强度。
2.4.4 凸凹模结构特点 在复合冲裁模中,由于内外缘之间的
壁厚是决定于冲裁件的孔边距,所以当冲 裁件孔边距较小时必须考虑凸凹模强度。 为保证凸凹模强度,其壁厚不应小于允许 的最小值。如果小于允许的最小值,就不 宜采用复合模进行冲裁。

凸模与凹模的结构设计

凸模与凹模的结构设计

凸模与凹模的结构设计冲压⼯艺与模具设计课程设计设计题⽬:跳步模——横向单排挡料钉定位组合凹模台阶冲裁弹压卸料班级07机械⼀班姓名赵应鸿B0737011于万斌B0737003指导教师郭志忠设计步骤:⼀.冲裁件的⼯艺与分析本设计制件为⼀垫圈,由内形的冲孔件与外形的落料件组成,垫圈的材料为10钢,具有良好的塑性,由表3-7查得内外形所能达到的经济精度为IT12-IT13(制件厚度为1.5mm),考虑到垫圈⼀般不作为什么重要零件来使⽤,所以从经济性⾓度出发,取内外形的精度等级为IT13,即内外形的极限尺⼨分别为:,,此精度在冲裁加⼯中容易得到,批量⽣产及其它情况也满⾜冲裁⼯艺要求。

冲件图如下:⼆.确定冲裁的⼯艺⽅案:(1)单⼯序模:此制件形状简单,结构并不复杂,故可考虑使⽤单⼯序模,但单⼯序模⽣产效率较低⽣产周期较长,不能满⾜经济性要求;(2)连续模:由于制件精度要求并不是很⾼,使⽤连续模即可以保证,且连续模在⼀次冲压⾏程中可以同时对多道⼯序进⾏冲裁,明显提⾼了⼯作效率;(3)复合模:复合模冲裁的最⼤特点是冲裁所获得的制件精度⾼,并且效率⾼,但模具制造相对困难,对于此制件来说,由于制件要求并不是很⾼,所以使⽤复合模难免有些不经济。

综上所述:确定使⽤连续模进⾏冲裁,采⽤挡料钉定位和弹性卸料装置,结构简单,制造容易。

三.有关排样的设计与计算(1)排样⽅案的确定;此条料为,制件外形尺⼨为.,故采⽤单⾏直排。

(2)由表4.3取搭边值,取进距h=20mm.(3)计算冲裁效率:(4)排样图如下图所⽰:四.冲裁⼒的计算:(1)落料⼒:(2)冲孔⼒:(3)顶件⼒:(4)卸料⼒:F卸=K卸*F1=0.04X33912=1356N(5)总压⼒:(6)确定模具压⼒中⼼:由于此垫圈为对称形状,所以制件的压⼒中⼼位于图形轮廓的⼏何中⼼处。

五.确定模具刃⼝的⼏何尺⼨:查表4-4得:查表4-5得:冲孔凸模与落料凸模公差=0.020mm,冲孔凹模与落料凹模公差=0.020mm。

凹模零件的加工工艺

凹模零件的加工工艺

凹模零件的加工工艺凹模零件的加工工艺是一项重要的制造工艺,它在各个领域都有广泛的应用。

凹模零件是一种具有凹陷结构的零件,通常用于制作模具、机械零件等。

下面将介绍凹模零件的加工工艺。

一、凹模零件的设计在进行凹模零件的加工之前,首先需要进行详细的设计工作。

设计时需要考虑凹模零件的形状、尺寸、材料等因素。

同时,还需要根据具体的应用场景和要求来确定凹模零件的加工精度和表面光洁度等要求。

二、凹模零件的材料选择凹模零件的材料选择十分重要,直接影响着凹模零件的加工难度和性能。

常见的材料有金属材料和非金属材料两种。

金属材料通常具有较高的强度和韧性,适用于承受较大载荷的场合。

非金属材料则具有较低的密度和良好的耐腐蚀性能,适用于一些特殊环境下的使用。

三、凹模零件的加工工艺凹模零件的加工工艺一般包括以下几个步骤:铣削、车削、钻孔、镗孔、磨削等。

在加工过程中,需要根据凹模零件的形状和尺寸来选择合适的加工方法和工艺参数。

同时,还需要注意加工过程中的刀具选择、切削速度、进给速度等因素,以保证加工质量和效率。

四、凹模零件的检验与调整凹模零件加工完成后,需要进行检验和调整。

检验时需要使用各种测量工具和设备来检测凹模零件的尺寸、形状和表面质量等指标。

如果发现存在偏差或不合格的情况,需要及时进行调整和修复,以确保凹模零件的质量和性能满足要求。

总结起来,凹模零件的加工工艺是一项复杂而重要的制造工艺。

在进行凹模零件加工时,需要进行详细的设计、合理的材料选择、科学的加工工艺和严格的检验与调整。

只有这样,才能制造出优质的凹模零件,满足各个行业的需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
凹模的结构设计
整体式凹模
整体嵌入式凹模
组合式凹模
镶嵌式凹模
1)局部镶拼式凹模
镶嵌式凹模
在凹模的结构设计中,采用镶拼结构有如下好处: (1)简化凹模加工,将复杂的凹模内形部的加工变成镶件的外形加工。降低了 凹模整体的加工难度。 (2)镶件用高碳钢或高碳合金钢淬火。淬火后变形较小,可用专用磨床研磨复 杂形状和曲面。凹模中使用镶件的局部凹模有较高精度,经久的耐磨性并可置换。 (3)可节约优质塑料模具钢,尤其对于大型模具更是如此。 (4)有利于排气系统和冷却系统的通道的设计和加工。
镶嵌式凹模
在结构设计中应注意以下几点: (1)凹模的强度和刚度因此有所削弱,所以模框板应有足够的强度和刚度。 (2)镶件之间,及其与模框之间尽量采用凹凸槽相互扣锁,以减小整体凹模在 高压下的变形和镶件的位移镶件必须准确定位,并有可靠紧固。 (3)镶拼接缝必须配合紧密。转角和曲面处不能设置拼缝。拼缝线方向应与脱 模方向一致。 (4)镶拼件的结构应有利于加工、装配和调换。镶拼件的形状和尺寸精度应有 利于凹模总体精度,并确保动模和定模的对中性,还应有避免误差累积的措施。
相关文档
最新文档