20春七数下(RJ)--教案:6.2 立方根 1
人教版七年级数学下册6.2《立方根》第一课时优秀教学案例

(五)作业小结
1.布置作业:布置具有层次性的作业,让学生在实践中巩固知识,提高解决问题的能力。
2.作业要求:强调作业的完成要求,如认真审题、仔细计算、书写规范等。
3.作业反馈:教师对学生的作业进行及时反馈,给予肯定和鼓励,同时指出存在的问题,帮助学生进一步提高。
人教版七年级数学下册6.2《立方根》第一课时优秀教学案例
一、案例背景
本节课为人教版七年级数学下册6.2《立方根》第一课时,主要内容是让学生理解立方根的概念,掌握求立方根的方法,并能够运用立方根解决实际问题。在学习本节课之前,学生已经掌握了有理数的乘方知识,为本节课的学习打下了基础。
在制定教学案例时,我以学生的认知发展水平和生活经验为出发点,设计了丰富多样的教学活动。首先,我通过生活情境引入立方根的概念,让学生感受到数学与生活的紧密联系。接着,我引导学生通过观察、思考、讨论,探索求立方根的方法,培养学生的推理能力和合作精神。在练习环节,我设计了一系列具有层次性的题目,让学生在实践中巩固知识,提高解决问题的能力。
五、案例亮点
1.生活情境导入:通过展示立方体模型和创设问题情境,激发学生的学习兴趣,使学生感受到数学与生活的紧密联系。
2.问题导向:引导学生自主探究立方根的定义和求法,培养学生的推理能力和探究精神,让学生在思考中发现问题、解决问题。
3.小组合作:组织学生进行小组讨论和分享,培养学生的合作能力和团队精神,让学生在交流中互相学习、共同进步。
(一)导入新课
1.实物引入:展示立方体模型,如魔方、立方体积木等,让学生观察并思考这些立方体的特点。
2.问题激发:提问学生“你知道立方根吗?你能举个例子吗?”引导学生思考立方根的概念。
人教版数学七年级下册第19课时《6.2立方根(1)》教案

人教版数学七年级下册第19课时《6.2立方根(1)》教案一. 教材分析《6.2立方根(1)》是人教版数学七年级下册的教学内容,本节课主要让学生掌握立方根的概念、性质和运算法则。
通过学习,学生能理解和掌握立方根的定义,会运用立方根解决一些实际问题。
教材通过引入立方根的概念,引导学生探究立方根的性质和运算法则,培养学生的逻辑思维能力和数学运算能力。
二. 学情分析学生在七年级上学期已经学习了实数的概念,对有理数、无理数有一定的了解。
在此基础上,学生需要进一步理解立方根的概念,并掌握立方根的性质和运算法则。
学生的学习兴趣较高,但部分学生可能对抽象的数学概念理解起来有一定困难,需要教师耐心引导和讲解。
三. 教学目标1.理解立方根的概念,掌握立方根的性质和运算法则。
2.能运用立方根解决一些实际问题,提高学生的数学应用能力。
3.培养学生的逻辑思维能力和数学运算能力,提高学生的数学素养。
四. 教学重难点1.立方根的概念和性质。
2.立方根的运算法则。
3.运用立方根解决实际问题。
五. 教学方法采用启发式教学法、案例教学法和小组合作学习法。
通过引入生活实例,激发学生的学习兴趣;引导学生主动探究立方根的性质和运算法则,培养学生的逻辑思维能力和数学运算能力;小组讨论,提高学生的合作意识和团队精神。
六. 教学准备1.准备相关的教学PPT和多媒体素材。
2.准备练习题和实际问题,用于巩固和拓展学生的知识。
3.准备黑板和粉笔,用于板书。
七. 教学过程1.导入(5分钟)通过一个生活实例引入立方根的概念,如“一个正方体的体积是27立方厘米,求这个正方体的棱长。
”引导学生思考,激发学生的学习兴趣。
2.呈现(10分钟)讲解立方根的定义,引导学生理解立方根的概念。
如“一个数的立方根,就是另一个数,使得这个数的三次方等于另一个数。
”通过PPT和板书,呈现立方根的性质和运算法则,让学生直观地感受和理解。
3.操练(10分钟)进行一些立方根的运算练习,让学生巩固所学知识。
七年级数学下册 6.2 立方根(1)教案 (新版)新人教版-(新版)新人教版初中七年级下册数学教案

立方根(第1课时)教学目标1.了解立方根的概念,会用根号表示数的立方根.2.了解开方与乘方互为逆运算,会用立方运算求某些数的立方根,会用计算器求立方根.3.能用有理数估计一个无理数(立方根)的大致X围.教学重点立方根的概念与性质及求法.教学难点立方根的概念与性质及求法.教学内容一、复习导入复习上节内容,导入新课的教学.二、新课教学1. 问题要制作一种容积为27 m3的正方体形状的包装箱,这种包装箱的棱长应该是多少?设这种包装箱的边长为x m,则x3=27.这就是求一个数,使它的立方等于27.因为33=27,所以x=3.因此这种包装箱的棱长应为3 m.归纳:一般地,如果一个数的立方等于a,这个数叫做a的立方根或三次方根,这就是说,如果x3=a,那么x叫做a的立方根.2. 探究根据立方根的意义填空,你能发现正数、0、负数的立方根各有什么特点吗?因为23=8,所以8的立方根是( );因为( )3,所以0.064的立方根是( );因为( )3=0,所以0的立方根是( );因为( )3=-8,所以-8的立方根是( );因为( )3=-278,所以-278的立方根是( ). 归纳:正数的立方根是正数,负数的立方根是负数,0的立方根是0,任何数都有唯一的立方根. 类似与平方根,一个数a 的立方根,用符号“3a ”表示,读作“三次根号a ”,其中a 叫被开方数,3叫根指数,不能省略,若省略表示平方.3. 探究 因为38=,-38=,所以为38-38; 因为327=,-327=,所以为327-327.利用开立方和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反数,一般地,3a =-3a .三、课堂小结1.立方根和开立方的定义.2.正数、0、负数的立方根的特征.3.立方根与平方根的异同.四、布置作业教学反思:。
人教版七年级下册 第六章实数 6.2立方根(1) 教学设计 教案

第六章实数6.2立方根(1)教案教学目标了解立方根的概念,初步学会用根号表示一个数的立方根.教学重点能用开立方运算求数的立方根,体会立方与开立方运算的互逆性。
教学难点能用类比平方根的方法学习立方根,及开立方运算,并区分立方根与平方根的不同. 教法:引导启发、讲练结合 课时:1教学过程:一、 创设情境,引入新课(1)若正方体的棱长为a ,体积为8,根据正方体的体积公式得83 a 那么a 叫做8的什么呢? (2)( )3=27;(3)( )3=-2764;(4)( )3=0; (3)如图所示,有一个正方体形状的仓库,体积为64 m 3,现准备将其扩充(形状还是正方体),以存放更多的货物,其棱长增加多少,才能使体积达到512 m 3?提出问题:要求棱长增加多少,可分别求出大小两个正方体的棱长,再求它们的差即可.由此可设大小两个正方体的棱长分别为a ,b ,则由题意知a 3=512,b 3=64,那么如何由a 3=512,b 3=64求a ,b 呢?二、新知探究1、立方根的概念课件出示:一般地,一个数x 的立方等于a ,即a x =3,那么这个数x 就叫做a 的立方根(也叫做a 的三次方根),记做3a 。
如:823=,则2叫做8的立方根,即283=;()823-=-,则2-是8-的立方根,即283-=-。
其中a 是被开方数,3是根指数,符号3读做“三次根号”。
(符号3a 中的根指数“3”不能省略)巩固概念教学: 让学生填空 1、因为1³= ,所以1是1的立方根,记作113=(读作1的立方根等于1);2、因为4³= 64 ,所以 64 是4的立方根。
记作4643=(读作8的立方根等于2);及时给出两个练习题加深学生对概念的理解。
同时为下面的例题教学做好铺垫。
2、开立方的概念出示:求一个数的立方根的运算叫做开立方。
学生在书上勾画概念 回归课本,追根朔源例求下列各数的立方根:(1)27-; (2)1258 ; (3)833 ;(4)216.0;(5)5-.解:(1)因为2733=-)(-,所以27-的立方根是3-,即3273=--;(2)因为1258523=⎪⎭⎫⎝⎛,所以1258的立方根是52,即5212583=; (3)因为833827233==)(,所以833的立方根是23,即238333=; (4)因为216.06.03=)(,所以216.0的立方根是6.0,即6.0216.03=; (5)5-的立方根是35-. 例2 求下列各式的值: (1);83- (2);064.03(3)31258-; (4)()339.解:(1)38-=()2233-=-;(2)3064.0=()4.04.033=;(3)31258-=525233-=⎪⎭⎫⎝⎛-;(4)()339=9.同步练习1 (让学生独立完成,规范解题格式,做完后同桌互判)求下列各数的立方根: (1)27-; (2)27102; (3)271; (4)064.0-; (5)0 ; 同步练习2 (让学生独立完成,规范解题格式,做完后同桌互判) 求下列各式的值:(1)3125;(2)3008.0-; (3)3641; (4)()339例1中的五个题比较全面的慨括了这种题型。
人教版七年级下册数学教学设计(教案):6.2立方根(1)

(3)尝试用符号给出数a的立方根的表示方法.( 并问a可以取什么数?)
五、巩固新知 例1 (1)求下列各数的平方根: ;1;0
(2)求下列各数的立方根 ,1,0,-1,-343,-0.729
坝陵中学教师课时备课
总课时:
教学内容
6.2立方根(1)
课型
新授课
教学目标
1、了解立方根的概念,初步学会用根号表示一个数的立方根;
2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根;
3、让学生体会一个数的立方根的惟一性;
4、分清一个数的立方根与平方根的区别;
5、使学生理解“两个互为相反数的立方根的关系,即 .
6、渗透特殊一般-特殊的思想方法。
教学重点
立方根的概念和求法
教学难点
立方根与平方根的区别
教法设计
运用多媒体课件,讲述法、讨论法、问题探究法相结合
教具准备
课件
教
学
过程
一、情境导入要制作一种容积为27 m3的正方体形状的包装箱,这种包装箱的边长应该是多少?
在学生充分讨论ቤተ መጻሕፍቲ ባይዱ基础上教师给出解决问题的过程:
二、试一试
八、布置作业课本第52页习题第1、3、5、6题
板书设计
6.2立方根(1)
1、定义
2、例题
3、立方根的特征:
课后反思
例2求下列各式的值
(1) ; (2) ; (3)
(4) ;(5) ; (6)
(7)
请学生思考数的平方根与数的立方根有什么区别与联系呢?(学生小组讨论后,请学生相互补充.)
人教版七年级数学教案:6.2立方根

(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《立方根》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算一个立方体体积的情况?”比如,我们想知道一个骰子的体积,就需要用到立方根的知识。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索立方根的奥秘。
人教版七年级数学教案:6.2立方根
一、教学内容
本节课选自人教版七年级数学教材第六章第二节:6.2立方根。教学内容主要包括以下两个方面:
1.立方根的定义:了解立方根的概念,掌握立方根的表示方法,如∛a。
2.立方根的性质与运算:探索立方根的性质,掌握立方根的运算方法,能够解决实际问题中与立方根相关的计算。具体包括:
首先,对于立方根的抽象概念,尽管我通过引入日常生活中的例子来帮助学生理解,但仍有部分学生感到难以把握。在今后的教学中,我需要寻找更多直观、生动的教学资源,比如动画、实物模型等,让学生能够更直观地感受到立方根的实际意义。
其次,在小组讨论环节,我发现有些学生参与度不高,可能是因为他们对立方根的应用场景不够熟悉。为了提高学生的参与度,我计划在下一节课前,先让学生们预习一些与立方根相关的实际应用案例,激发他们的学习兴趣,从而在讨论中更加积极主动。
-立方根的运算应用:将立方根的运算规律应用于实际问题中,学生可能难以灵活运用。
-立方根的估算:在没有计算器的情况下,如何对立方根进行合理的估算。
举例:为了突破概念抽象的难点,教师可以设计一些具体操作活动,如让学生通过折纸、积木等方式构建立方体,直观感受立方根的意义。在理解负数立方根时,可以通过数轴上的表示或实际例子(如负数的立方根在金融领域的应用)来说明。对于运算应用,可以设计一些实际问题的习题,如计算不规则立方体的体积,让学生在解决问题中掌握运算规律。至于估算方法,可以教授学生一些简单的技巧,如通过整数立方数的逼近来进行估算。
人教版七年级下册数学教案设计:6.2立方根

组
合
作
学
习
1.问题: 有多大呢?
2.怎样利用计算器来求一个数的立方根?
3.例:求-5的立方根(保留三个有效数字)
小组内个人展示先学成果,相互交流,明确答案。
对疑难问题,小组内共同讨论完成。
提出质疑,组长解答。
汇
报
交
流
教师指导学生归纳总结,并适时点拨、评价。
1.用递缩法求大致范围。
2.用计算器求数的立方根的步骤及方法:输入 → 被开方数 → = → 根据显示写出立方根.
过程与方法:能用有理数估计一个无理数的大致范围,使学生形成估算的意识.
情感态度与价值观:培养学生的估算能力。
重点
用有理数估计一个无理的大致范围。
教具
三角板
难点
用有理数估计一个无理的大致范围。
学具
三角尺
教师活动
学生活动
前
置
性
学
习
教师抽查学生的前置性作业的完成情况,并听取各小组组长的汇报。
学生展示前置性作业,小组长批改,并向老师汇报作业中存在的问题。
课时教案
课题
6.2立方根(1)
第1课时
教学目标
知识与技能:了解立方根的概念,初步学会用根号表示一个数的立方根.
过程与方法:了解开立方与立方互为逆运算,会用立方运算求某些数的立方根.
情感态度与价值观:让学生体会一个数的立方根的惟一性.
重点
立方根的概念和求法。
教具
三角板
难点
立方根与平方根的区别。
学具
三角尺
巩
固
拓
展
练习:
P51 1
小结:
本节课你有何收获?
学生独立完成练习,小组长批改,小组内纠正。
部编版2020七年级数学下册 6.2 立方根教案 (新版)新人教版

培养学生的估算意识,发展估算能力.
教学重点难点
教学
重点
引导学生类比平方根学习立方根的概念和求法.
教学
难点
理解平方根的意义.
教学媒体选择分析表
知识点
学习目标
媒体类型
教学作用
使用
方式
所得结论
占用时间
媒体来源
引入
知识目标
图片
B
B
拓展知识
2分钟
自制
讲解
过程与方法
图片
G
F
建立表象
5分钟
下载
观看
即若 那么x叫做a的立方根.
(引导学生类比平方根的概念,尝试说出立方根的概念。教师点评并补充。)
活动2:
根据立方根的意义填空.你能发现正数、0和负数的立方根各有什么特点吗?
(学生口答,观察填空 结果,尝试说出立方根的特征,教师点评,并板书。)
归纳:立方根的特征
正数的立方根是正数;
负数的立方根是负数;
6.2立方根
课题
6.2立方根
授课类型
新授
课标依据
(1)了解立方根的概念,会用根号表示数的立方根。
(2)了解乘方与开方互为逆运算,会用立方运算求百以内整数(对应的负整数)的立方根,会用计算器求立方根。
教学目标
知识与
技能
(1)了解立 方根的概念.
(2)会求一些数的立方根.
过程与
方法
类比平方根研究立方根,分析它们之间的联系与区别,在复习巩固平方根概念和求法的同时,学习立方根的概念和求法.
六、作业
必做:P51—52页:第1、3、5题
选做:1. 52页:10题
2.《学案 》P50.12题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.2 立方根
1.了解立方根的概念及性质,会用根号表示一个数的立方根;(重点)
2.了解开立方与立方是互逆运算,会用开立方运算求一个数的立方根.(难点)
一、情境导入
填空并回答问题: (1)( )3=0.001;
(2)( )3=-2764
; (3)( )3=0;
(4)若正方体的棱长为a ,体积为8,根据正方体的体积公式得a 3=8,那么a 叫做8的
什么呢?
二、合作探究
探究点一:立方根的概念及性质
【类型一】 立方根的概念及性质
立方根等于本身的数有________个.
解析:在正数中,31=1,在负数中,3-1=-1,又30=0,∴立方根等于本身的数有1,-1,0.故填3.
方法总结:不论正数、负数还是零,都有立方根.
【类型二】 立方根与平方根的综合问题
已知x -2的平方根是±2,2x +y +7的立方根是3,求x 2+y 2的算术平方根. 解析:根据平方根、立方根的定义和已知条件可知x -2=4,2x +y +7=27,从而解出x ,y ,最后代入x 2+y 2,求其算术平方根即可.
解:∵x -2的平方根是±2,∴x -2=4,∴x =6.∵2x +y +7的立方根是3,∴2x +y +7=27.把x =6代入解得y =8,∴x 2+y 2=62+82=100.∴x 2+y 2的算术平方根为10.
方法总结:本题先根据平方根和立方根的定义,运用方程思想列方程求出x ,y 的值,再根据算术平方根的定义求出x 2+y 2的算术平方根.
【类型三】 立方根的实际应用
已知球的体积公式是V =43
πr 3(r 为球的半径,π取3.14),现已知一个小皮球的体积是113.04cm 3,求这个小皮球的半径r .
解析:将公式变形为r 3=3V
4π,从而求r .。