第一节 度量空间,n维欧氏空间
n维欧氏空间定义

n维欧氏空间定义在n维欧氏空间中,我们可以进行各种有趣的探索和想象。
这是一个抽象的数学概念,但我们可以用生动的语言描绘它,让读者仿佛身临其境。
想象一下,我们置身于一个n维空间中,无论是二维、三维还是更高维度,我们能够感受到其中的奇妙之处。
空间中充满了各种形状和结构,它们交织在一起,形成了独特的景象。
在这个n维空间中,我们可以观察到不同维度的几何体。
比如,在二维空间中,我们能看到各种各样的平面图形,如圆、三角形和矩形等。
而在三维空间中,我们能够看到更加立体的形状,如球体、立方体和锥体等。
当然,在更高维度的空间中,我们可能无法直观地想象几何体的形状,但我们可以用数学语言进行描述。
在n维欧氏空间中,距离的概念也有所改变。
在二维空间中,我们可以用直线距离来描述两点之间的距离。
而在三维空间中,我们可以通过勾股定理来计算点之间的距离。
但在更高维度的空间中,我们需要使用更复杂的数学工具来计算距离。
除了几何形状和距离,n维欧氏空间还有许多其他有趣的性质。
比如,我们可以探讨向量在空间中的运动和变换。
我们可以考虑向量的长度、方向和角度,以及向量之间的运算规则。
这些概念在物理学、工程学和计算机科学等领域中都有广泛的应用。
在n维欧氏空间中,我们还可以探讨点的分布和集合的性质。
我们可以研究点的密度、连通性和紧致性等特征。
这些概念在拓扑学和概率论等领域中有着重要的应用。
n维欧氏空间是一个富有想象力和探索性的领域。
通过生动的语言和形象的描述,我们可以将这个抽象的数学概念呈现给读者,让他们感受到其中的奇妙之处。
无论是几何形状、向量运算还是点的分布,n维欧氏空间都是一个充满挑战和乐趣的领域。
让我们一起踏上这个数学之旅,探索未知的世界吧!。
点集拓扑教学大纲

重点:拓扑空间
难点:基与子基、邻域基
第一节:度量空间与连续映射
内容1度量空间的俄概念、n维欧氏空间Rn、Hilbert空间H、离散度量空间;
内容2邻域、开集;
内容3度量空间映射的连续性。
第二节:拓扑空间与连续映射
内容1拓扑空间定义
内容2平庸空间、离散空间、有限补空间、可数补空间;
分
配
教学内容:
第一章:集合论初步4(学时数)
掌握内容:集合的基本运算,映射及其性质。
理解内容:关系;可数集、不可数集、基数。
了解内容:选择公理。
重点:集合的基本运算,映射及其性质;
难点:基数;选择公理。
第一节:集合及其运算
内容1集合、集合之间的关系;
内容2集合的运算
第二节:映射
内容1关系、等价关系;
第二节:(有限)积空间
内容1积拓扑、拓扑积空间的概念;
内容2积空间的基、子基
内容3开映射;积空间到分空间投射的性质、积拓扑的性质。
第三节:商空间
内容1商拓扑及其性质;
内容2商映射及其性质;
内容3商空间。
第四章:连通性6(学时数)
掌握内容:连通空间;
理解内容:局部连通、道路连通;
了解内容:连通空间、局部连通、道路连通的关系;
内容3分离性公理的有限可积性。
第六节:可度量化空间
内容1、Urysohn嵌入定理;
内容2、Hilbert空间的可分性;
。
内容3、可分的度量化空间的等价空间第七章:紧致性 Nhomakorabea(学时数)
掌握内容:紧致空间和紧致空间的等价条件;紧致性与分离性的关系;
了解内容:可数紧致、列紧、序列紧,局部紧致空间,仿紧致空间及其之间的关系
维欧氏空间中的点集

在 n 维向量空间 Rn 中,按照以下定义内积:
设 x ( x1, x2 , , xn ) Rn , y ( y1, y2,
n
x, y xi yi i 1
构成一个 n 维 Euclid 空间.
, yn ) Rn
对于 x ( x1, x2 , , xn ) Rn , y ( y1, y2, , yn ) Rn
(5) 界点要么是聚点,要么是孤立点。
15
聚点
关于聚点,下面三条是等价的:
(1) a是A的聚点;
(2) a的任意邻域内,至少含有一个属于A而 异于a点;
(3) 存在A中互异的点所成的点列 xn,
lim
n
xn
a
See P.4定义1.2
16
内部、边界、外部、导集、闭包 定义:(1) A的全体内点所成的集合,称为A的内部, 记作 A ,或 int A
Rn 中的向量的长度(或范数)定义为: x ( x, x) x12 x22 xn2
定义距离
( x, y) x - y ( x1 - y1)2 ( x2 - y2 )2 ( xn - yn )2
4
2. Rn中点列的极限
定义1.3(邻域):设a Rn ,d 0,称点集
U(a,d )= x Rn | ( x,a) d 为点a的d邻域,简记为
U (a);
显然,在R1, R2, R3 中, U(a,d分别是以a为中心以d为
半径的开区间、开圆和开球.
o
U (a,d )=:x Rn | 0 ( x,a) d ---点a的去心d邻域。
d
d
M0
d
d
M0
ad
a
ad x
5
点列的极限
1 n维欧氏空间中的点集

(II) 邻域式定义: 若对于 P0 的任意邻域 U ( P0 ), 存在N,使n>N时有 Pn U ( P0 ), 则称该点列收敛于 P0 .
性质: 1. 点列的极限是唯一的;
2. N维欧氏空间点列的收敛是按坐标收敛; 3. 点列的收敛满足线性; 4. N维欧氏空间中的收敛点列等价于Cauchy点列
E P | P 的邻域 U ( P ), 有 U ( P ) E
n
这样可知:
E E E E E E ' E 的全体孤立点
11
2007年8月
南京航空航天大学集在分析学科中是非常重要的,具有以下的性质: (1)
i 1
n
2007年8月
南京航空航天大学 理学院 数学系
7
2. 度量空间中的各类点集
首先,我们考虑度量空间(X,d)中的点与给定点集之间的关系。设E 为X中的一个点集,P为X中的点,则P和E的关系具有如下几种:
(1) P附近全是E的点,即存在P的某邻域 U ( P ) E , 此时称P为E的内点; (2) P附近全不是E的点,即存在P的某邻域 U ( P ) E , 此时称P为E的外点; (3) P附近既有E的点,又有不属于E的点,即对P的任意邻域U(P), U ( P ) E 且 U ( P ) E , 此时称P为E的边界点,简称界点; (4) P附近有E的无穷多个点,即对P的任意邻域U(P), U ( P ) E 为无限集合,此时称P为E的聚点; (5) P附近除P外没有E的点,即存在P的邻域U(P), U ( P ) E P 此时称P为E的孤立点。
sup d ( P , Q ).
P ,Q E
n维欧氏空间定义

n维欧氏空间定义
在n维欧氏空间中,我们可以想象一个抽象的世界,其中存在着超越我们常见的三维空间的更多维度。
这个空间可以用来描述复杂的现象和问题,如高维数据分析、量子力学等。
在这个虚拟的世界里,我们可以拥有超越普通人类感知能力的洞察力。
在n维欧氏空间中,物体的位置可以用n个坐标来表示。
例如,在三维空间中,一个点可以由(x, y, z)来表示,其中x、y、z分别代表了该点在三个轴上的位置。
而在n维空间中,一个点的位置则需要n个坐标来描述。
这让我们可以想象,如果我们生活在一个n维空间中,我们的感知将会是怎样的呢?
在这个虚拟的世界里,我们可以自由地在不同维度之间穿梭,探索未知的领域。
我们可以想象,如果我们能够进入四维空间,我们将能够看到物体在时间上的变化,甚至可以预测未来的发展趋势。
而在更高维的空间中,我们将能够看到更加复杂的现象,如量子纠缠、黑洞等。
然而,尽管在n维欧氏空间中我们可以拥有更多的洞察力和理解力,但我们也会面临更多的困惑和挑战。
在这个虚拟的世界里,我们可能会遭遇到无法想象的现象和问题,挑战我们的思维和理解能力。
我们需要不断学习和探索,以适应这个新的世界。
在n维欧氏空间中,我们也可以与其他生命体进行交流和互动。
他
们可能来自不同的维度,拥有不同的感知和思维方式。
通过与他们的交流,我们可以更好地理解自己和这个世界,拓宽我们的视野和思维。
在n维欧氏空间中,我们可以拥有更广阔的世界观和更深入的洞察力。
这个虚拟的世界给予我们思考和探索的机会,使我们能够更好地理解自己和宇宙的奥秘。
让我们一起踏入这个神秘的世界,探索其中的奥妙吧!。
点集拓扑21n维欧氏空间度量空间拓扑空间的概念定义

第二章 点 集 拓 扑§2.1. n 维欧氏空间、度量空间、拓扑空间的概念定义2.1.1.) , ,(n 1ξξ =x ,nR y ∈=) , ,(n 1ηη ,定义 R R R d nn →⨯: 为 ∑=-=n12)()y ,(i i i x d ηξ. 称d 为nR 上的Euclid 距离. 易证距离d 满足:01.y x 0)y ,( ,0)y ,(=⇔=≥x d x d ; 02.) x ,()y ,(y d x d =;03.)z ,()y ,()z ,(y d x d x d +≤, )R z y, ,(n∈x .定义2.1.2.( 距离空间,Metrical Space ) X 为非空集合,二元函数 R X X d →⨯: 满足:01.非负性:y x 0)y ,( ,0)y ,(=⇔=≥x d x d ; 02.对称性:) x ,()y ,(y d x d =;03.三角不等式:)z ,()y ,()z ,(y d x d x d +≤ )R z y, ,(∈x .称d 为X 上的一个距离,)d ,(X 为距离空间或度量空间.如 X A ⊂,称)d ,(A 为距离子空间.0r ,>∈X x ,开球:} ) ,({)r ;(r x y d X y x B <∈=; 闭球:} ) ,({)r ;(r x y d X y x S ≤∈=.开集:X A ⊂.A x ∈,∃球 A x B ⊂)r ;(,称x 为A 的一个内点.如A 中每个点都是内点,则称A 为开集.开球是开集;2R 中第一象限区域(不含坐标轴)是开集. 记)d ,(A 中开集全体为τ,则有如下结论. 定理2.1.1.(1)τφ∈X ,; (2) ττ∈⇒∈)( ,2121G G G G ; (3) τλτλλλ∈⇒Λ∈∈Λ∈ )( G G .例:(1) 离散空间.φ≠X ,定义 ) X y x,( yx ,1yx ,0)y ,(∈⎩⎨⎧≠==x d . 称X 为离散距离空间.(2) ] ,[b a C 空间.} b] [a, )( )({] ,[上连续函数为t x t x b a C =.] ,[y(t)y ),(b a C t x x ∈==, 定义y(t)x(t) max )y ,( -=≤≤bt a x d ,d 是距离.(3) 有界函数空间)(X B .φ≠X ,} X )( )({)(上有界函数为t x t x X B =. 定义 y(t)x (t) sup )y ,( -=∈Xt x d ,()(y ,X B x ∈),d 是距离.称)(X B 为有界函数空间. 取+=N X ,记} )( )( {)(有界 n n x l X B ξξ===∞.)(y ),(n ηξ==n x ,n n sup )y ,(ηξ-=∈Nn x d .定义2.1.3.设φ≠X ,)(X P ⊂τ 满足:(1) τφ∈X ,; (2) τ对于有限交运算封闭:ττ∈⎪⎪⎭⎫⎝⎛⇒∈= n 1 i i n 1G G , ,G ;(3) τ对于任意并运算封闭:τλτλλλ∈⎪⎪⎭⎫ ⎝⎛⇒Λ∈∈Λ∈ G )( G . 称τ为X 上的一个拓扑( Topology ),X 上安装了拓扑τ,) ,(τX 是拓扑空间( Topological Space ). 每个τ∈G 称为开集. 如 X A ⊂, 令} {ττ∈=G A G A , 称) ,(A τA 为(拓扑)子空间.例:(1) 度量空间)d ,(X 是拓扑空间,称为由距离d 诱导的拓扑τ. (2) 设 φ≠X ,}{X ,φτ=,称) ,(τX 是平凡拓扑空间. (3) 设φ≠X ,)(X P =τ,称) ,(τX 是离散拓扑空间.(4) } n, , 2, 1, ,0{ ==N X ,令}{} )\( {φτ为有限集 A X X A ⊂=,则) ,(τX 成为拓扑空间.§2.2. 拓扑空间中的基本概念设),(τX 是拓扑空间,X A ⊂.定义:(1) 若 c A 是开集,称A 为闭集. (2) A 的闭包闭F F,A F⊂∆=A (包含A 的最小闭集).(3) 若G x ∈,G 是开集,称G 为x 的一个邻域.∃∈ ,A x 邻域G ,使A G x ⊂∈,称x 为A 的内点.A 的内点全体称为A 的核(内部),记0A 为. (书15P (3)错) (4) x X, x ,∀∈⊂X A 的邻域G ,有φ≠A G ,φ≠cA G ,称x 为A 的边界点.A 的边界点全体称为A的边界,记为 A ∂.显然,0A ,A ∂,0)(c A 互不相交,o c o A A A X)( ∂=.(5) x X,A ,∀⊂∈X x 的邻域G ,有 φ≠A x G }){\(,称x 为A 的聚点.A 的聚点全体称为A 的导集,记A '. (6))A \A ('∈x ,称x 为A 的孤立点.(7) 若 A A '=,称A 为完全集(完备集). (8) 若 ()φ=oA ,称A 为疏朗集(无处稠密集). A 不在任何开集中稠密.(9)X B ,⊂A ,若B A ⊃,称A 在B 中稠密.它等价于: Ay y B ∈⊂>∀);(B 0, εε.(10)-σF 型集A : +∞==1nF n A ,n F (闭集);-δG 型集B : +∞==1n G n B ,n G (开集).(11) 设B 在A 中稠密,0ℵ≤B ,称A 为可分集.若X 可分,称X 为可分空间. (12) 若 +∞==1nEn A ,n E (疏朗),称A 为第一纲集;否则称A 为第二纲集.(13) 设)d ,(X 为度量空间,X A ⊂.若存在球 )r ;(0x B ,使)r ;(0x B A ⊂,称A 为有界集.设 0 , ,>⊂εX B A .若 Bx x B A ∈⊂)(ε;,称B 为A 的一个网-ε.若0 >∀ε,A 具有有限的网-ε B ,称A 为完全有界集.注:可取有限的网-ε A B ⊂. 如:球n R x B ⊂)r ;(0 是完全有界集.(14) 设X x n ⊂}{, 若∃X x ⊂, 使 0 x),d(x lim n =+∞→n . 称}{n x 收敛于x , 记 x x lim n =+∞→n 或)(n x x n +∞→→.极限是唯一的; 收敛点列是有界集. (15) 设 )d ,(X 为度量空间,X A ⊂.若A 中任一点列都存在收敛于X 中点的子列,称A 为列紧集.如:欧氏空间n R 中的有界集是列紧集. (16) 设X A ⊂,Λ∈λλ}{G 是开集族.若 Λ∈⊂G λλA ,称Λ∈λλ}{G 为A 的一个开覆盖.若A 的任一开覆盖Λ∈λλ}{G ,存在有限子覆盖: n1iG =⊂i A λ,称A 为紧集. 若空间X 紧,称X 为紧空间.(17) 设)d ,(X 为度量空间,εε<>>∃>∀⊂) x ,d(x N n m , 0,N 0, }{n m 时,有当,X x n ,则称}{n x 为Cauchy 序列(基本列). 若X 中每个基本列均收敛,称X 是完备的度量空间. 如:收敛点列必是基本列. nR 是完备的度量空间.以下假设),(τX 是拓扑空间. 定理2.2.1.(闭集的性质)(1) X ,φ是闭集; (2) 有限个闭集之并是闭集; (3) 任意多个闭集之交是闭集. 定理2.2.2.(1) o A 是A 的最大开子集; A 为开集 o A A =⇔.(2)A 是包含A 的最小闭集; A 为闭集A A =⇔.(3) A 为闭集A A ⊂'⇔. (4) A A A '= . (5) A A A o∂= . (6) )d ,(X 为度量空间,则X A ⊂为闭集A ⇔中取极限运算封闭.(7) A 为度量空间X 中闭集 ⇔若 A x 0)y ,(inf )A ,( ∈==∈∆则,x d x d Ay .选证:(1) 记} {Λ∈λλG 为A 的全体开子集所成之集族.则⎪⎪⎭⎫⎝⎛∈⇔∈Λ∈∃⇔∈Λ∈ G x G x , λλλλ使oA x ,于是 Λ∈=λλG A o是开集,且是A 的最大开子集. 故A 为开集A A o =⇔. (3) 若A 为闭集,则c A 为开集,且φ=cA A .由聚点定义,c c A x A x )( '∈⇒∈,即c c A A )('⊂,A A ⊂'.反之, 设A A ⊂',则cc A x A x )( '∈⇒∈, 故存在x 的某个邻域G , 满足 c A x .)}{\(∈=而φA x G ,∴ φ=A G ,即cAG x ⊂∈,说明x 是c A 的内点,c A 是开集,A 是闭集.(6) 设点列A x n ⊂}{,X x x n ∈→.若}{n x 有无穷多项互异,则A x '∈;否则A x ∈.从而总有A x ∈.由(2) 得证.例1. 0.5] [0,E );5.0 ,0(E ,)5.0 ,0[0='==则Z E ; Z E E E ]5.0 ,0[='=.由于E E ⊂'不成立,E 不是闭集.例2. 2R X =, } 0 R,x ) ,{(≥∈=y y x A . 则 A A ='; } R x,0 ) ,{(∈>=y y x A o. A A A A ='= ; } )0 ,{(R x x A ∈=∂.例3. 证明R A ⊂的导集A '是闭集. 证:需要证c) A ('是开集.x,)A ( x c '∈∀不是A 的聚点,存在x 的邻域 ) ,(δx U ,) ,(δx U 中不存在异于x 的A 中的点,故),(δx U 中的每个点均不是A 的聚点.于是 cA x U ) () ,('⊂δ,c) A (' 是开集.定理2.2.3.X A = ∀⇔ 非空开集 X G ⊂,有 φ≠G A . 证:设X A =. 若开集G 满足φ=G A . 则 c G ( ,c G A ⊂为闭).由Th2.2.2.(2) 得 c G A ⊂, 于是,φ==⊂c c X A G )(.反之,由于c cA A A )( )(且φ= 为开集,由条件,φ=c A )(,得 X A =.定理2.2.4.( 疏朗集的三种等价描述)(1) φ=oA )(; (2) ∀非空开集φ≠⇒c )A (G G ;(3) ∀非空开集G ,必含有非空开子集 G G ⊂0,满足φ=0G A .证:(1)⇒(2).若开集G 满足φ=c)A (G ,则A G ⊂, 于是φφ==⊂G ,)A (G o. (2)成立.(2)⇒(3).∀非空开集G ,令0c0G ,)A (G G = 为G 的非空开子集, 且φ=⊂cA A 0G A .(3)⇒(1).反证法.假设 φ≠oA )(,由(3),存在非空开集oA G )(0⊂,满足φ=0G A ,即c )(G A 0⊂ (闭集),c G A0⊂,c 0)A (G ⊂ (开集), 从而 φ==00)(G G A c( A ⊂0G ).矛盾. (18P 错)定理2.2.5.在度量空间中,完全有界集是有界的可分集.证:设X A ⊂为完全有界集,存在X 中有限多个球 n k x B 1)}1 ;({,使 n1)1 ;(=⊂k kx B A . 固定 X x ∈0,记 ∑=+=n10k) x ,d(x1r k . 1) x d(x , 1), ;B(x x k, A, x k k <∈∃∈∀即使, 故r ) x ,d(x ) x d(x ,) x d(x ,0k k 0<+≤ ,即 )r ;(0x B A ⊂, A 有界.对于kk 1=ε,存在有限多个以A 中点)(k j x 为中心的球⎪⎭⎫⎝⎛k 1;)(k j x B ) n , 2, ,1(k =j ,使 kn 1 )(k 1 ;=⎪⎭⎫ ⎝⎛⊂j k j x B A .记{}3, 2, 1,k ;n , 2, ,1 k)( ===j x D k j ,则 D 是A 的至多可数子集.εε<∃>∀k1 ,0.于是,()Dx j k j j k j x B x B A n 1 )(n 1 )() B(x; ;k 1 ;kk∈==⊂⊂⎪⎭⎫⎝⎛⊂εε, D 在A 中稠密,A 为可分集.定理2.2.6.在度量空间中,列紧集是完全有界集.证:反证法.假设X A ⊂是列紧集,但A 不是完全有界集,A ,0 0>∃ε没有有限的0ε-网.A A ∈∃∈∀21 x , x ,使021) ,(ε≥x x d .同理,} x ,{21x 不是A 的0ε-网,A ∈∃3 x ,使) 2 1,i ( ,) ,(03=≥εx x d i .继续下去,得到A x n ⊂}{,满足:) j i ( ,) ,(0≠≥εj i x x d .显然,点列}{n x 无收敛子列,A 非列紧.定理2.2.7.在度量空间中,A 为紧集A ⇔为列紧的闭集.证:只需证明:A 为紧集 A ⇔中每个点列均有收敛于A 中点的子列.“⇒”. 反证法.假设存在点列A x n ⊂}{无收敛于A 中点的子列.则y y y N n ,0N 0 A,y >>>∃∈∀当及δ时,有 ) ;(y δy B x n ∉.现A y y B y )} ;({∈δ为紧集A 的一个开覆盖, 存在 m1 y )} ;({k =k k y B δ 满足m1y ) ;(k =⊂k k y B A δ.令k y mk N N max 1≤≤=,则当 时,N n > m1y ) ;(k=∉k k n y B x δ. 从而 A x n ∉. 矛盾.“⇐”. 设 A 为列紧闭集,则A 为完全有界集.要证A 是紧集,只要证明,对于A 的任一开覆盖Λ∈ }{λλG ,λδλδG ) B(x ; , , x 0, ⊂Λ∈∃∈∀>∃使A . ( 因为 A 具有有限的δ-网 ).采用反证法.假设不然,存在A 的一个开覆盖Λ∈ }{λλG , 满足Λ∈∀∈∃∈∀λ , x N,n n A , 有φλ≠c n G )1;B(x n.对A x n ⊂}{, 因A 为列紧闭集,存在子列 Λ∈⊂∈→ 0λλG A x x k n . 0r , 00>∃Λ∈∃λ,使0 G )r ;B(x 00λ⊂(开集). 而当k 充分大时,有 0 G )r ;B(x )n 1;B(x 00kn λ⊂⊂. 矛盾. 定理2.2.8.设) ,(d X 是度量空间,则以下三条等价: (1) X 是完备的度量空间; (2) 非空闭集列X F n ⊂满足0y) d(x , sup lim )(lim ), 3, 2, 1,(n ,nF y x,n 1===⊂∈+∞→+∞→+n n n n F d F F ,则∃唯一的 +∞=∈1n0Fn x .(3) X 中的完全有界集是列紧集.证:(1)⇒(2). 取) 3, 2, 1,n ( =∈n n F x .当 N p ∈ 时,n p n pn F F x ⊂∈++,0)d(F ) x ,d(x n n p n →≤+,)(n +∞→. }{n x 为完备空间X 中的基本列.记 ) (n ,0+∞→→x x n ,n F 闭, +∞=∈1n 0F n x . 0x 的唯一性显然. (2)⇒(3).设X A ⊂为完全有界集,点列A x n ⊂}{.由完全有界集的定义,∃∈∀ N,k 有限个以 k 21为半径的闭球所成之集族kn m k m k S F 1}{== 覆盖A .于是,存在1)1(F S∈ 含有}{n x 中的无限多项;又存在2)2(F S ∈ ,使得)2()1(S S 含有}{n x 中的无限多项 ; . 一般地, , N k ∈∀k k F S ∈∃)( ,使得kj j k S F 1)( =∆=含有}{n x 中的无限多项. 由此知,存在}{n x 的子列}{k n x 满足k n F x k ∈,) 3, 2, ,1 ( =k .非空集列}{k F 满足k k F F ⊂+1,且 0 1)(→=k F d k .由(2),存在 +∞=∈1k 0F k x ,且)d(F ) x ,d(x k 0n k ≤0k1→=,即0n x x k →,A 为列紧集.(3)⇒(1).设}{n x 为X 中基本列,记} {N n x A n ∈=.εε<≥>∃>∀) x ,d(x N n 0,N 0, N n 时,当.从而, N1k) ;B(x=⊂k A ε, A 为完全有界集⇒ A 为列紧集. 故}{n x 有收敛子列 0n x x k → ) (+∞→k . 显然0n x x → ) (+∞→n . X 为完备空间.定理2.2.9.设) ,(d X 是完备的度量空间,则子空间X M ⊂是完备的 M ⇔是闭集. 定理2.2.10.(Baire 纲定理) 完备的度量空间X 必是第二纲集. 证:采用反证法.假设X 是第一纲集,则 n 1nE ,E+∞==n X 为疏朗集. 由Th2.2.4.(3) 知:对于∃ ,1E 直径小于1的非空闭球φ=111E S , 使S ; 对于∃ ,2E 直径小于21的非空闭球1012S S S ⊂⊂,使φ=22E S ; ; 对于∃+ ,1n E 直径小于11+n 的非空闭球φ=⊂⊂+++1n 1n 01E S , 使n n n S S S .得非空闭球套+∞1}{n S . X 完备, +∞=∈∃1n 0S n x . 这样,X N n E x n ∉∈∉00 x ),( . 矛盾.定理 2.2.11.(完备化定理) 对于度量空间) ,(d X ,必存在一个完备的度量空间)~,~(d X ,使得) ,(d X 等距于)~ ,~(d X 的一个稠密子空间.在等距意义下,空间)~,~(d X 是唯一的. 称空间)~ ,~(d X 为) ,(d X 的完备化空间.(证明的思想方法与Cantor 实数理论中,把无理数加到有理数域中的方法相同). 等距映射:) ,(1d X ,) ,(2d Y 是距离空间, 存在一一映射Y X →:ϕ 满足 ))( ),(() ,(21y x d y x d ϕϕ=)X y x,(∈∀,称ϕ为等距映射,空间X 与Y 等距.例:取nR X =,d 为欧氏距离. )r ;(0x B A = (开球,0>r ).则A 为完全有界集;X 完备,A 也是列紧集.作为距离子空间,A 不完备,其完备化距离空间为 )r ;(~0x S A = (闭球).§2.3. 连 续 映 射定义2.3.1.(连续映射)(A) ) ,(1d X 与) ,(2d Y 是距离空间,映射 . x ,:0X Y X f ∈→) ;( x 0, 0, 0δδεx B ∈>∃>∀当时,) );(((x )0εx f B f ∈,称f 在0x 处连续. 若f 在X 的每一点连续,称f 是X 到Y (B) ) ,(1τX 与) ,(2τY 是拓扑空间,映射. x ,:0X Y X f ∈→ 020 x , )( ∃∈∀τV x f 的邻域 的邻域1τ∈U ,使(V ))f U ( ,(U)1-⊂⊂即V f ,称f 为在0x 处连续. 若f 在X 的每一点连续,称f 是X 到Y 的连续映射.例1. (1) 距离空间 21d ,d R,Y ),1 ,0(==X 为欧氏距离. 则 x y sin =是)d ,()d ,(21Y X → 的连续映射(函数).(2) 取 }X ,{ ),1 ,0(1φτ==X 为X 中离散拓扑; 2 ,τR Y = 为Y 中欧氏拓扑.则 x y sin =不是Y X →的连续映射.因为,X ∈∀0 x ,对于Y 中)(0x f 的邻域 Y ) ),(21(0⊂∞+=x f V ,不存在0x 的邻域X U ⊂,使V U f ⊂)(. 定理2.3.1. 设X ,Y 是拓扑空间,Y X f →:. (A) f 连续 ⇔ f 反射开集:X (V )f 1⊂⇒⊂∀-Y V 开集 是开集;(B) f 连续 ⇔ f 反射闭集:X (F)f 1⊂⇒⊂∀-Y F 闭集 是闭集.证:(A) “⇒”.V f(x ) (V ),fx 1∈∈∀-即 .由f 在x 处连续,存在x 的邻域 X U ⊂, 使(V )f U (U)1-⊂⊂.即V f . x 是内点,(V )f 1-是开集.“⇐”. 若f 反射开集,Y V f(x ) X x ⊂∈∀的邻域及, 则 X (V)f 1⊂=-∆U 为x 的邻域,且V (V )][f f f(U)1⊂=-,故)(x f 在x 处连续.(B) 注意到 c c F f F f)]([)(11--=,证(B).定理2.3.2. 设X ,Y 是度量空间,映射Y X f →:.则f 在0x 处连续0n n X,}{ x x x →⊂∀⇔)()f( 0n x f x →⇒, )(n +∞→. (证明同数学分析)定理2.3.3. (连续函数的延拓)设E 是度量空间X 中的闭集,R E g →: 是连续函数,则存在连续函数R X f →: 满足: (1) E ),()(∈=x x g x f ; (2) )( sup )(sup ),( inf )(inf x g x f x g x f Ex Xx Ex Xx ∈∈∈∈==.(证略)定理2.3.4. (压缩映射原理,Banach 不动点定理)设)d ,(X 是完备的距离空间,映射X X T :是压缩映射, 即 y) d(x , Ty) d(Tx , 1,0 θθ≤<≤∃使 , X y x,∈∀. 则 T 有唯一的不动点X x ∈:x x T = .证:取初值 ,0X x ∈ 迭代格式:,01Tx x = ,12Tx x =, ,1 n n Tx x =+.下证}{n x 是Cauchy 序列:)Tx ,d(Tx ) x ,d(x ) ,() ,(2n 1n 1n n 11----+=≤=θθn n n n Tx Tx d x x d ) x ,d(x ) x ,d(x 02n 1n 21n θθ≤≤≤-- .) x ,d(x ) x ,d(x ) ,() ,(n n 2p n 1p n 11+-+-+-++++++≤ p n p n n p n x x d x x d()) ,( 0121x x d np n p n θθθ+++≤-+-+ ),(1),(1)1(0101x x d x x d np n θθθθθ-≤--=,∴0),(lim =++∞→n p n n x x d . 而X 完备, x x ,x n →∈∃使 X . T 连续, 故 x x T = .唯一性:若 y T y =. 由于 y 0)y ,( )y ,( )y T , ()y ,(=⇒=⇒≤=x x d x d x T d x d θ.误差估计:) x ,(1)x ,(00Tx d x d nn θθ-≤. 推论.设),(d X 是完备的距离空间,映射X X T :. 若 0n T 是X 上的压缩映射,则T 有唯一的不动点.证:0n T有唯一的不动点x :x x Tn =0.由, )() (00x T x T T x T T n n == 故x T 也是 0nT 的不动点. x x T =⇒ . 由于 T 的不动点也是0n T的不动点,故T 的不动点唯一. 压缩映射原理的应用例1.常微分方程解的存在唯一性.考虑初值问题:⎪⎩⎪⎨⎧==00)(),(x t x t x f dt dx,其中) ,(t x f 连续, 关于x 满足Lipschite 条件:0)(k,) ,() ,(2121>-≤-x x k t x f t x f . 则方程存在唯一解 )(t x x =.证:方程等价于[]⎰+=tt d x t x 00),x(f )(τττ.取 1k ,0<>δδ使.定义 ] t ,[] t ,[0000δδδδ+-+-t C t C T :为 []⎰+=tt d x t Tx 00),x(f ))((τττ,] t ,[00δδ+-∈t t .验证 T 是压缩映射:⎰-≤≤- t212100 ]),([]),([max ),(t t t d x f x f Tx Tx d τττττδ⎰-≤≤- t2100)()(max t t t d x x k τττδ021t t m ax )()( m ax 0-⋅-⋅≤≤-≤-δδτττt t t x x k ),( 21x x d k δ≤. )1(<δkT 在 ] t ,[00δδ+-t C 内具有唯一的不动点 )(t x x =:x Tx =. 重复利用定理将解延拓到实数域R 上.例2.线性方程组解的存在唯一性.线性方程组:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-=-=-∑∑∑===nj n j j n n n j j j nj j j b x a x b x a x b x a x 1 12221111,,,满足 ∑=≤≤<=nj ji n i a111max α, 则它具有唯一解 ) x , ,(n 1 x x =.证:在nR 中定义距离:ini y y x d -=≤≤i 11x max ),(,) x , ,(n 1 x x=,n R y y ∈=)y , ,(n 1 ,则 ) ,(1d R n 完备. 作映射 n n R R T : 为 ⎪⎪⎭⎫ ⎝⎛++=∑∑==n j n j j n j j b x a b x a x x 1 n 1 j 11n 1 , ,) x , ,( . 则∑=≤≤-=nj j j j i n i y x a Ty Tx d 1 11)( max ) ,(∑=≤≤-≤nj j j j i ni y x a 1 1 max ),(max 11 1y x d a n j j i n i ⎥⎦⎤⎢⎣⎡≤∑=≤≤) ,( 1y x d α=.T 是压缩的,有唯一不动点 ) x , ,(n 1 x x =.§2.4. R 中的开集及完全集的构造开区间) ,(b a 是R 中开集 (+∞≤<≤∞-b a ). 任意多个开区间之并是开集.另一方面,设开集R G ⊂.则G r) x r,(x 0,r G , x ⊂+->∃∈∀使.记 }G x),( , inf{⊂<=ααα且x a , }G ) ,( , sup{⊂>=βββx x b 且.开区间) ,(b a 具有性质:G b G,a ,) ,(∉∉⊂G b a .称) ,(b a 为开集G 的一个构成区间.于是,G 中每一点必在G 的一个构成区间.此外,G 的任何两个不同的构成区间必不相交.而R 中两两不交的开区间至多可列个. 定理2.4.1. (开集构造定理) 每个非空开集R G ⊂可表示为至多可列个两两不交的开区间之并: +∞==1 n n )b ,(a n G .根据完全集的定义 (15P )及Th2.2.3(3) 可知,完全集(A A '=)即为无孤立点的闭集.故有如下定理. 定理2.4.2. (R 中完全集的构造) 集R A ⊂是完全集 cA ⇔ 是两两不交并且无公共端点的开区间之并.Cantor 集P . [ ] [ ] [ ] [ ] [ ]构造过程: 0 231 23231 32 97 98 1第一步:将 ]1 ,0[三等分,挖去⎪⎭⎫ ⎝⎛=32 ,311J ,留下闭区间 ⎥⎦⎤⎢⎣⎡=31 ,00I ,⎥⎦⎤⎢⎣⎡=1 ,322I . 记 11J G =.第二步:对0I ,2I 分别三等分,挖去中间的开区间⎪⎭⎫ ⎝⎛=92 ,9101J 与 ⎪⎭⎫⎝⎛=98 ,9721J . 记 21012J J G =,留下4个闭区间⎥⎦⎤⎢⎣⎡91 ,0,⎥⎦⎤⎢⎣⎡31 ,92,⎥⎦⎤⎢⎣⎡97 ,32,⎥⎦⎤⎢⎣⎡1 ,98.第三步:对留下的4个闭区间施行同样过程.将挖去的4个开区间之并记为3G .如此继续下去.记 c1 n G P ), ,1()0 ,(G ∆+∞==∞+-∞⎪⎪⎭⎫ ⎝⎛= n G . (书25P 错) 据Th2.2.4 及Th2.4.2,Cantor 集P 是疏朗集、完全集.若采用三进制无穷小数表示]1 ,0[中数,则 xG 1n ⇔∈+∞= n x 中至少有一位是1,亦即:x ⇔∈P x 可表示为由0或2作为位数过构成的无穷小数.由Th1.3.4,ℵ=⎪⎪⎭⎫ ⎝⎛=∏∞+= 2} {0,1 n P ; ]1 ,0[~P .第二章习题26P .16.设}{n K 是度量空间X 中非空单调减紧集序列,证明:φ≠+∞= 1nKn .特别地,若 0)(→n K d ,则+∞=1nKn 为单点集.证:反证法.假设φ=+∞= 1 n K n , 即 ∞+=∞+==⎪⎪⎭⎫ ⎝⎛=⊂11 n 1K n c n cn K X K . 321 ⊃⊃⊃K K K , 321 ⊂⊂⊂cc c K K K . 1K 紧 φ=⊂=⇒=⊂⇒=cn c n ki c n kkiK K K K K kkkn 1n n 11K K K .矛盾.若 0)( lim =+∞→n n K d ,)(n 0)d(K y) d(x , K ,n 1n +∞→→≤⇒∈+∞= n y x . y x =∴.33.证明: x sup }{n⎭⎬⎫⎩⎨⎧+∞<==∈∞N n n x x l 是不可分的距离空间. 证明:距离:}{n x x =,}{n y y =,n n Nn y x y x d -=∈ sup ) ,( . 假设 ∞l 可分,据15P (11), (9),它有至多可列的稠密子集.对于 41=ε,存在可列多个球+∞1)} ;({εn x B , 使+∞=∞⊂1) ;(n n x B l ε.记{} }1 ,0{ }{ n ∈==x x x A n , 则 ∏+∞=1 1} {0,n A ~,ℵ=A . 但+∞=⊂1 ) ;(n n x B A ε, 存在球) ;(0εn x B , 至少包含A 中不同的两点 A y x ∈ ,. 这样,()212) ;(1) ,(0 =≤≤=εεn x B d y x d , 矛盾. 空间 ∞l 不可分.。
泛函分析知识总结

泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。
本文主要对前面两大内容进行总结、举例、应用。
一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。
1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。
(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。
这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。
⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。
⑶ 集合X 不一定是数集,也不一定是代数结构。
为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。
⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。
n维欧氏空间定义

n维欧氏空间定义在n维欧氏空间中,我们可以想象一个超越三维的世界。
在这个世界里,我们无法凭借肉眼来观察,却可以通过想象力和数学概念来理解。
让我们以二维平面为例进行思考。
在二维平面上,我们可以想象一个点,它具有两个坐标,分别表示横坐标和纵坐标。
这个点可以代表二维空间中的一个位置或物体。
我们可以使用直线来连接两个点,这条直线也被称为向量。
向量有方向和长度,可以用来表示物体的位移或速度。
接下来,我们将思考三维空间。
在三维空间中,我们需要三个坐标来表示一个点的位置。
这三个坐标分别代表了它在横轴、纵轴和高度方向的位置。
我们可以用一个立方体来表示三维空间,其中每个面都是二维平面。
通过连接两个点,我们可以得到一个三维向量,它具有方向和长度。
现在,让我们进入n维空间。
在n维空间中,我们需要n个坐标来表示一个点的位置。
这些坐标可以代表任意维度的方向,例如时间、温度、压力等等。
我们可以使用一个n维的超立方体来表示n维空间,其中每个面都是n-1维空间。
通过连接两个点,我们可以得到一个n维向量。
在n维空间中,我们可以进行各种几何运算,如点的距离、向量的长度、向量的投影等等。
这些运算可以帮助我们理解和描述n维空间中的物体和现象。
然而,我们需要注意的是,n维空间只是一种抽象的概念,用来帮助我们理解和解释现实世界中的各种问题。
在现实生活中,我们只能感知和理解三维空间。
但通过对n维空间的抽象思考,我们可以更深入地理解和探索世界的奥秘。
在n维欧氏空间中,我们可以用坐标来描述点的位置,通过连接两个点来得到向量,进行各种几何运算。
虽然我们无法直接观察n维空间,但通过抽象思考和数学概念,我们可以更深入地理解和探索世界的本质。
让我们用想象力和思维去探索这个神秘而美妙的世界吧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点集简介
§1.度量空间,n维欧氏空间 §2.聚点,内点,界点 §3.开集,闭集,完备集 §4.直线上的开集,闭集, 完备集的构造
引言
第一章叙述了集合的概念及其运算, 第一章叙述了集合的概念及其运算, 集合的概念及其运算
那里的集合只提到其中的元素,以及元素的 那里的集合只提到其中的元素,
个数(有限,可数无限,不可数无限等等), 个数(有限,可数无限,不可数无限等等),
P∈ E Q∈ E
例如 E = (0,1) U {2}, 则 4 有界集
δ ( E ) = 2。
设E为 Rn 中一点集 , E有界下面三个说法等价 有界, 为 有界 Y
K
(1)δ(E) <∞ ⇔(2)∃k > 0,∀x∈E,δ(x,0) < k (3)∃k > 0,∀x∈(x , x ,L, x )∈E, x ≤ k,i =1,2,L, n = 1 2 n i
称d(x,y)是x,y之间距离。称 (X,d)为度 之间距离。 是 之间距离 为度 结 量 论 空间(或距离空间) 空间(或距离空间)
设X是度量空间,则X中度量 具有对称性 是度量空间, 中度量d具有对称性 是度量空间 中度量 事实上,在定义1中,令z=x,再由 )有 事实上,在定义 中 ,再由1) d(x,y)≤d(x,x)+d(y,x)=d(y,x) 次序是任意的,知 由x,y次序是任意的 知d(y,x) ≤d(x,y) 次序是任意的 所以, 所以 d(y,x) =d(x,y). 如果(X,d)是度量空间,Y是X的一个 是度量空间, 是 的一个 定义: 如果 是度量空间 定义: 非空子集, 非空子集,则(Y,d)也构成一个度量空 也构成一个度量空 称为(X,d)的子空间。 间,称为 的子空间。
∞ 21 ∞ 212 =[( ∑ ak )2 +( ∑ bk )2] k=1 k=1
令 ak = xk − zk , bk = zk − yk 代入上式
∞ 2 ≤ [ ∞ ( x − z ) 2 + ∞ ( z − y )2 ]2 ∑ ( xk − yk ) ∑ k k ∑ k k k =1 i k =1 k =1
δ 称为邻域的半径。 称为邻域的半径。 邻域的半径
2 邻域的基本性质: 邻域的基本性质: (1) P ∈ U ( P ) 显然成立。 ) 显然成立。 存在∪ 使得 (2) 对于 U1( P) 和 U 2 ( P ), 存在∪3(p),使得 )
U 3 ( P ) ⊂ U1( P ) IU 2 ( P )
"ε − N " 语言
∀ ε > 0:∃N ∈ N +, n > N 有 P − P < ε ∀ n 0
邻域语言
对于 P 0 的任意邻域 U(P ) 0
∃N1 ∈ N +, ∀n > N1 有 P ∈U(P ) 使 n 0
2 点集间距离 定义:两个非空点集A,B的距离为 定义:两个非空点集 的距离为
(Rn , d ) 称为n维欧氏空间 称为欧几里得距离。 欧几里得距离。 称为 维欧氏空间.d 称为欧几里得距离 维欧氏空间
Rn 距离的另两种表示法
1 ρ '( x, y ) = max ξi −ηi i
n '( x , y ) = ∑ ξ − η 2 ρ i i i =1
邻域及其基本性质 1 邻域定义: 邻域定义:
i =1 n
I 称为区间I的“体积”。记作 。 称为区间 的 体积”
在R1,R2,R3中,| I | 分别表为区间长度,矩形面积, 分别表为区间长度,矩形面积,立体体积 长度
例2 记
∞ 2 2 = { x = { x }∞ l ∑ xi < ∞ } k k =1 k =1
∞ ∈ l 2 , y = { y }∞ ∈l 2 设 x = { x k }k =1 k k =1
再令左端 n →∞ 即得
∞ 2 ≤ ( ∞ a 2 ) ⋅( ∞ b 2 ) (∑ a b ) ∑ k ∑ k k k k =1 k =1 k =1
<∞
∞ ∞ 2 ∞ ∞ 2 ∞ 2 ∞ 2 ∞ 21 ∞ 2 ∑ (ak +bk)2 = ∑ ak +2 ∑ akbk + ∑ bk ≤ ∑ ak +2( ∑ ak • ∑ bk )2 + ∑ bk k= 1 k= 1 k= 1 k= 1 k= 1 k= 1 k= 1 k= 1
度量空间定义 设X 是任意一个非空集合, x, y, z∈ X ,都有 x是任意一个非空集合 ∀ 是任意一个非空集合, 条 唯一确定的实数d(x,y)与之对应且满足 与之对应且满足 唯一确定的实数 1(非负性) d (x, y) ≥ 0,d (x, y) = 0 ⇔ x = y (非负性) 件 2(三点不等式)d (x, y) ≤ d (x, z) + d ( y, z) (三点不等式)
d ( A, B) = inf d ( P, Q) = inf{d ( P, Q ) P ∈ A, Q ∈ B}
P∈E Q∈E
3 点集间直径
A
B
定义: 一个非空点集E的直径定义为 定义: 一个非空点集 的直径定义为
δ(E)
δ ( E ) = sup d ( P , Q ) = sup{d ( E , Q ) P , Q ∈ E } P
取δ1:0<δ1<δ∈d(P,Q) ∈
则U(Q)=U(Q,δ1)
δ1 Q Q P δ
U(P)
∩
(4) )
当 P ≠ Q 时, 存在 U ( P) 和 U (Q), 使 U ( P ) I U (Q ) = φ 证明: 证明: 由 P ≠ Q 有 d ( P, Q) > 0 取
δ = 1 d ( P, Q) > 0
n n n 2 ≤ ∑ ( x − z )2 + ∑ ( z − y )2 d ( x, y) = ∑ ( x − y ) i=1 i i i=1 i i i=1 i i
=d(x,z)+d(y,z)
d 所以, ( x, y) ≤ d ( x, z) + d ( z, y) 即 所以, Rn 是度量空间。 是度量空间。
下面我们举一些度量空间的例子。 下面我们举一些度量空间的例子。 例1 欧氏空间 R n 对 R n 中任意两点
x = (ξ1,ξ2,L,ξn ), y = (η1,η2,Lηn )
规定距离
1 n d ( x , y ) = ( ∑ (ξ −η ) 2 ) 2 i =1 i i
由度量空间定义可知 证明: 证明: 1 显然成立。 显然成立。 2 由柯西不等式
度量空间, 维欧氏空间 §1. 度量空间,n维欧氏空间 两点间距离定义 ∀x, y, z ∈ R 都有唯一确定的实数 x − y 都有唯一确定的实数 条 且满足 1 x − y ≥ 0, x − y =0 ⇔ x = y 件 结 论 2 x− y ≤ x− z + y − z 称 x − y 为x与y的距离 。 与 的距离
1 ∞ d ( x , y ) = [ ∑ ( y − x ) 2 ]2 k i =1 k
定义
则d是 l 2 是
上的距离。 上的距离。
证明: 1 显然成立。 证明: 显然成立。 2 对固定的 对固定的n,
(n) = ( x , x ,L x ,0,0,L) x n 1 2
( n ) = ( y , y ,L y ,0,0,L ) y n 1 2
和
都是
Rn 中元素, 中元素,
故对固定的 n ,有柯西不等式
n n n 2 ≤ ( ∑ a 2 ) ⋅( ∑ b 2 ) (∑ a b ) k k k k =1 k k =1 k =1
不等式右端, 不等式右端, 令 n →∞ 得,
n 2 ≤ ( ∞ a 2 ) ⋅( ∞ b 2 ) ( ∑ a b ) ∑ ∑ k k k k k =1 k =1 k =1
3 U ( P,δ ) IU (Q,δ ) = φ ,
δ P δ Q
则
证毕。 证毕。
Rn 中几个基本概念
1 收敛 定义: 定义:设 {Pn } 为
Rm
P0 ∈ R m, 中一点列, 中一点列,
如果当 n →∞ 时有 d ( Pn , P0 ) → 0 则称点列 {Pn } 收敛于 P 0 。
lim 记为 n → ∞ Pn = P0 或 Pn → P0 ( n → ∞ )
两边开方
Rn 中所有和定点 P0 之距离小于定数
的点的全体, δ > 0 的点的全体,即集合 {= {d ( P, P0 ) < δ } = {P d ( P, P0 ) < δ ,δ > 0}
称为点 P0 的 δ 邻域。记作 邻域。
其中 P0 称为邻域的中心, 称为邻域的中心, 邻域的中心
证 明:设 U1( P ) = U ( P,δ1), U 2 ( P) = U ( P,δ 2 ) 取 δ = min{δ1,δ 2}, 则 ∃δ > 0 使
U ( P) = U ( P,δ ) ⊂ U1( P) IU 2 ( P) 3
(3) 对于 Q ∈U ( P ) 存在 U (Q) ⊂ U ( P) ) 证明: 因为 ∈ U ( p) = U ( P,δ ) 证明: 因为Q∈
E
X
5 区间 (1)开区间定义: )开区间定义: 点集 {( x 1 , x2 ,L xn ) ai < xi < bi , i = 1, 2,L , n} 称为一 个(n维)开区间。 开区间。 维 开区间 (2)闭区间定义: )闭区间定义: 点集 {( x 1 , x2 ,L xn ) ai < xi ≤ bi , i = 1, 2,L , n} 称为一个(n)维闭区间(或左开右闭区间 。 或左开右闭区间)。 称为一个 维闭区间 或左开右闭区间